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Fast and early detection of low-dose chemical toxicity is a critical unmet need in
toxicology and human health, as conventional 2D culture models often fail to
capture subtle cellular responses induced by sub-toxic exposures. Here, we
present a bioengineered three-dimensional (3D) electrospun nanofibrous
scaffold composed of polycaprolactone that enhances chromatin accessibility
and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a
short period. The scaffold mimics the extracellular matrix, providing
topographical cues that reduce cytoskeletal tension and promote nuclear
deformation, thereby increasing chromatin openness. Chromatin compaction
indices and accessibility assays confirmed significantly more relaxed chromatin in
cells cultured on the scaffold compared to those on glass slides. Mechanistic
investigations revealed that this chromatin priming effect was mediated by
reduced F-actin polymerization and increased nuclear height. To evaluate
functional consequences, fibroblasts were challenged with 0.1%
paraformaldehyde (PFA), a commonly encountered chemical with known
long-term health risks. While cells on 2D substrates showed no significant
response, those on the 3D scaffold exhibited early decreases in viability and
elevated ROS levels. Prolonged low-dose PFA exposure further confirmed that
scaffold-cultured cells could detect cytotoxicity several days earlier than
conventional controls. To facilitate clinical translation, we developed a 96-
well-compatible platform by plasma-bonding scaffold-coated PDMS sheets
with a custom 3D-printed well plate. Optimization of electrospinning time and
cell seeding density identified conditions that maximized sensitivity and
reproducibility. Then a low-dose ethanol model was developed to conclude
that low-dose ethanol can affect cell viability. Together, these findings support a
mechanistic model in which increased chromatin accessibility elevates the basal
cellular state, expanding the “sensitive window” for detecting physical and
chemical insults. This study establishes a robust and scalable platform for fast
and early-phase chemical risk screening and offers a novel strategy for
modulating cellular responsiveness via mechano-epigenetic regulation. The
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platform is broadly applicable in toxicology, pharmacology, and environmental
health, offering a significant advancement in cell-based biosensing and precision
diagnostics.
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screen platform

1 Introduction

Increasing evidence underscores the critical health risks
associated with chronic, low-dose exposure to environmental
chemicals, particularly during vulnerable developmental stages
such as embryogenesis, infancy, and adolescence. In contrast to
the conventional toxicological paradigm, presumes monotonic
dose–response relationships and well-defined safety thresholds
(Kumar et al., 2020). Growing evidence demonstrates that
numerous compounds, including endocrine-disrupting
chemicals (EDCs) and persistent organic pollutants (POPs),
exhibit non-monotonic dose–response behavior. Such
compounds can induce profound physiological effects at
nanomolar to picomolar concentrations, often through
mechanisms involving hormone mimicry, receptor interference,
and epigenetic modifications (Gaillard et al., 2025). Prolonged low-
dose exposure, even at environmentally relevant levels, can lead to
cumulative biological burden, disrupting endocrine,
neurodevelopmental, immune, and metabolic homeostasis.
Notably, these effects are frequently latent, with clinical
manifestations emerging only after long latency periods
(Guéguen et al., 2019; Siama et al., 2019). The complexity of
chemical mixtures further compounds these risks, such as the
“mixture effect” or “cocktail effect” describes interactions that are
not captured by assessments of individual agents. This presents a
critical challenge for current regulatory frameworks, which often
fail to account for the dynamics of low-dose, long-term, and
combined exposures (Delfosse et al., 2021; Bloch et al., 2023;
Docea et al., 2021).

To more accurately characterise the subtle yet consequential
impacts of chronic chemical exposure on human health. Integration
of advanced in vitro systems such as organ-on-chip platforms or
high-resolution omics technologies is necessary to address these
limitations (Akarapipad et al., 2021; Goralski et al., 2023; Ko et al.,
2019). Due to the inherent genomic stability and environmental
adaptability of somatic cells, the deleterious effects of low-dose
chemical exposure often remain latent over extended periods
before becoming clinically apparent. This latency poses a
significant challenge for early diagnosis and intervention, as the
resulting chronic damage is frequently irreversible and can
culminate in severe health outcomes such as hematological
malignancies (e.g., leukemia), neurodevelopmental disorders, and
congenital malformations (Kang et al., 2021; Van Maele-Fabry et al.,
2019; Bemanalizadeh et al., 2022; Spinder et al., 2019). Current
toxicological assays, which primarily rely on acute or high-dose
exposure models, are often insufficiently sensitive to capture the
subtle molecular perturbations elicited by prolonged low-dose
exposure (Li and Xia, 2019; Pognan et al., 2023). These
limitations underscore an urgent need for innovative cellular

