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Introduction: Tuberculosis (TB) remains the primary cause of death due to
infectious disease in the world. TB, while treatable, requires an extended course
of multiple antibiotics, taking 6–9 months, and many antibiotic regimens have
deleterious side effects. Treatment is complicated by co-infection, emerging
drug resistance, and compliance issues; accordingly, the identification of new
and optimal regimens has been a recent focus. Rodent models of TB (e.g.,
mouse, rabbit) do not mimic some severe pathologies well, while nonhuman
primate models are costly. Several computational and in vitro tools have been
developed to explore drug regimen design and efficacy for TB, each providing
insight into human disease dynamics.
Methods:Here we briefly review existing tools and introduce a novel, integrated
approach combining in vitro predictions of drug pharmacokinetics,
pharmacodynamics and drug-drug interactions with a granuloma-scale
computational model (GranSim). Our method captures in vivo dynamics to
test how well systematic in vitro data predict granuloma-scale outcomes such
as CFU burden and sterilization time. To evaluate in vitro measurements under
various growth conditions and to compare to clinical and experimental
datasets, we simulated five well-known regimens in our pipeline: HRZM,
BPaMZ, RMZE, BPaL and HRZE.
Results: We find that in vitro measurements of antibiotic regimen
pharmacodynamics under specific growth conditions can be used to
simulate virtual granulomas consistent with low-burden human and primate
granulomas.
Discussion: This work provides a novel tool that can be used to quickly and
efficiently evaluate drug regimens for TB.
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Introduction

Pulmonary tuberculosis (TB) is caused by the inhalation of
Mycobacterium tuberculosis (Mtb) leading to infection within lungs.
This leads to formation of granulomas, hallmark lesions composed
of immune cells, Mtb and necrotic tissue (referred to as caseum due
to its cheese-like appearance). Granulomas are heterogeneous
within a given host, giving rise to diverse microenvironments for
Mtb (Lenaerts et al., 2015). To survive within these environments,
Mtb adapts to these conditions by adjusting metabolic activities,
decreasing replication rates or increasing lipid production, etc.
(Meena and Rajni, 2010; Gengenbacher and Kaufmann, 2012).
Such adaptations lead to various Mtb phenotypes even within a
single granuloma (Lenaerts et al., 2015). Unfortunately, Mtb can
become more tolerant to anti-Mtb antibiotics due to non-adherence
and microenvironment heterogeneity (Lenaerts et al., 2015; Dartois
and Rubin, 2022; Sarathy et al., 2018; Sarathy and Dartois, 2020).

Treatment remains challenging despite effective drugs due to
poor access to consistent medical treatment, side effects of the drugs
and other obstacles to treatment; hence TB remains one of the
deadliest infectious diseases in the world with 1.25 million deaths
per year (World Health Organization, 2024). This challenge is also
related to the complexities of granulomas (Sarathy et al., 2018;
Sarathy and Dartois, 2020) and varied metabolic phenotypes of Mtb
(Dhar et al., 2016). Granulomas provides a spatially heterogeneous
physiological barrier that prevents uniform distributions of
administered compounds (Sarathy et al., 2016; Pienaar et al.,
2015a; Pienaar et al., 2017). Moreover, the pharmacokinetic (PK)
variability within populations leads to different levels of antibiotic
exposure within granulomas (Cicchese et al., 2020a). As Mtb have
evolved various phenotypes to survive within granulomas, treatment
necessitates compounds with diverse pharmacodynamic (PD)
mechanisms of action (Kerantzas and Jacobs, 2017). Moreover,
extremely slow-growing bacteria like Mtb cannot easily be
detected and killed by antibiotics, and Mtb can acquire antibiotic
resistance over the course of treatment (Johnson et al., 2006).
Combination therapy is required for treatment of Mtb infection
to target variousMtb phenotypes, facilitate penetration of antibiotics
within all types of granuloma lesions and prevent acquisition of
antibiotic resistance (Kerantzas and Jacobs, 2017).

The current standard TB treatment regimen consists of four
antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol;
HRZE) over 6–9 months (Nahid et al., 2016). This long treatment
time with multiple antibiotics that have many side effects leads to
adherence issues, which can lead to unfavorable outcomes (Tola
et al., 2019). Shortening treatment times and developing more
patient-friendly and potent combination regimens are urgently
needed. To this end, recent research efforts have focused on
discovering novel regimens for TB treatment to replace HRZE as
the standard regimen. Animal models and clinical trials are
informative and useful to assess drug efficacy. However, they are
costly and time-consuming, hence they are not feasible to efficiently
test multiple, different combination regimens. Moreover, 90% of
clinical trials fail (Sun et al., 2022), emphasizing the need for initial
screening methods to inform clinical trials for faster, more efficient,
and cost-effective drug development efforts.

Typically, mouse models and in vitro studies have been used to
identify drug doses and regimens (De Groote et al., 2011; Cokol

et al., 2017). However, mathematical and computational modeling is
another tool that has had success predicting drug regimen design
that offsets several of the challenges that face in vivo or in vitro
studies (Pienaar et al., 2015a; Cicchese et al., 2017; Budak et al.,
2023).We seek to leverage in vitro, in vivo, and in silicomodels into a
pipeline that integrates these different tools for better, faster, and
more robust efficacy predictions of new and optimal regimen
designs prior to clinical trial.

