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Emerging evidence positions the gut microbiota as a pivotal regulator of host
metabolism and immunity, particularly in atherosclerosis pathogenesis, with
epigenetic mechanisms serving as fundamental mediators of gene expression
control. This review systematically summarizes gut microbiome-driven
epigenetic pathways, encompassing DNA methylation, histone modifications,
non-coding RNA networks and their interplay with atherosclerosis-related
pathological processes. We synthesize current evidence on microbiota-
epigenome crosstalk, highlighting its potential mechanistic contributions to
atherosclerotic plaque development.
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1 Introduction

Atherosclerosis (AS) is an age-related disease characterized by fibrofatty lesions in the
artery walls, the major cause of myocardial infarctions, strokes, and peripheral artery
disease, leading to a major global burden of cardiovascular morbidity and mortality (Song
et al., 2019). Well-known risk factors for AS include aging, hyperlipidemia, diabetes, and
obesity, which cause endothelial dysfunction, lipoprotein retention, inflammatory cell
recruitment, oxidative stress, foam cell formation, apoptosis and necrosis, vascular
smooth muscle cell proliferation, matrix synthesis, calcification, angiogenesis and
fibrous cap formation (Björkegren and Lusis, 2022).

Emerging evidence shows that gut microbiota and their metabolites are increasingly
recognized as critical modulators in the progression of AS and other vascular diseases (Chen
et al., 2023). Commensal microbes engage in dynamic crosstalk with intestinal epithelial
cells (IECs) at the host-microbiota interface, orchestrating immune cell development
through bidirectional signaling. Beyond local intestinal modulation, gut microbial
metabolites and intestinal immune cells repertoire employ distinct transport pathways
to disseminate systemically, establishing inter-organ communication networks that may
contribute to the progression of vascular pathologies. Therefore, some experts describe the
microbiota-artery axis, or gut-vascular axis, as a unified entity that contributes to these
vascular conditions, making it a promising target for treatment (Zhang et al., 2023; Flori
et al., 2024; Huang et al., 2025; Cook and Hogue, 2021). The underlying mechanisms
sustaining this conceptual framework remain to be systematically elucidated.

Epigenetics investigates how endogenous and exogenous factors (diet, gut microbiota,
medication, and environmental) modify gene expression without altering DNA sequences,
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including processes such as DNA methylation, histone
modifications, and non-coding RNAs. The exogenous factors
affect both the host’s epigenome and the composition and
activity of gut microbiota, which in turn indirectly influence the
host’s epigenome (Woo and Alenghat, 2022). In addition, epigenetic
drive functional changes across heterogeneous vascular cell
populations during atherogenesis progression. Recent years, the
field of gut microbiota and epigenetics has gained attention
among vascular clinicians and researchers. This review focuses on
the latest findings regarding epigenetic modifications in gut
microbiota and explores their potential roles in the development
of AS (Figure 1).

2 Epigenetic modification

Genomic DNA is hierarchically packaged with histones into
chromatin structures. In mammalian systems, DNA methylation

primarily occurs as 5-methylcytosine (5 mC), an epigenetic
modification catalyzed by DNA methyltransferases (DNMTs)
through covalent methyl group addition to cytosine bases. While
adenine methylation exists, 5 mC stands as the predominant
epigenetic mark in mammals, serving as the principal regulator
of gene silencing, chromatin structure, and genomic stability. This
modification predominantly occurs at CpG islands, where it
sterically hinders transcription factor binding and represses gene
expression, particularly when localized near promoter regions (Zhao
et al., 2020).

Transcriptionally active euchromatin maintains relaxed
configurations permitting transcriptional machinery access, while
condensed heterochromatin restricts DNA accessibility through
histone-DNA complexes. Histone post-translational modifications
constitute another primary mechanism for microbial regulation of
host chromatin. Rather than targeting DNA directly, these covalent
modifications, conjugated to lysine residues on histone tails, alter
chromatin conformation and gene expression. Among >20 identified

FIGURE 1
Gut Microbiota-Epigenome Potential Crosstalk in Atherosclerosis MCT1: Monocarboxylate transporter 1; SCFAs: Short Chain Fatty Acids; TMA:
Trimethylamine; TLR: Toll-like receptors; HAT: Histone acetyltransferases; HDAC: Histone deacetylase; DNMT: DNAmethyltransferases; TET: ten-eleven
translocation.
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post-translational modifications classes, histone acetylation and
methylation predominate in microbiota-host studies, dynamically
regulated by opposing enzyme classes, such as histone
acetyltransferases (HATs) versus deacetylases (HDACs),
methyltransferases versus demethylases (Zhao et al., 2020).