models and analytical platforms that can amplify or sensitise
cellular responses to minimal chemical insults. One of the central
bottlenecks at the cellular level is the limited responsiveness of
somatic cells to low-dose stimuli, which masks early-stage
toxicological effects and compromises the accuracy of hazard
identification. This is further complicated by the complex, non-
linear dose–response relationships characteristic of many
environmental toxicants, where biological effects may occur at
doses previously considered safe (Lauterstein et al., 2020).
Ultimately, enhancing the sensitivity and fidelity of in vitro
systems to detect low-dose chemical toxicity is a critical step
toward more predictive, human-relevant toxicological evaluations.
This will facilitate timely risk assessment and contribute to the
formulation of safer environmental and pharmaceutical policies.

In this study, a fast and early-stage platform was developed to
detect low-dose chemical exposures. Previous studies have proved that
increased chromatin accessibility can enhance cellular sensitivity to
environmental stimuli (Borah et al., 2024). This finding suggests a
promising strategy: by increasing the epigenetic accessibility of
somatic cells, specifically through open the chromatin,it may be
possible to increase their responsiveness to low-dose chemical
exposures. Electrospinning is a cost-effective and scalable
technology for fabricating nanofibrous scaffolds with high surface
area and tunable properties. Its simple setup, compatibility with
diverse polymers, and ability to produce large quantities make it
highly suitable for industrial applications in tissue engineering,
filtration, and beyond (Borah et al., 2024). In this study, we
fabricated polycaprolactone (PCL) nanofiber scaffolds using
electrospinning technology. As a classical biocompatible matrix
material, the scaffold provides a three-dimensional (3D)
microenvironment conducive to cellular growth. This 3D
architecture can enhance cellular proliferation and promote
chromatin accessibility by disrupting cytoskeletal tension and
offering increased nuclear space as well. Accompanying the global
increase in chromatin accessibility, cells exhibited significantly
heightened sensitivity to low-dose stimuli, including
chemotherapeutic agents and ultraviolet (UV) radiation. Notably,
when cells were exposed to 0.1% paraformaldehyde, cells cultured on
PCL scaffolds demonstrated a marked decline in viability, indicating
clear responsiveness to the chemical stress. In contrast, cells
maintained under conventional 2D culture conditions showed
notable resistance to the same treatment, suggesting reduced
sensitivity under planar culture constraints. To enable translational
application, we further developed and optimized a scalable, high-
throughput platform for assessing low-dose chemical toxicity, tailored
tomeet clinical screening demands. In sum, this work provides a novel
strategy and experimental platform for the early evaluation of risks
associated with low-dose chemical exposure, addressing an unmet
need in preventive toxicology and environmental health.
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2 Materials and methods

2.1 Electrospun scaffolds prepare

PCL nanofibers were prepared by electrospinning. PCL solution
was prepared by dissolving 1 g of PCL (90 kDa, Sigma, United States) in
10mL of hexafluoroisopropanol (HFIP, Sigma, United States) to form a
10% (w/v) solution. Electrospinning was performed in a fume hood
using an open-cage target to collect fibers. The solution is then loaded
into a syringe equipped with a blunt-tip metallic needle and mounted
on a syringe pump set to a flow rate of 0.5–1.0 mL/h. Electrospinning is
performed by applying a high voltage (12–18 kV) between the needle
and a flat collector placed 12–20 cm away, allowing fibre deposition
over 60min to achieve optimal scaffold thickness. Scaffolds are sterilized
prior to use by UV exposure or ethanol treatment.

2.2 Cell culture

Fibroblasts were isolated from the ear tissues of adult (4-week-
old) C57BL/6 mice, this study has been approved by the Ethical
Committee of Gansu Province Central Hospital (2023-GSFY-63).
Cells were expanded in fibroblast medium consisting of DMEM
(Gibco, 11,965), 10% fetal bovine serum (FBS; Gibco, 26140079),
and 1% penicillin/streptomycin (Gibco, 15140122). Passage-2 cells
were used for all experiments.