Current drug screening approaches

In vivo models
There are several animal models for TB that have been used for

TB drug discovery and development efforts, such as mouse, rabbit
and nonhuman primates (NHPs) (Zhan et al., 2017). Mouse models
are advantageous and more manageable due to their low cost and
low maintenance (Zhan et al., 2017; Shi et al., 2011). However, their
immune response to Mtb differs from that of humans in several
ways, notably that standard mouse models do not produce well-
formed granulomas and if they do, lesions are non-necrotic. This is
unlike the spectrum of heterogeneous, often necrotic granulomas
observed in humans (Zhan et al., 2017; Shi et al., 2011). TB disease in
rabbits resembles human TB as they develop lung necrotic
granulomas (Gupta and Katoch, 2005). However, assessing their
immunological response is challenging due to the lack of relevant
immunological reagents (Gupta and Katoch, 2005). NHP models
have similar immunological responses as compared to humans upon
Mtb infection and develop a full spectrum of granuloma types,
including necrotic granulomas like humans (Scanga and Flynn,
2014). This makes them one of the most suitable models for TB
research. However, NHPs require extensive veterinary and facility
costs and produce results slowly, thus limiting their feasibility
(Scanga and Flynn, 2014).

In vitro models
There are a variety of in vitro assays available to assess drug

efficacies in Mtb; these may use solid or liquid medium and assess
growth inhibition or bactericidal activities (Sarathy et al., 2018; Cokol
et al., 2017; Larkins-Ford et al., 2021). Hollow fiber system models
mimic the in vivo PK profiles of anti-TB drugs, which ensures that
Mtb is exposed to antibiotic concentrations similar to those in vivo
and allows for PD predictions that are representative of in vivo
conditions (Gumbo et al., 2004; Gumbo et al., 2007a; Gumbo
et al., 2007b). Still, these approaches lack host immunological
responses that significantly alter treatment responses.

In silico models
Researchers have used mathematical, statistical and

computational modeling to accelerate drug discovery efforts in a
cost-efficient way. Empirical approaches use data-driven models to
assess how certain outcomes are affected by predictive variables
within a set of experiments and to predict outcomes of
circumstances that have not been experimented before. Examples
for these types of studies include meta-analyses (Berg et al., 2022;
Bonnett et al., 2017), linear and nonlinear mixed effects modeling
studies (Berg et al., 2022; Ernest et al., 2023; Ngo et al., 2024) or
machine learning approaches (Clemens et al., 2019; Strydom et al.,
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2025). These studies use datasets from clinical trials or in vivo studies
to predict better treatment regimens for TB. This approach requires
simpler models; however, these models lack mechanistic reasoning
behind observations and cannot reliably extrapolate beyond the
realm of the data that was used to calibrate them.

Mechanistic models, on the other hand, capture complex
mechanisms and dynamics of biological processes to make
realistic predictions of interventions or predict alternative
approaches to improve intervention outcomes (Chakraborty,
2017). Also, to include effects of the immune response on drug
treatment outcomes, the use of models that capture host-responses
can be more predictive of in vivo dynamics.

Over the past few decades, quantitative systems pharmacology
has become a burgeoning field that has contributed to a number of
drug studies for diseases such as various types of cancers (Wang
et al., 2021; Nikfar et al., 2023), cardiovascular diseases (Cheng et al.,
2022; Fang et al., 2019), infectious diseases (Liu et al., 2018; Rao et al.,
2023) etc. Mechanistic models have been used for over 2 decades to
study TB (Kirschner et al., 2017; Nanda et al., 2023). To efficiently
explore complexities of Mtb-host interactions specifically at the
granuloma scale, we previously developed a computational
pipeline that mechanistically simulates granuloma treatment with
various combinations of antibiotics mechanistically (Pienaar et al.,
2015a; Pienaar et al., 2017; Budak et al., 2023; Pienaar et al., 2015b;
Budak et al., 2024). This pipeline utilizes GranSim, a multi-scale
mechanistic, hybrid model that combines agent-based modeling
with discretized both partial and ordinary differential equations
(ODEs), that simulates host-immune responses after Mtb infection
within lungs, to generate a wide variety of granuloma types (Segovia-
Juarez et al., 2004; Ray et al., 2009). We incorporated PK/PD
dynamics into GranSim to study the spatial and temporal
dynamics of antibiotics within granulomas (Pienaar et al., 2015a).
GranSim allows us the ability to simulate thousands of treatment
regimens on the same large library of virtual granulomas, validate
our results against datasets from clinical trials and animal studies,
and predict which mechanisms drive granuloma outcomes or
responses to treatment (Budak et al., 2023; Budak et al., 2024).