Non-coding RNAs are functionally categorized based on nucleotide
length. Long non-coding RNAs (lncRNAs, ≥200 nucleotides) modulate
gene expression by serving as scaffolds for chromatin remodeling or by
interacting with transcriptional regulators (Statello et al., 2021). In
contrast, microRNAs (miRNAs, 18–25 nucleotides) mediate RNA
interference by binding to mRNA untranslated regions, leading to
translational repression or mRNA degradation (Yao et al., 2019).

3 Epigeneticmodification ofmicrobiota
in atherosclerosis

The gut microbiota orchestrates host epigenetic reprogramming
via three principal pathways: microbial-derived metabolites
modulating substrate availability for DNA/histone modifications,
regulation of epigenetic modifying enzyme expression and activity,
and maintain intestinal epithelial barrier function that epigenetically
coordinate transcriptional networks (Woo and Alenghat, 2022).
These microbiota-epigenome interactions constitute a regulatory
axis shaping host physiological plasticity. Further, epigenetic
mechanisms maintain transcriptional reprogramming in host
cells, sustaining altered gene expression patterns that continue
beyond the removal of microbial stimuli.

3.1 Microbiota-derived metabolites

The gut microbiota generates bioactive metabolites that play
roles as substrates, cofactors, or enzymatic modulators in chromatin
modification, directly interfacing with host epigenetic regulation.
Here, we summarize the relationship between metabolites produced
by the gut microbiota and epigenetic modifications in
atherosclerosis.

3.1.1 Short chain fatty acids (SCFAs)
Gut microbiota-derived SCFAs (primarily acetate, propionate,

and butyrate) are bioactive metabolites synthesized through
fermentation of dietary fiber and degradation of proteins and
aromatic compounds. SCFAs traverse cellular membranes via
passive diffusion or active transport through monocarboxylate
transporter 1. They can bind directly to intracellular HDACs and
inhibit their activity. Short-chain lysine acylation is reversibly
regulated by competing acyltransferases and deacylases. The
acyltransferase superfamily (GCN5-related N-acetyltransferases,
p300-CBP, MYST) catalyze site-specific short-chain acylation,
while deacylase families (Zn2+-dependent HDACs and NAD+-
dependent sirtuins) counteract these modifications.

Preclinical models and multi-omics profiling establish the causal
protective role of SCFAs in AS progression by mapping vascular
epigenetic remodeling. Butyrate and propionate promote Treg
generation both by enhancing Foxp3 acetylation through HDAC
inhibition and by serving as acyl-CoA donors for histone
acetyltransferases (Arpaia et al., 2013; Thomas and Denu, 2021).

Butyrate orchestrates transcriptional programs across immune
populations (macrophages, dendritic cells, Tregs) and intestinal
epithelial cells by elevating histone acetylation and chromatin
accessibility, driving a metabolic inflammatory resolution, and
lipid metabolism (Schulthess et al., 2019; Furusawa et al., 2013;
Grouls et al., 2022; Chang et al., 2014). Butyrate-mediated targeting
of HDAC3/6 induces acetylation of non-histone proteins NF-κB
subunit p65, altering its promoter binding capacity to attenuate pro-
inflammatory transcriptional activation (Sarkar et al., 2023). In
addition, butyrate exerts atheroprotective effects by epigenetically
reprogramming vascular smooth muscle cell proliferation through
chromatin remodeling-mediated cell cycle arrest. Mechanistically, it
downregulates G1-specific cell cycle proteins while upregulating cdk
inhibitors such as p15INK4b and p21Cip1 (Mathew et al., 2010).