2.3 AFM measurement of cell
mechanical property

To determine the elastic modulus of scaffold, mechanical
measurements of single cells were performed by using atomic
force microscopy (AFM) (JPK Nanowizard 4a) with tipless
cantilevers (NPO-10, Bruker Corp., United States) with a 50 μm
silicon beads, a highly sensitive cantilever k = 0.06 N/m, and sample
Poisson’s ratio of 0.5. The force-distance curves were recorded, and
the elastic modulus of cells was calculated by NanoScope Analysis
using the Hertz model.

2.4 Cell viability assays

1 × 104 fibroblasts were seeded on the glass slide and scaffold for
24 h in a 6 well plate. Cell viability was assayed using the MTS
(Promega) according to the manufacturer’s protocol. Cells were
incubated with the MTS Reagent for 1 h. Absorbance was measured
by a plate reader (Infinite 200PRO) at excitation/emission = 560/
590 nm. Results were normalized to control (i.e., cell passing
through >200 μm channels) samples.

2.5 DNA damage assay

DNA damage assays were performed using the HCS DNA
Damage Kit (Invitrogen, H10292) according to the manufacturer’s
protocol. Cells were fixed with 4% paraformaldehyde solution for
15 min at room temperature and permeabilized by 0.25% Triton® X-

100 in PBS for another 15 min at room temperature. Cells were
washed 3 times with PBS and incubated in 1% bovine serum albumin
(BSA) solution for 1 h, followed by pH2AX antibody (1:1,000) for 1 h
at room temperature and then Alexa Fluor® 555 goat anti-mouse IgG
(H+ L) secondary (1:5,000) withHoechst 33,342 (1:6,000) for another
1 h at room temperature after removing the antibody. Epifluorescence
images were collected using a Zeiss Axio Observer Z1 inverted
fluorescence microscope and analyzed using ImageJ. Results were
normalized to control samples.

2.6 Chromatin accessibility assay

Chromatin Accessibility Assay Kit (Abcam) was employed to
detect the chromatin accessibility of cells which seed on the glass
slide and scaffold. Simply, 24 h after cells seeded on the glass slide
and scaffold, then cells were collected by Trypsin (Gibco). Following
the protocol of the kit, and result were readout via PCR.

2.7 Immunofluorescence staining and
microscopy

Samples collected for immunofluorescence staining at the
indicated time points were washed once with PBS and fixed in
4% paraformaldehyde for 15 min. Samples were washed three times
with PBS for 5 min each and permeabilized using 0.5% Triton X-100
for 10 min. After three subsequent PBS washes, samples were
blocked with 5% normal donkey serum (NDS; Jackson
Immunoresearch, 017000121) in PBS for 1 h. Samples were
incubated with primary antibodies in antibody dilution buffer
(1% normal donkey serum (NDS) + 0.1% Triton X-100 in PBS)
for either 1 h or overnight at 4°C followed by three PBS washes and a
1-h incubation with Alexa Fluor® 488- and/or Alexa Fluor® 546-
conjugated secondary antibodies (Molecular Probes). Nuclei were
stained with DAPI in PBS for 10 min. Epifluorescence images were
collected using a Zeiss Axio Observer Z1 inverted fluorescence
microscope and analyzed using ImageJ. Confocal images were
collected using a Leica SP8-STED/FLIM/FCS Confocal and
analyzed using ImageJ. Chromatin compaction was quantified by
calculating the ratio of integrated DAPI (4′,6-diamidino-2-
phenylindole) fluorescence intensity to nuclear volume for each cell.

2.8 ELISA assay

Both Global DNAMethylation assay and ROS assay were employed
ELISA assay (Abcam, ab233486 and ab186027). Samples were added to
pre-coated 96-well plates provided in the kits. The plates were incubated
with specific capture antibodies or binding ligands at room temperature
for 4 h to allow target–receptor interaction. Following incubation, the
wells were washed to remove unboundmaterials, and the corresponding
HRP-conjugated detection antibodies were added. After a secondary
incubation and final wash, the substrate solutionwas introduced, and the
enzymatic reaction was allowed to proceed for the recommended time
(30min) in the dark. Signal intensities weremeasured using amicroplate
reader for colorimetric assays or appropriate excitation/emission
wavelengths for fluorometric assays.
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3 Result