Drug-drug interaction studies
Given that TB treatment requires combination therapy, drug-

drug interactions may significantly affect the efficacy of multi-drug
regimens, as some combinations are synergistic while others are
antagonistic (Cokol et al., 2017). Checkerboard assays are widely
used to evaluate drug–drug interactions by systematically measuring
drug-dose combinations (Michaud, 1996). A pairwise checkerboard
assay is typically performed in amicrotiter plate configured as a two-
dimensional matrix, where one drug is serially diluted across the
rows (x-axis) and the second drug is diluted down the columns
(y-axis). Drug interactions are often visualized using isobologram
plots connecting concentration pairs that produce equivalent levels
of biological response, such as 50% growth inhibition. The shape of
these contours provides qualitative insight into the nature of the
interaction: linear contours typically indicate additivity, whereas
concave and convex contours suggest synergy and antagonism,
respectively. Quantitative interaction assessment is commonly
performed using the fractional inhibitory concentration index
(FICI), which compares the potency of each drug in combination
to its potency when used alone. To assess drug interactions across a

wide range of potential TB treatment combinations, checkerboard
assays are often impractical due to their high demand for both
experimental resources and manual effort. As a result, alternative
methods have been developed to evaluate drug interactions more
efficiently and at a greater scale. Computational approaches, such as
INDIGO (INferring Drug Interactions using chemo-Genomics and
Orthology) (Chandrasekaran et al., 2016; Ma et al., 2019), leverage
chemogenomic data to predict fractional inhibitory concentrations
(FICs) across large datasets. DiaMOND (Diagonal Measurement of
N-way Drug Interactions) is an experimental and analytical
approach that streamlines the checkerboard assay by focusing on
the most informative portions of the dose-response surface. Rather
than measuring every possible drug combination in a full
checkerboard, DiaMOND uses single-drug dose responses along
the axes and combination dose responses along the diagonal. This
geometric framework allows for accurate estimation of interaction
effects while significantly reducing experimental workload (Cokol
et al., 2017; Larkins-Ford et al., 2021).

Although these in silico and in vitro studies can assess drug PK/
PD and drug-drug interactions, respectively, they individually lack
the ability to capture the role of host immunity and heterogeneous
Mtb phenotypes present in vivo, both of which likely impact the
course of treatment.

GEODE: integration of tools to predict
drug efficacy

To predict regimen efficacies for TB treatment and inform
clinical trials, we consider the following complexities occurring
during Mtb infection: spatial heterogeneities, Mtb phenotypic
tolerance of drugs due to phenotype, drug-drug interactions,
host-pathogen interactions, the host immune responses, and the
effect of bacterial burden per granuloma (whereby density of
bacteria affects PD, also known as inoculum effect in in vitro
studies). In previous studies, we used our GranSim-PKPD model
and tracked drug action using bactericidal assays performed in
nutrient-rich conditions, macrophage assays or caseum mimics
from various studies, together with INDIGO predictions for
drug-drug interactions (Pienaar et al., 2015a; Pienaar et al., 2017;
Budak et al., 2023; Pienaar et al., 2015b; Budak et al., 2024; Cicchese
et al., 2021). Here, we improve our model of drug action by
incorporating DiaMOND measurements performed under
different in vitro growth conditions that model stressors that Mtb
encounter in distinct granuloma microenvironments. These
conditions have been shown to be predictive of in vivo and
clinical outcomes, thereby improving our efficacy predictions
(Larkins-Ford et al., 2021; Larkins-Ford et al., 2022). Further, we
provide a methodology to calculate bactericidal activity, completely
filling in the checkerboards, building on the “diagonal” of
DiaMOND checkerboards, and single-drug responses. This
methodology enables us to elucidate the picture of multi-scale
drug-drug interactions and to assess optimal dosages to find
combination regimens with the highest overall bactericidal
activity, which, practically, can provide promising,
mechanistically founded predictions to investigate in future
studies. We name our new method GEODE: Granuloma
Environment Optimization of Drug Efficacy (Figure 1).
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Results

In this study, our goal is to improve our ability to predict
successful regimens for clinical trial evaluation by combining
different drug regimen screening approaches. Specifically, we
calibrate GEODE with in vitro measurements to explore
optimal dosage of the commonly-prescribed front-line and last-
resort anti-Mtb drugs Bedaquiline (BDQ), Ethambutol (EMB),
Isoniazid (INH), Linezolid (LZD), Moxifloxacin (MXF),
Pretomanid (PTM), Pyrazinamide (PZA), and Rifampicin (RIF)
(Larkins-Ford et al., 2021; Chahine et al., 2014; Bloch et al., 1954;
Paton et al., 2023; Steele and Des Prez, 1988; Doster et al., 1973;
Gillespie, 2016; Gils et al., 2022; Cox and Ford, 2012). Using our in
silico model of granuloma formation and treatment, GranSim, we
evaluate PK and PD drug-drug interactions of these antibiotics
against Mtb grown in different in vitro stress conditions.
Specifically, we (1) capture the effect of bacterial burden per
granuloma (i.e., inoculum effect in in vitro studies) within
GranSim, (2) map in vitro growth conditions to PD of drugs
within GranSim to allow for nuanced simulation of bactericidal
activity based on the metabolic state of each Mtb within virtual
granulomas. To validate our approach, we then (3) virtually
reproduce previously established efficacies and rankings of
multiple regimens studied in (i) NHP studies and (ii) clinical
trials by simulating granulomas under analogous conditions.

Capturing the effect of bacterial burden
within GranSim

Bacterial susceptibility to antibiotics can vary with bacterial
burden, with higher bacterial burden potentially reducing drug
efficacy (also called as “inoculum effect” in in vitro studies) (Brook,
1989), a phenomenon that has also been observed in
Mycobacterium tuberculosis (Mtb) (Kirby and Dubos, 1947). To
quantify and map the effect of Mtb burden, we conducted in vitro
experiments to evaluate the bactericidal activity of antibiotics
under a range of starting Mtb density. From these experiments,
we generated pharmacodynamic (PD) data, modeled as Hill
curves, which describe the drug-induced bacterial kill
(measured as kill ratio in the GranSim framework; see
Methods) as a function of antibiotic concentration for each
bacterial load and drug tested (Figure 2).