Propionate may influence cardiovascular function via protein
propionylation, with histone lysine propionylation (Kpr) as a
potential key mechanism. Propionylation of histone H3 at Lys14
(H3K14pr) is predominantly enriched at promoters of highly
transcriptionally activated genes, including those involved in fatty
acid oxidation. Conversely, deficiency in H3K23pr mediated by
BRPF1-KAT6 complexes contributes to cardiac anomalies. These
findings suggest a potential role for histone propionylation in
cardiovascular homeostasis, though the underlying mechanisms
involving H3K14pr and H3K23pr in cardiovascular diseases
require further investigation (Kebede et al., 2017).

Acetate induces histone H3 hyperacetylation, specifically
activating lipogenic genes ACACA and FASN through increased
H3K9, H3K27, and H3K56 acetylation at their promoters. This
epigenetic regulation, mediated by acetyl-CoA synthetases
ACSS1 and ACSS2, enhances de novo lipid synthesis in concert
with acetate’s role as a fatty acid precursor (Gao et al., 2016).
Macrophages and dendritic cells can sense butyrate in part
through G-protein-coupled-receptors, that are correlates with
increased global histone H3 acetylation (Ji et al., 2016).

SCFAs mediate cardioprotection through DNA methylation-
dependent pathways. In type 2 diabetes patients, reduced
Faecalibacterium prausnitzii (a key butyrate producer) correlates
with hypermethylation of free fatty acid receptors promoter CpG
sites (Chleilat et al., 2021). Acetate activates free fatty acid receptor
two to stimulate leptin secretion in adipocytes, thereby regulating
appetite and improving obesity (Chambers et al., 2015). Further,
propionate induces specific DNA methylation patterns in the DAB
adaptor protein 1 promoter, a diabetes target gene (Guo et al., 2022).
Nevertheless, in high-fat-diet (HFD) models, acetate, propionate,
butyrate suppress obesity-related leptin overexpression through
downregulation DNMT1/3a/3b, reducing leptin promoter
methylation (Lu et al., 2018). Although proposed mechanisms
suggest SCFA-dependent HDAC inhibition modulates methyl-
CpG-binding domain protein activity, this hypothesis remains
speculative. Further in vivo tracer studies and chromatin profiling
are warranted.

3.1.2 Choline
Trimethylamine (TMA), a gut microbiota metabolite from

dietary precursors (choline, phosphatidylcholine, and carnitine),
serves as the direct precursor for trimethylamine-N-oxide
(TMAO). Elevated TMAO levels predict and correlate with AS
progression (Koeth et al., 2013). Mechanistically, in vitro studies
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reveal TMA exposure alters DNMT expression
profiles—upregulating DNMT1 while suppressing DNMT3A
(Shelp et al.). Mice harboring choline-metabolizing gut
microbiota displayed reduced global DNA methylation and
elevated inguinal adiposity under HFD conditions (Romano
et al., 2017). It is hypothesized that bacterial choline metabolism
depletes host methyl donors, reducing global DNA methylation and
exacerbating HFD-induced metabolic dysregulation.

3.1.3 Polyphenols
Polyphenols, predominantly present as glycosides, undergo

colonic microbiota-mediated hydrolysis, demethylation,
decarboxylation, dehydroxylation, and ring cleavage to form
more bioactive metabolites. Current research primarily focuses
on miRNA-related findings. Across both experimental models
and human studies, polyphenols universally modulate miRNAs,
predominantly affecting inflammation and lipid metabolism.
Current evidence regarding miRNA-epigenetic regulation in
atherosclerosis models remains limited. The few available studies
report a correlation between overexpression of miR-181a, miR-106a,
miR-20b and their target genes HIF1A/VEGFA, with this molecular
signature aligning attenuated lesion progression. Notably,
polyphenol-modulated anti-angiogenesis may operate through
these miRNAs. A broad summary of polyphenols’ potential
mechanistic roles in atherosclerosis pathogenesis follows.