3.1 Nanofibrous scaffold optimization to
provide a 3D microenvironment for
cell culture

To prepare a multiscale microenvironment conducive to cell
culture and to modulate chromatin accessibility, electrospinning

technology was employed in this study (Figure 1a). Electrospinning
is a robust and scalable technique that utilizes a high-voltage electric
field to produce continuous micro/nanoscale fibers from a polymer
solution. As illustrated in the schematic, the polymer solution is
dispensed via a syringe pump and extruded through a metallic
needle. The applied electric field induces the formation of a charged
polymer jet, which undergoes elongation and whipping instabilities
before being deposited onto a grounded collector (flat or rotating)

FIGURE 1
Nanofibrous scaffold preparation and optimization for cell culture. (a) Schematic illustrating the design of the electrospinning technology. (b) SEM
and TEM images of the PCL nanofibrous scaffold, the scale bar for SEM = 1000 nm and he scale bar for TEM = 200 nm. (c) ImageJ quantifies the fiber
diameter (n = 100). (d) AFM detects the local stiffness of the PCL scaffold with different PCL concentration. Bar graph shows mean ± SD (n = 10). (e)
Schematic illustrating the cells seeded on the flat surface and fibrous scaffold, cells seeded on the flat surface act as control. (f)MTS assay detects the
cell viability of cells which seed on the glass slide and 3D scaffold. Bar graph shows mean ± SD (n = 10, *p < 0.05). (g,h) Cell size and nuclear size of
fibroblast seeded on the glass slide and nanofibrous scaffold. Bar graph shows mean ± SD (n = 50, *p < 0.05, **p < 0.01). Statistical significance was
determined by a two-tailed, unpaired t-test.
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resulting in a nonwoven fibrous mat. These electrospun scaffolds
exhibit high porosity and architectural features that closely resemble
the native extracellular matrix (ECM), making them well-suited for
applications in tissue engineering, regenerative medicine, and drug
delivery (Dong et al., 2021).

In this study, polycaprolactone (PCL; 90 kDa) was dissolved in
hexafluoroisopropanol (HFIP) to prepare the electrospinning
solution. As shown in Figure 1b, scanning electron microscopy
(SEM) revealed that the spinning PCL fibers ranged from 150 nm to
800 nm in diameter, with pore sizes between 0.7 μm2 and 19 μm2.
Transmission electron microscopy (TEM) further confirmed the
homogeneous distribution of PCL within individual fibres,
supporting the scaffold’s structural integrity and suitability for
three-dimensional (3D) cell culture. To optimize the local
stiffness of the scaffold for chromatin regulation, PCL solutions
of varying concentrations (3%–20% w/v) were electrospun and
characterized. Atomic force microscopy (AFM) equipped with
50 μm spheroid tips was used to quantify the local elastic
modulus. Previous studies have demonstrated that a local
stiffness of approximately 20 kPa significantly enhances
chromatin accessibility and facilitates phenotypic transitions
(Song et al., 2021). In our experiments, a 5% PCL solution
electrospun for 60 min produced scaffolds with a local stiffness
of ~20 kPa (Figure 1c). These scaffolds were selected for subsequent
biological assays, with glass slides used as 2D culture
control (Figure 1d).

Given that skin is one of the primary tissues exposed to
environmental chemicals, fibroblast of skin is the primary cell
population to interact with the chemical exposure which is also
easy to collect in clinical. In this study, mouse ear-derived fibroblasts
were seeded onto both the PCL scaffold and flat glass surfaces. Cell
viability was assessed using the MTS [3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymeth-oxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]
assay. As shown in Figure 1e, fibroblasts cultured on the electrospun
scaffold exhibited significantly enhanced viability compared to those
on the 2D glass slide. Notably, both cellular and nuclear sizes were
reduced in the scaffold group relative to the control group (Figures
1f-h), suggesting that the 3D fibrous microenvironment influences
not only proliferation but also cellular morphology. These findings
indicate that electrospun PCL scaffolds effectively recapitulate
aspects of the native ECM and can prime cellular responses
relevant to chromatin accessibility and chemical sensitivity.