We then translated this information into a pharmacokinetically
relevant drug effect metric (EPK), which was fitted to exponential
decay curves, capturing how EPK declines with increasing bacterial
load (see Methods). As anticipated, incorporating an effect of
varying levels of bacterial burden into the model resulted in a
slower predicted rate of bacterial sterilization (Figure 3).

To validate our model capturing bacterial burden effect, we
compare simulated sterilization curves to granuloma-scale data
from marmosets (Budak et al., 2024) and macaques (Budak et al.,

FIGURE 1
GEODE (GranulomaEnvironmentOptimizationofDrugEfficacy) pipeline. GEODE startswith (1)GranSim, our computationalmodel of lung granulomas
during pulmonary TB, which we use to create (2) an in silico granuloma library and incorporate (3) a PK model of antibiotics. Meanwhile, we perform (4) In
vitro experiments, where we evaluate efficacies of single drugs and equipotent combinations against Mtb in various stress conditions, i.e., we generate the x-
and y-axis and the diagonal of a standard checkerboard assay.We developed amethodology to (5) calculate the rest of the checkerboard, whichwe (6)
included inGranSim. We then (7) performed antibiotic treatment simulations using our in silico granuloma library, PK model, and in vitro (DiaMOND-based)
checkerboards. We (8) evaluated regimen efficacies by (a)measuring metabolic activity (FDG avidity) of granulomas before and after the treatment and (b)
sterilization time of granulomas, i.e., time needed to kill all bacteria within granulomas. We (9) ranked regimens based on their sterilization times.
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2023; Michael CT et al., 2025). We calculate sterilized granuloma
ratios, the portion of a set of granulomas that sterilized, for both
marmoset and macaque datasets, pooling granulomas from
different animals and assuming a limit of detection as five
colony forming units (CFU) per granuloma and, for some
analyses, grouping granulomas by their pre-treatment CFU
burden. We have used between 5 and 10 CFU as a threshold
for our recent published works on granuloma modeling at all
scales. This range is based on the calculation from NHP
granulomas that are plated. This accounts for the amount of
media that the granuloma is homogenized in. The model is
flexible and the results are consistent within this range of CFU
as guided by the NHP data (Lin et al., 2016). Additionally, consider
that CFU is calculated as CFU/mL = (Number of Colonies
Counted × Dilution Factor)/Volume Plated (in mL). So in this
case, if we find 1 colony on the neat (most concentrated) plate:
CFU/mL = (1 colony*1)/.2 mL = 5 CFU/mL => 5 CFU/granuloma

in the ideal case. So both experimentally and theoretically five is a
solid choice.

As marmosets tend to have progressive TB disease and also have
many granulomas with uncontrolled CFU growth (Via et al., 2013)
(see Figure 10B for GranSim vs marmoset CFU counts), we see that
marmoset sterilized granuloma ratios best-match those from only
high-CFU virtual granulomas (see Methods and Figure 10 for details
of high- and low-CFU granulomas). We provide evidence that
sterilized granuloma ratios from marmosets fit well to GranSim
when we include representation of an effect of bacterial burden
(Figures 3G–I). Further, sterilized granuloma ratios from macaques
best match to low-CFU virtual granulomas, as most cynomolgus
macaque granulomas tend to have controlled CFU growth (Maiello
et al., 2018; Flynn et al., 2017). Here, we show that sterilized
granuloma ratios from macaques agree with sterilization curves
from low-CFU granulomas when we represent the effect of bacterial
burden in our model (Figures 3D–F).

FIGURE 2
Drug concentrations versus kill ratios. Ratio of killed bacteria in the form of Hill curves as a function of drug concentration when antibiotics are
administered to bacteria with varying bacterial loads [OD 600 values of 0.05 (blue curves), 0.1 (orange curves) and 0.15 (yellow curves)] [(A) BDQ:
Bedaquiline, (B) EMB: Ethambutol, (C) INH: Isoniazid, (D) LZD: Linezolid, (E) MXF: Moxifloxacin, (F) PTM: Pretomanid, (G) PZA: Pyrazinamide, (H) RIF:
Rifampicin].
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Generating the entire checkerboard from
DiaMOND data

We developed a methodology to reconstruct the full
checkerboard using the in vitro data measured via DiaMOND,
enabling the estimation of bactericidal effects across all drug
concentration combinations. This process involves three main
steps: (1) converting growth-inhibition-based Hill parameters
into bactericidal parameters; (2) deriving new Hill equation
parameters for each drug combination using single-drug
responses, equipotent combination data, and drug interaction
scores (see Methods); and (3) calculating the killing rate for each
combination based on these derived parameters. This approach
provides a more comprehensive and scalable prediction of drug
interactions than standard partial checkerboard methods (Figure 4).