Regarding inflammation regulation, resveratrol upregulates
miR-663, a microRNA targeting multiple inflammatory genes,
thereby suppressing endogenous activator protein-1 (AP-1)
activity and attenuating lipopolysaccharide (LPS)-induced AP-1
activation in vitro (Tili et al., 2010). Supporting these mechanistic
findings, a 12-month clinical trial in T2DM hypertensive patients
demonstrated significant alterations in six inflammation-regulating
miRNAs (miR-21; miR-181b; miR-663; miR-30c2; miR-155; miR-
34a) within circulating immune cells following resveratrol
supplementation (Tomé-Carneiro et al., 2013). In the context of
lipid metabolism modulation, resveratrol inhibits de novo
lipogenesis in adipose tissue in vivo through upregulation of
miR-539-5p, which functions as the functional mediator of this
metabolic suppression (Gracia et al., 2016). Additionally, multiple
bioactive polyphenols including quercetin, isorhamnetin, olive oil
hydroxytyrosol, propolis extracts, curcumin, açai berry
compounds, red muscadine grape polyphenols, grape seed
extract, tea catechins, and polydatin modulate inflammation,
oxidative stress, and lipid metabolism through miRNA-
mediated gene regulation (Koudoufio et al., 2020). Polyphenols
downregulate pro-inflammatory cytokine expression via these
miRNAs, indicating potential immunomodulatory benefits for
atherosclerosis.

Beyond miRNA regulation, polyphenols modulate epigenetic
pathways, including DNA hypermethylation, histone methylation,
and acetylation, that may putatively influence AS progression.
Raspberry polyphenol extract counteracts HFD suppression of
H3K27 acetylation (H3K27Ac), thereby ameliorating obesity and
insulin resistance (Fan et al., 2020). Quercetin and its derivative
Q2 attenuate adipogenesis by epigenetically repressing key adipogenic
genes C/EBPα and PPARγ. Chromatin immunoprecipitation revealed
compound-induced chromatin remodeling at 5′regulatory regions,
accompanied by increased levels of the repressive histone mark

H3K9me2 and decreased levels of the activating mark H3K4me2
(Nettore et al., 2019).

3.1.4 Folate
Nutrients critical for one-carbon metabolism, particularly folate,

vitamin B6, and B12, regulate DNA methylation. Deficiencies in
folate, vitamin B6, and B12 are associated with elevated
homocysteine levels, which may contribute to systemic methyl
donor insufficiency, reduced DNA methylation, endothelial
dysfunction, and accelerated AS (Ma et al., 2017). In human
studies, the duration of maternal folate supplementation prior to
conception shows a significant positive correlation (p = 0.024) with
offspring leptin gene CpG methylation levels, though the functional
implications require further investigation (Pauwels et al., 2016).
Notably, outcomes exhibit model- and dose-dependency. In obese
murine models, high-dose prenatal folate alters offspring lipid
metabolism while increasing DNA methylation at CpG sites
within promoters of hepatic adipose triacylglyceride lipase
(ATGL) and adipose lipoprotein lipase (LPL) genes (Yang et al.,
2017). Conversely, rat studies reveal that combined dietary protein
restriction and folate supplementation during pregnancy
significantly reduces PPAR gene methylation in offspring liver,
thereby attenuating metabolic disease risk (Lillycrop et al., 2005).
Collectively, these findings highlight the context-dependent
epigenetic effects on AS of folate interventions.

3.2 Epigenetic regulation of intestinal barrier

Emerging evidence establishes microbial-epigenomic regulation
as a key mechanism governing function of IECs. IECs sense
microbial components via Toll-like receptors (TLRs), with
pioneering studies demonstrating microbiota-mediated epigenetic
control of Tlr4 expression (Takahashi et al., 2011). Microbiota
epigenetically regulate intestinal development through DNA
methylation and histone modifications. Germ-free mice exhibit
reduced Tlr4 promoter methylation in colonic IECs, correlating
with diminished gene expression and lipopolysaccharides
hyporesponsiveness (Takahashi et al., 2009). IEC-specific Dnmt1
deletion causes global hypomethylation, aberrant crypt formation,
and stunted colon development (Elliott et al., 2015; Yu et al., 2015).
HDAC3 mediates integration of microbiota-derived signals that
maintain healthy intestinal homeostasis (Alenghat et al., 2013).
Surface colonocytes metabolize butyrate for energy, thereby
butyrate-exposed stem cells show elevated histone acetylation
with impaired proliferation or repair (Donohoe et al., 2011).
Preserving intestinal barrier integrity blocks lipopolysaccharides
leakage, bacteria translocation and subsequent systemic
inflammation. This contributes to atheroprotective effects.