3.2 Nanofibrous scaffold enhances
chromatin accessibility via F-actin
depolymerization

To investigate whether the 3D fibrous scaffold modulates
chromatin compaction, we evaluated the degree of chromatin
condensation in cell nuclei cultured on different substrates.
Chromatin compaction was quantified by calculating the ratio of
integrated DAPI (4′,6-diamidino-2-phenylindole) fluorescence
intensity to nuclear volume for each cell, as previously described
(Luciano et al., 2021). This metric, referred to as the chromatin
compaction index, inversely correlates with chromatin
accessibility—a lower value indicates a less compacted, more
accessible chromatin state. Our analysis revealed that fibroblasts

cultured on the electrospun scaffold exhibited significantly reduced
chromatin compaction compared to those on glass slides
(Figure 2a). To further validate this observation, we performed a
chromatin accessibility assay. As shown in Figure 2b, fibroblasts
grown on the scaffold demonstrated markedly higher chromatin
accessibility than those cultured on the flat glass substrate.
Interestingly, this occurred despite the reduced nuclear size
observed in scaffold-cultured cells. We hypothesized that the 3D
architecture of the scaffold, characterized by pore sizes ranging from
0.7 to 19 μm2, enables partial cellular embedding within the fibrous
network, thereby facilitating vertical expansion of the nucleus
(Figure 2c). Consistent with this hypothesis, nuclear volume
measurements revealed a significant increase in nuclear
dimensions in cells cultured on the scaffold compared to the
glass surface (Figure 2d). This result further proved that
increased nuclear volume can enhance the chromatin
accessibility, which is same as previous reported (Wu et al., 2025).

Previous studies have established that reduced actin cytoskeletal
tension can promote chromatin accessibility and drive phenotypic
transitions (Soto et al., 2023). To determine whether cytoskeletal
remodeling underlies the observed increase in chromatin
accessibility on the scaffold, we assessed F-actin organization via
Phalloidin-RFP staining. As shown in Figure 2e, cells on the scaffold
exhibited markedly reduced F-actin polymerization relative to those
on glass. To further interrogate this mechanism, fibroblasts were
pre-treated with either Cytochalasin D (an actin polymerization
inhibitor) or Phalloidin (an F-actin stabilizer) prior to seeding onto
the scaffold. After 24 h of culture, chromatin accessibility was
reassessed. As shown in Figures 2f-h, treatment with Phalloidin
significantly reduced chromatin accessibility, whereas Cytochalasin
D led to a pronounced increase. In sum, these findings demonstrate
that electrospun nanofibrous scaffolds disrupt cytoskeletal
organization, leading to nuclear reshaping and enhanced
chromatin accessibility.

3.3 Nanofibrous scaffold enhances cell
sensitivity to low dose
environmental damage

Chromatin accessibility is known to influence cellular sensitivity
to environmental stimuli; increased chromatin accessibility has been
shown to enhance cellular responsiveness (Figure 3a). To determine
whether electrospun scaffolds can enhance cellular sensitisation and
expand the range of cellular response (i.e., the “sensitive window”),
fibroblasts were cultured on scaffolds for 24 h, after which levels of
global DNA methylation and reactive oxygen species (ROS) were
quantified via ELISA. As shown in Figures 3b,c, the level of 5-
methylcytosine (5-mC) was significantly reduced in scaffold-
cultured cells compared to cells on glass slides. Concurrently, ROS
levels were also lower in the scaffold group. These findings suggest that
the scaffold-induced increase in chromatin accessibility not only
promotes a more open epigenetic state but also reduces cellular
stress, thereby enhancing the cells’ sensitivity to environmental cues.

To conceptualize the observed differences in cellular
responsiveness, we propose a mechanistic model (Figure 3d)
wherein chromatin accessibility acts as a key determinant of the
cell’s basal energetic or regulatory “state platform.” In this model,
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cells with low chromatin accessibility (represented by the red ball on
a lower platform) are positioned at a reduced baseline, limiting their
capacity to detect and respond to subtle environmental stimuli.
Their response is only triggered once external stimuli surpass a
relatively high activation threshold, resulting in a narrow “sensitive
window.” By contrast, cells with increased chromatin accessibility
(depicted by the blue ball on a higher platform) occupy an elevated
regulatory state. This heightened state lowers the threshold required
for stimulus perception, thereby expanding the sensitive window the
range within which cells can detect and respond to perturbations.
The vertical distance between the two platforms in the diagram
illustrates the difference in basal readiness, while the horizontal
component reflects the dynamic range of response. As a result, cells
with greater chromatin accessibility are primed for more rapid and
robust transcriptional responses to both chemical (e.g.,
lipopolysaccharide) and physical (e.g., UVB radiation) stimuli, as
demonstrated in our experimental assays. This model supports the
notion that chromatin architecture is not merely a passive indicator
of transcriptional potential, but an active regulator of how cells
interpret and respond to environmental inputs. It further suggests
that bioengineered platforms, such as 3D nanofibrous scaffolds can
be strategically designed to tune epigenetic states and thereby
modulate cell sensitivity for diagnostic, therapeutic, or screening
applications.