Mapping growth conditions to model PD
with drug-drug interactions in GranSim by
simulating clinically relevant regimens

As our goal in this work is to combine different drug screening
approaches to improve regimen screening, in this work we combine
in vitro combination response data for different bacterial growth
conditions into GranSim for different drug regimens. In GranSim,
we assume Mtb can assume three different phenotypes based on
their distinct location: intracellular Mtb within macrophages,
extracellular-replicating Mtb in granulomatous tissue and
nonreplicating Mtb trapped within granuloma caseous-necrotic
core. In GranSim, Mtb is modeled as existing in three distinct
phenotypic states, reflecting well-characterized spatial niches
within the granuloma: intracellular Mtb within macrophages,

FIGURE 3
Sterilization curves of three differentmulti-drug regimens comparingwith andwithout simulating effects of bacterial burden (see Equations 25–30).
We compare simulations to two different NHP granuloma datasets. Sterilization curves of (A,D,G)HRZE, (B,E,H) RMZE and (C,F,I) BPaL considering (A–C)
all granulomas, (D–F) low-CFU granulomas and (G–I) high-CFU granulomas. Each panel shows sterilization curves that represent the percentage of
sterile virtual granulomas across time both with (red) and without (blue) simulating effects of bacterial burden. Black and red markers represent
sterilized granuloma ratios from marmosets (Budak et al., 2024) and macaques (Budak et al., 2023; Michael CT et al., 2025), respectively.
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extracellular replicating Mtb in the surrounding tissue, and
nonreplicating Mtb sequestered in the caseous-necrotic core.
Using previously published in vitro data, we selected three
in vitro models that together predicted treatment outcomes in
the BALB/c relapsing mouse model (Larkins-Ford et al., 2021;
Larkins-Ford et al., 2022): these included media with different
sole carbon sources (butyrate or 0.2 mM cholesterol) and an
acidic condition in standard growth medium. To capture drug
pharmacodynamics (PD) relevant to specific Mtb subpopulations,
we used the average killing rates from acidic and butyrate conditions
to represent intracellular Mtb and the average rates from butyrate
and high cholesterol to represent extracellular replicating Mtb. To
model the PD of nonreplicating Mtb residing in caseous tissue, we
developed a series of in vitro dormancy conditions varying in
pH and oxygen levels: acidic normoxic (AN), neutral hypoxic
(NH), and neutral normoxic (NN) (Methods and Table 1). Drug
combinations were evaluated in these dormancy conditions using
the DiaMONDmethodology (Methods). We evaluated five clinically
relevant combinations (HRZE, HRZM, RMZE, BPaL, and BPaMZ)
under each of these dormancy conditions to evaluate their ability to
predict clinical outcomes.

In vitro data measured in different growth stressors have been
found to be a better predictor of in vivo outcomes than in vitro data
from a single stressor alone (Larkins-Ford et al., 2021). Based on this
prior work, we sought to generate composite stress condition
profiles to parameterize GranSim. To do so, we first calculated
the killing rate of each drug regimen under the individual stress
conditions comprising the combination. We then aggregated these

values using either the average, maximum or minimum killing rate,
depending on the chosen strategy for modeling the combined effect,
which results in the following combined conditions: AN_NH-min,
AN_NH-max, AN_NH-mean, AN_NN-min, AN_NN-max, AN_
NN-mean, NN_NH-min, NN_NH-max, NN_NH-mean, AN_NN-
min, AN_NN-max, AN_NN_mean, AN_NN_NH-min, AN_NN_
NH-max, AN_NN_NH-mean. For example, to aggregate all stress
conditions in GranSim and to calculate the killing rate of a drug
combination against Mtb considering the maximum of all
conditions (AN_NN_NH-max), we determine the concentration
of drugs an Mtb is exposed to on the simulation grid and calculate
the killing rate of that drug combination considering each stress
condition (AN, NN and NH) individually. We then take the
maximum of killing rates in AN, NN and NH conditions to
determine the killing rate of the aggregated condition AN_NN_
NH-max (see Methods for details).

We first simulated clinically relevant regimens (HRZE, RMZE,
HRZM, BPaL and BPaMZ) in GranSim considering all individual
conditions and all possible aggregated conditions to determine the
condition that is the best representative of clinical or in vivo
outcomes (Figure 5). As the levels of nonreplicating bacteria
trapped within caseum are likely the hardest population to clear
with drugs due to drug tolerance and penetration issues, it is not
surprising that PD of drugs acting on this population significantly
affects sterilization dynamics. For example, BPaMZ has low efficacy
assuming nonreplicating Mtb is exposed to certain growth
conditions (AN_NH-min, NN_NH-min, AN_NN-min and AN_
NN_NH-min, see Figures 5D,G,J,M), whereas BPaMZ sterilizes

FIGURE 4
Checkerboard examples for two drugs. Example checkerboards for two drugs, Bedaquiline (BDQ) and rifampicin (RIF), that shows the rate of killing
of (A) extracellular, (B) intracellular and (C) nonreplicating bacteria for various concentrations of both drugs. The color of the contours indicates the killing
rate in one GranSim timestep (i.e., 10 min).

TABLE 1 Characteristics of in vitro dormancy conditions (NH, NN, AN) mimicking lesion microenvironments in Mtb infection. Each condition models a
distinct set of features that we expect Mtb to encounter within lesions. Together, they are designed to capture the microenvironment heterogeneity that
influences drug susceptibility and metabolic state (Sarathy et al., 2018; Sarathy et al., 2019; Wayne and Sohaskey, 2001).