Microbiota-host epigenomic interactions critically regulate
immune homeostasis. For example (Song et al., 2019),
macrophages/dendritic cells sense SCFAs via G protein-coupled
receptors, elevating global H3 acetylation to enhance anti-
inflammatory cytokine expression and Treg modulation
(Björkegren and Lusis, 2022). SCFAs activate GPR43 signaling
and inhibit HDACs, increasing Foxp3 locus acetylation and
expression to drive Treg differentiation. Additionally, microbiota
directs Treg DNA methylation by upregulating Uhrf1—a DNMT1/
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HDAC1-binding adaptor protein (Obat et al., 2014). (Chen et al.,
2023) Microbiota reduces Cxcl16 expression by decreasing 5′CpG
methylation, limiting invariant natural killer T cell development
(Zhang et al., 2023). Microbial signals modulate intestinal innate
lymphoid cell function through epigenomic reprogramming (Woo
and Alenghat, 2017). Beyond preventing enteric inflammation and
infections, intestinal immune homeostasis suppresses systemic low-
grade inflammation and functions as an immunocyte reservoir that
mitigates distant vascular pathologies. Current research has
established that propionate facilitates the recirculation of colonic
Tregs from the colon through colonic dLNs and circulating blood to
the pathological vessels (Nakanishi et al., 2018; Yang et al., 2022).
The translational applicability of this mechanism to AS requires
rigorous validation.

4 Conclusion and prospect

The gut microbiota emerges as a master regulator of host
epigenetics, forging a critical “gut-vascular axis” that
mechanistically links gut microbiota with epigenetic regulation of
vascular function. Through dynamic modulation of DNA
methylation, histone modifications, and non-coding RNAs,
microbiota-derived metabolites orchestrate vascular
inflammation, lipid metabolism, and immune cell function.
Butyrate and propionate suppress atherogenic pathways by
modulating chromatin accessibility, driving Foxp3-mediated Treg
differentiation while silencing NF-κB-dependent inflammation
through p65 hyperacetylation. Simultaneously, intestinal barrier
integrity, maintained by microbiota-epigenome crosstalk,
prevents systemic endotoxemia and primes immunocytes for
vascular recirculation. While current evidences indicated that
microbiota and microbiota-derived metabolites participate in AS
through epigenetic modifications, the pathological significance of
these changes requires deeper mechanistic exploration.

Current understanding suggests that dietary patterns
profoundly modulate the composition and function of the gut
microbiota and its production of microbial metabolites. These
microbiota-derived metabolites serve as substrates and regulators
for epigenetic modifications. Consequently, dietary interventions
targeting epigenetic mechanisms represent a viable therapeutic
strategy, yet critical challenges persist. Key unresolved issues
include precise mapping of metabolite gradients to vascular
epigenetic signatures, the establishment of rigorous patient
stratification criteria for clinical translation, and the definition of
contraindications thresholds. Addressing these requires convergent
experimental-computational methodologies. Spatially resolved
metabolomics enables regional metabolite detection across
intestinal niches, while complementary epigenetic co-localization
techniques establish functional relationships between metabolite
distributions and local epigenetic modifications. Single-cell multi-
omics integration further resolves metabolic-epigenetic crosstalk at
cellular resolution.

Moving forward, this nascent field requires substantial further
investigation. Key research gaps include limited epigenetic studies
on metabolites such as choline-derived TMAO, polyphenols, and
folate in atherosclerosis pathogenesis, necessitating expanded
mechanistic evidence. Future studies should delineate epigenetic

divergence between early and late atherosclerosis phases, identifying
key metabolite-driven switches that differentially modulate disease
evolution. Research should prioritize identifying patient
subpopulations with maximal predicted benefit from targeted
microbial or epigenetic therapies. Consequently, addressing these
knowledge gaps will be essential to translate microbiota-epigenetic
insights into safe, effective therapeutic interventions for
atherosclerosis.
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