To experimentally validate this model, we subjected fibroblasts
to low-dose physical and chemical challenges. UVB radiation (2 kJ/

m2 for 10 min) was used to induce oxidative stress. As shown in
Figure 3e, ROS levels increased significantly more in scaffold-
cultured cells than in glass-cultured cells following UVB
exposure, indicating heightened sensitivity. Additionally,
lipopolysaccharide (LPS), a well-characterised inducer of DNA
damage, was applied at a low concentration (0.5 μM) for 2 h. As
shown in Figure 3f, LPS treatment resulted in a greater degree of
DNA damage in cells cultured on scaffolds compared to those on
glass, further supporting the notion of scaffold-enhanced cellular
sensitivity. In summary, the 3D fibrous scaffold microenvironment
promotes chromatin relaxation and reduces basal stress, thereby
priming cells to be more responsive to both physical and chemical
environmental stimuli.

3.4 Low dose paraformaldehyde reduce cell
viability on nanofibrous scaffold

To assess whether electrospun nanofibrous scaffolds enhance
fibroblast sensitivity to low-dose chemical exposure and thereby
enable early detection of potential cytotoxic risk, we selected
paraformaldehyde (PFA) as a model compound. Formaldehyde is
a well-characterized chemical fixative known to induce DNA
damage, impair cell viability, and contribute to the development
of serious diseases such as nasopharyngeal carcinoma and leukemia
(La Torre et al., 2023). While high concentrations of PFA are acutely

FIGURE 2
Nanofibrous scaffold increases cell chromatin accessibility. (a) Representative images of chromatin density on cells seed on the glass slide and
nanofibrous scaffold. Scale bar = 10 μm. (b) DAPI staining quantifies the chromatin density of cells seed on the glass slide and nanofibrous scaffold. Bar
graph shows mean ± SD (n = 50, ***p < 0.001). (c) Chromatin Accessibility Kit detects the chromatin accessibility of cells seed on the glass slide and
nanofibrous scaffold. Bar graph showsmean ± SD (n = 3,*p < 0.05). (d) Schematic illustrating the cells seeded on the fibrous scaffold have higher cell
volume via increased cell height. (e) DAPI staining quantifies the nuclear volume. Bar graph shows mean ± SD (n = 50, ***p < 0.001). (f) Representative
images of F-actin of cells seed on the glass slide and nanofibrous scaffold. Scale bar = 100 μm. (g)Quantification the F-actin of cells seed on the glass slide
and scaffold. Bar graph shows mean ± SD (n = 50, **p < 0.01). (h)Quantification chromatin accessibility of cells which are seed on the scaffold and pre-
treated by the F-actin polymerization inhibitor and depolymerization inhibitor, cells seed on the glass slide act as the control. Bar graph showsmean ± SD
(n = 3,*p < 0.05, **p < 0.01). Significance was determined by a one-way ANOVA and Tukey’s multiple comparison test, and a two-tailed unpaired t-test.
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toxic, increasing epidemiological and experimental evidence
suggests that chronic exposure to low doses, such as those
encountered in occupational or polluted environments, can also
elicit adverse biological effects over time, including
carcinogenesis (Figure 4a).

In our study, fibroblasts were first seeded in standard 96-well
plates and exposed to a range of PFA concentrations to establish a
toxicity threshold. As shown in Figure 4b, 0.1% PFA did not
significantly affect cell viability under conventional 2D culture
conditions, indicating that such a concentration falls below the
acute toxicity threshold. To further investigate the long-term
effects of low-dose PFA exposure, fibroblasts were cultured in
96-well plates and treated continuously with 0.1% PFA for 6 days.
As shown in Figure 4c, a notable decline in cell viability was
observed after 4 days of treatment, supporting the notion that even
low concentrations of PFA can exert cumulative cytotoxic effects
over time. However, we hypothesised that cells cultured on a 3D
scaffold primed by increased chromatin accessibility might exhibit
heightened sensitivity and thus be capable of detecting sub-toxic
exposures at earlier time points. To test this, fibroblasts were
seeded on the electrospun PCL scaffold for 24 h and
subsequently treated with 0.1% PFA for another 24 h.
Remarkably, a significant reduction in cell viability was
observed in scaffold-cultured fibroblasts compared to those
grown on glass (Figure 4d). This suggests that the scaffold
microenvironment sensitizes cells to otherwise undetectable
levels of chemical stress.