Neutral-Hypoxic (NH) Neutral-Normoxic (NN) Acidic-Normoxic (AN)

Characteristics of each
condition

pH: 7, no oxygen exposure, lipid rich pH: 7, high oxygen exposure, lipid rich pH: 5.5, high, oxygen, lipid rich

Lesion microenvironment
by condition

Necrotic core, center of lesion, poorly
vascularized, low oxygen, dense cellular
debris

Cavitary lesions, open structure, high oxygen
exposure, multiple regions distant from the
core

Outer necrotic core, ring of foamy macrophages,
high oxygen exposure, transient zone surrounding
the core
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granulomas fastest when we assume nonreplicating Mtb is exposed
to NN_NH-max, AN_NN-max and AN_NN_NH-max (Figures
5H,K,N). Moreover, the assumption that AN represents the
microenvironment of nonreplicating Mtb results in a low
sterilizing performance of HRZM (Figure 5A). By contrast,
HRZM has one of the highest efficacies if one assumes that NN_
NH-mean best describes that microenvironment (Figure 5I).

While sterilization dynamics of some regimens significantly
depend on the chosen condition, some features of sterilization
curves are common amongst most conditions. For example,
RMZE performs the worst with almost all tested dormancy
models except when BPaMZ has the lowest efficacy as in Figures
5D,G,J,M. In addition, BPaL is generally the best performer except
when AN_NN-max is used for the PD of nonreplicating Mtb where
BPaMZ sterilizes granulomas fastest (Figure 5K).

To determine growth conditions that reflect clinical and animal
studies in a systematic way, we ranked the same five regimens for all
simulated single- and composite dormancy conditions using

Equation 24 (Figure 6). To choose which single- or composite
dormancy condition we use to represent in vivo conditions, our
primary criterion is that BDQ and PTM-containing regimens should
outperform HRZE as the inclusion of BDQ and PTM has been
previously shown to improve the efficacies of regimens compared to
HRZE (Tasneen et al., 2016; Dawson et al., 2015; Cevik et al., 2024;
Tasneen et al., 2011; Diacon et al., 2015). Only AN_NH-max, NN_
NH-max, AN_NN-max, and AN_NN_NH-max fulfill these criteria,
where BPaL and BPaMZ are the best-performing regimens
(Figure 6). Next, we anticipate that HRZE should not outperform
HRZM. The relative performances of HRZE and HRZM are
debatable, as some studies claim HRZM has a higher efficacy
than HRZE (Imperial et al., 2018; Nuermberger et al., 2004a;
Burman et al., 2006; Conde et al., 2009), while clinical outcomes
provide evidence that HRZM is not non-inferior to HRZE (Gillespie
et al., 2014). Still, to our knowledge, there are no studies showing
that HRZE could perform better than HRZM. These two criteria
leave us with three conditions: AN_NH-max, NN_NH-max and

FIGURE 5
Sterilization curves of five different clinically relevant drug regimens (HRZE, BPaL, RMZE, BPaMZ and HRZM) considering 15 different dormancy
spectrum condition combinations: (A) acidic normoxic (AN), (B) neutral hypoxic (NH), (C) neutral normoxic (NN), (D) the minimum, (E) the maximum,
(F) themean killing rate generated by AN and NH, (G) theminimum, (H) themaximum, (I) themean killing rate generated by NN and NH, (J) theminimum,
(K) the maximum, (L) the mean killing rate generated by AN and NN, (M) the minimum, (N) the maximum, (O) the mean killing rate generated by AN,
NN and NH. See Supplementary Figure S4 for simulation data.
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AN_NN_NH-max. Since each of these conditions have similar
sterilization dynamics, we continue our analyses by choosing one
and mapping AN_NH-max to the PD of nonreplicating Mtb.

Validation of GEODE using NHP and
clinical studies

In the sections above, we isolate two new components critical to
accurate antibiotic simulation - the effect of bacterial levels and a
realistic representation of dormancy in GranSim. We now include a
third feature: in vitro measurements of drug-drug interactions (see
Methods) to complete our expanded drug simulation platform:
GEODE (Granuloma Environment Optimization of Drug Efficacy).
GEODE is our novel, drug regimen efficacy prediction model that
combines drug-drug interaction PDwith ourGranSim computational
model of PK/PD dynamics within a granuloma. To validate GEODE,
we compare our treatment simulations to both NHP and clinical
studies. We use datasets from two different types of NHPs: macaques
and marmosets. Cynomolgus macaque are an accurate model of
human Mtb infection, whereas common marmosets almost
exclusively develop progressive disease (Via et al., 2013; Flynn
et al., 2017). We analyzed three features of simulations: (a)
temporal CFU trajectories within all granulomas in response to
treatment, (b) rankings of regimens based on granulomas
sterilization times, and (c) change in overall granuloma metabolic

activity after treatment, which can be simulated and has been
experimentally quantified via FDG avidity from PET/CT scans
(Budak et al., 2023; Lin et al., 2013; White et al., 2017). For (a–c),
data from the NHPs are only available for three of our five clinically
relevant treatment regimens, namely, HRZE, RMZE and BPaL.
Therefore, our comparisons are only for that.

CFU trends of granulomas in response
to treatment

We first compare CFU trends from our simulated granulomas
when treating with three drug regimens (HRZE, RMZE and BPaL)
directly to CFU levels fromNHP granulomas after administration of
either 1 or 2 months of treatment (Budak et al., 2023; Budak et al.,
2024) (Figure 7). All treatments in our study result in overall
reduced CFU levels in simulated granulomas. In most cases the
decline is nonlinear, initially a slow decline followed by a fast decline.
Treatments are able to fully sterilize all (e.g., BPaL treatment) or a
portion of simulated granulomas (e.g., HRZE or RMZE treatment).
We show that our CFU trends are consistent with NHP CFU counts
during similar treatment scenarios (Figure 7).