Together, these findings demonstrate that electrospun scaffolds
enhance the cellular detection of low-dose toxicants and enable
earlier identification of chemical-induced cytotoxicity. This
platform offers a promising approach for early risk screening in
environmental toxicology and public health surveillance.

3.5 Low-dose chemical exposure risk
detection platform preparation and
optimization

To facilitate the clinical translation of scaffold-induced cell
sensitization for early detection of low-dose chemical toxicity, we
developed a modular, high-throughput 3D scaffold-based platform
compatible with standard 96-well plate formats. As illustrated in
Figure 5a, nanofibrous scaffolds were first fabricated on flat poly-
dimethylsiloxane (PDMS) collectors via electrospinning.
Subsequently, a custom-designed 3D-printed 96-well cover plate
was aligned and bonded to the scaffold-coated collector surface
using a 1-min plasma treatment, ensuring firm adhesion without
compromising fiber integrity. The resulting integrated device is
amenable to parallelized analysis and enables systematic
evaluation of chemical toxicants at scale, offering a promising
solution for screening environmental or pharmaceutical
compounds under physiologically relevant 3D conditions.

To optimize platform performance for maximal sensitivity, we
systematically evaluated two critical parameters: electrospinning

FIGURE 3
Nanofibrous scaffold increases cell sensitivity. (a) Schematic illustrating the relationship between cells sensitivity and chromatin accessibility. (b,c)
ELISA quantifies the 5-mC and ROS level of cells seed on the glass slide and nanofibrous scaffold. Bar graph shows mean ± SD (n = 3, **p < 0.01). (d)
Schematic illustrating the model of cell sensitive window. (e) ELISA quantifies the ROS level of cells seed on the glass slide and scaffold, then damaged by
low-dose UVB. Bar graph shows mean ± SD (n = 3,*p < 0.05,**p < 0.01). (f) DNA damage quantified after cells seed on the glass slide and scaffold,
then damaged by low-dose LPS. Bar graph showsmean ± SD (n = 3,*p < 0.05,**p < 0.01). Significance was determined by a one-way ANOVA and Tukey’s
multiple comparison test, and a two-tailed unpaired t-test.

Frontiers in Pharmacology frontiersin.org07

Zhang et al. 10.3389/fphar.2025.1636594

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1636594


FIGURE 4
Nanofibrous scaffold detects low-dose formaldehyde damage. (a) Schematic illustrating the relationship between low-dose formaldehyde damage
to the human lifespan. (b)MTS assay detects the cell viability of fibroblasts which are treated by different concentrations PFA. Bar graph showsmean ± SD
(n = 3,*p < 0.05,**p < 0.01, ***p < 0.001). (c) MTS assay detects the cell viability of fibroblasts which are treated by low-dose PFA for 6 days. Bar graph
showsmean ± SD (n = 3). (d)MTS assay detects the cell viability of fibroblasts which seed on the glass slide and fibrous scaffold then treated by low-
dose PFA. Bar graph shows mean ± SD (n = 3,*p < 0.05). Significance was determined by a one-way ANOVA and Tukey’s multiple comparison test, and a
two-tailed unpaired t-test.

FIGURE 5
Low-dose chemical exposure detection platform generation and optimization. (a) Schematic illustrating the protocol of the low-dose chemical
exposure detection platform generation. (b) Cell Chromatin accessibility assay utilized to optimize the electronspun time of the platform generation. Bar
graph showsmean± SD (n = 3, *p < 0.05, **p < 0.01). (c)MTS assay detects the cell proliferation of fibroblasts to optimize the cell number for the low dose
exposure risk assay. Bar graph shows mean ± SD (n = 3, *p < 0.05, **p < 0.01). (d) MTS assay detects the cell proliferation of fibroblasts which are
treated via different concentrations ethanol. Bar graph shows mean ± SD (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001). (e) Fast check platform detect the
potential risk of low-dose ethanol via MTS assay. (n = 3, *p < 0.05). Significance was determined by a one-way ANOVA and Tukey’s multiple comparison
test, and a two-tailed unpaired t-test.
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duration and initial cell seeding density. As shown in Figure 5b, a 60-
minute electrospinning period yielded scaffolds with optimal
thickness and fibre density to significantly enhance chromatin
accessibility compared to shorter durations. No further
improvement was observed with extended spinning beyond
60 min, indicating a plateau in mechano-regulatory effect.
Concurrently, cell proliferation analysis revealed that a seeding
density of 8,000 fibroblasts per well provided the highest
sensitivity to stimuli while maintaining robust viability
(Figure 5c). This condition was therefore selected for subsequent
low-dose chemical exposure assays. Low-dose ethanol was utilised to
further evaluate the platform’s capability. The results demonstrated
that 10% ethanol does not impair cell viability after 24 hours of
exposure; however, prolonged exposure to the same concentration
leads to a significant decline in cell viability (Figures 5d,e).

In summary, we have established and optimized a scalable,
clinically oriented platform that integrates electrospun
nanofibrous scaffolds with standardized well-plate geometry. This
system enables early-stage detection of low-dose chemical toxicity
by leveraging the epigenetically primed, sensitized state of fibroblasts
cultured in 3D.With its potential for high-throughput screening and
compatibility with existing laboratory infrastructure, this platform
provides a powerful tool for toxicological evaluation in both research
and translational settings.

4 Discussion

In this study, we present a novel 3D nanofibrous scaffold
platform capable of priming chromatin accessibility and
enhancing cellular sensitivity to low-dose chemical exposure.
Through electrospinning polycaprolactone (PCL) fibers onto flat
collectors and integrating them into a modular well-plate format, we
successfully recapitulated a physiologically relevant
microenvironment that promotes nuclear remodeling and
chromatin decondensation. Our data demonstrates that
fibroblasts cultured on this scaffold exhibit reduced chromatin
compaction, increased nuclear height, and heightened sensitivity
to chemical and physical stimuli. These effects are mechanistically
linked to decreased cytoskeletal tension and increased nuclear
pliability—conditions that favor transcriptional activation and
rapid epigenetic response. This chromatin “priming” effect
significantly lowers the detection threshold for toxicants such as
paraformaldehyde, enabling earlier and more sensitive evaluation of
cytotoxic risk compared to conventional 2D cultures. To achieve the
same purpose, different platform was developed to enhance the
chromatin accessibility for cell microenvironment detection, such as
soft hydrogel and patterned substrates (Heo et al., 2023; Luo et al.,
2022). In this study, we did not set the hydrogel with same local
stiffness as a control, since the local stiffness of electrospun scaffold
we used is around 20MPa, this is difficult to prepare a hydrogel with
such a high local stiffness via AFM measurement.

The clinical importance of detecting low-dose and early-phase
toxicological insults cannot be overstated (Serras et al., 2021).
Traditional toxicology models, which often rely on high-dose
exposure paradigms, fail to capture subtle molecular

perturbations that occur at physiologically relevant exposure
levels (Serras et al., 2021). Our findings show that cells grown on
the electrospun scaffold respond robustly to sub-toxic
concentrations of 0.1% PFA, exhibiting decreased viability and
elevated stress markers well before these changes manifest in
standard 2D cultures. Additionally, long-term low-dose exposure
experiments reveal cumulative cytotoxic effects consistent with
epidemiological data linking chronic low-level chemical exposure
to diseases such as leukemia and nasopharyngeal cancer (Rühm
et al., 2022). By offering a window into this early response phase, our
platform provides a unique opportunity to understand and monitor
environmentally induced cellular damage at its inception.

Beyond toxicology, this platform has broad translational
potential. The modular scaffold-plate system is compatible with
standard 96-well formats, making it scalable for high-throughput
screening and adaptable for pharmaceutical testing, environmental
monitoring, and personalized medicine. By optimizing scaffold
thickness and cell seeding density, we have established conditions
that maximize chromatin accessibility and detection sensitivity
without compromising cell viability. This approach could be
extended to other cell types and stressors, including radiation,
metabolic toxins, and epigenetic drugs. Ultimately, our scaffold-
based system represents a next-generation diagnostic tool that
bridges the gap between fundamental cell biology and real-world
clinical and environmental challenges, offering a sensitive, tunable,
and physiologically meaningful platform for early toxicity screening
(Roffel and Hoogdalem, 2024).
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