Sterilization time-based rankings
To further validate our model, we assess the correlations of

rankings between simulations and experimental NHP datasets
(Figure 8). We compare GEODE predicted rankings against two
in vivo rankings: (1) regimen rankings based on marmoset

FIGURE 6
Rankings of five clinically relevant drug regimen behaviors (HRZE, BPaL, RMZE, BPaMZ and HRZM) when considering 15 unique single- and
composite dormancy conditions (AN, acidic normoxic; NN, neutral normoxic; NH, neutral hypoxic; min, max and mean correspond to the minimum,
maximum ormean of the killing rates generated by the growth condition combinations). Regimens with lower ranks have higher efficacies than regimens
with higher ranks. See Table 1 for explanation of conditions. Stars below the columns indicate stress conditions that reflect in vivo conditions best
according to the ranks of clinically relevant regimens. Red star indicates the stress condition chosen for use in our further analyses.
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granuloma CFU levels in response to three regimens (marmoset
regimens and rankings) (Figures 8A–C) (Budak et al., 2024), and (2)
regimen rankings based on a meta-analysis of Phase 2b clinical trials
(clinical regimens and rankings) (Figures 8D–F) (Bonnett et al.,
2017). To create comparable regimen rankings, we use the GEODE
platform to simulate treatments with similar regimens as used in the
marmoset regimens and clinical regimens. We rank the simulations
based on sterilization times using our ranking method (see
Methods) and correlate experimental and simulated rankings as
we have done previously (Figure 8) (Budak et al., 2024; Cicchese
et al., 2021; Michael CT et al., 2025).

For marmoset regimens, we observe a good correlation between
experimental and simulated rankings. Specifically, simulated
rankings of low-CFU granulomas correlate well to rankings based
on fibrotic marmoset granulomas that tend to have more controlled
CFU growth, with a correlation of ρ = 0.68 (Figure 8B). The
correlation of high-CFU granuloma rankings to necrotic
marmoset granuloma rankings is lower with a correlation of ρ =
0.52 (Figure 8C). Similarly, as in marmoset regimens, low-CFU
granulomas correlate better when comparing to the same regimens
used in the clinical rankings (Figure 8E). However, overall
correlations are lower for clinical regimens than marmoset
regimens (see Supplementary Tables S1–S10 for the rankings
shown in Figure 8). Overall, we observe that for the majority of
high-CFU granulomas, BDQ and PTM-containing regimens are
optimal in simulations.

Change in metabolic activity after treatment-
comparing to FDG levels from PET/CT studies

To evaluate drug efficacies of three unique antibiotic regimens,
we also measure metabolic activity of lung granulomas during the
course of the treatment. In NHP studies, granulomas are tracked
over time within animal and measured for size and FDG avidity. In
simulations we also capture this measurement in the form of SUVR

(see Methods). We compare the two scores between GEODE
simulations and NHP studies. The fold change of SUVR in NHP
granulomas indicates that most treatments tend to decrease
metabolic activity within granulomas, as simulated mean values
of SUVR changes for most treatments (except the mean value of
SUVR change after 8 weeks of RMZE treatment) are negative
(Figure 9A). However, there are also NHP and virtual
granulomas with increased metabolic activity after treatment. We
observe that the fold change of SUVR in response to 8 weeks of
HRZE treatment is significantly less than that of RMZE, meaning
that HRZE reduces the metabolic activity more than RMZE in
macaque granulomas. Similarly, at the end of treatment, marmosets
treated with RMZE tend to have more severe pathologies than
marmosets treated with HRZE and BPaL (Personal
communication, C. Barry & B. Aldridge). Marmoset treatment at
the granuloma scale with BPaL yields the most improved PET/CT
pathology amongst all three regimens (Personal communication, C.
Barry & B. Aldridge).

The fold change (log2-transformed) in FDG avidity calculated
using Equations 22, 23 in all simulated granulomas show similar
results as compared to NHP datasets: treatment with these regimens
decrease metabolic activity in all cases as shown by negative FDG
avidity fold change values (Figure 9B). In addition, RMZE treatment
results in the highest FDG avidity change over all three treatments,
suggesting that decrease in metabolic activity is lowest in response to
RMZE treatment. BPaL treatment shows the largest decrease in
metabolic activity. However, there are some differences between the
in silico and in vivo trends in FDG avidity. For example, while the in
vivo fold change after 8 weeks of HRZE treatment is lower than that
observed after 4 weeks, no significant difference is seen between
these groups in silico. This possibly results from differences in
dynamics of metabolic activity; simulations show an exponential
decrease in FDG avidity, contrasting with the trends observed in
vivo. Lastly, changes in FDG avidity between low-versus high-CFU

FIGURE 7
CFU trends of our in silico granuloma library with low- and high-CFU granulomas in response to treatment with (A) HRZE, (B) RMZE and (C) BPaL.
Black lines indicate simulated CFU trends in response to the corresponding treatment for 180 days. Red dots are data frommacaque studies at days 56 for
HRZE and RMZE and day 28 for BPaL (Budak et al., 2023; Michael CT et al., 2025), and blue dots are data from marmoset studies at day 60 (Budak et al.,
2024). There are (A) 51 macaque (45 sterilized) and 40 marmoset (none sterilized) granulomas in HRZE studies, (B) 30 macaque (27 sterilized) and
49 marmoset (none sterilized) granulomas in RMZE studies and (C) 96 macaque (89 sterilized) and 114 marmoset (none sterilized) granulomas in BPaL
studies. To improve visual clarity, a jitter of ± 2 days is added to the x coordinates of marmoset and macaque data. To avoid undefined values of CFUs on
the logarithmic y-axis for sterilized granulomas, we added one to the CFU counts.
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granulomas indicate that differences in FDG avidity amongst
regimens results mainly from metabolic differences observed in
high-CFU granulomas and those differences are more
pronounced in high-CFU granulomas (Figures 9C,D).

Discussion

Improvement to treatment with TB will be enhanced by better
tools to predict efficacies prior to clinical trials. There are a host of
tools currently used to this end, but none integrates across platforms
to cross from bacterial dynamics to host-scale dynamics. A key goal
of this work is to integrate datasets from in vitro and in vivo studies
into our computational model GranSim that simulates granuloma
formation and function as well as PK/PD dynamics of multiple
antibiotic regimens.

In this study, we developed a new computational platform,
GEODE, that integrates an in silico model of granuloma
treatment with in vitro PD and PD drug-drug interaction
measurements using Mtb grown in various in vitro conditions.

This model has been calibrated using datasets from NHP models
of TB that have been curated for 20 years. This novel methodology is
different from our previous studies of in silico TB treatment at the
granuloma scale (Budak et al., 2023; Budak et al., 2024; Cicchese
et al., 2020a), where we used bactericidal (standard media and
caseum mimic assays) and macrophage assays to model drug PD
and predicted FIC values from INDIGO (Ma et al., 2019) to capture
drug-drug interactions. GEODE captures a more nuanced
description of TB dynamics in several ways. First, the in vitro
stress conditions mimic various in vivo granuloma
microenvironments, so our new PD datasets are more relevant
than datasets from standardized assays. Moreover, we measured
drug-drug interactions during a variety of stress conditions, whereas
previously we used machine-learning based predictions for drug-
drug interactions from INDIGO studies (Ma et al., 2019; Cokol et al.,
2018). Lastly, PDmeasurements for all drugs represented in GEODE
have been generated using the same experimental platform, making
it more consistent than heterogeneously-sourced calibrations.

Our GEODE pipeline involves a detailed methodology to
calculate PD of all drug combinations (i.e., the entire

FIGURE 8
Correlation between simulated and experimental/clinical rankings of regimens based on granuloma-scale sterilization times. (A–C) Correlation
between marmoset and GranSim rankings considering (A) all simulated granulomas and all marmoset granulomas, (B) simulated low-CFU granulomas
and fibrotic marmoset granulomas, and (C) simulated high-CFU granulomas and caseous, necrotic marmoset granulomas. (D–F) Correlation between
simulated and experimental rankings against clinical regimens considering (D) all simulated granulomas, (E) simulated low-CFU granulomas and (F)
simulated high-CFU granulomas. In each panel, we calculated correlations using Spearman’s rank correlation, the red line is the best linear fit represented
by the equation in the lower right corner, first row of each panel, and ρ is Spearman’s rank correlation coefficient.
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checkerboard using the diagonal, x-axis and y-axis) using single-
drug PD and equipotent combinations. To our knowledge, this is the
first methodology to calculate detailed drug-drug interaction
predictions using minimal information. Hence, this approach
could minimize resources needed for PD and drug-drug
interaction measurements, not only for TB regimens, but for
treatments for other diseases requiring checkerboard assays for
assessing interactions for combination regimens, such as cancer
and HIV (Bayat et al., 2017; Bartlett et al., 2006). An interesting
outcome of our calculations is that the contours of the
checkerboards may have complex and irregular shapes. This is
due to incorporating two different FIC values (FIC50 and FIC90)
into our calculations that are not always parallel. This means that the
contours can be concave (as in synergistic drug combinations) or
convex (as in antagonistic drug combinations) at different parts of
the checkerboards (Figure 4C).

An interesting outcome of all stress condition combinations,
including the one we chose to use to represent the PD of
nonreplicating Mtb within GranSim (AN_NH-max), is that
regimen RMZE is one of the worst performers within clinically-
relevant regimens–even worse than the standard regimen HRZE.
The efficacy of RMZE is controversial, as some studies claim that
RMZE is better than HRZE (Imperial et al., 2018; Nuermberger
et al., 2004a; Nuermberger et al., 2004b; Li et al., 2015; Dorman et al.,
2009), while some show the non-inferiority of RMZE to HRZE
(Gillespie et al., 2014). However, PET/CT data from marmoset
(Personal communication, C. Barry & B. Aldridge) and macaque
studies (Figure 9A) demonstrate that granulomas of NHPs treated
with RMZE show the least amount of metabolic change. This is in
line with changes in FDG avidity of our simulated granulomas,
where decreases in levels of FDG avidity in response to RMZE
treatment are lowest when compared to both HRZE and BPaL

FIGURE 9
Change in metabolic activity as measured by PET/CT or SUVR in response to three unique treatments in (A) macaque studies and in (B–D)
simulations (see Equations 23, 31). (A) Fold change in Standardized Uptake Value Ratio (SUVR) in macaques after treatment compared to SUVR before
treatment starts. N indicates the number of total granulomas from 3, two and five macaques treated with HRZE, RMZE and BPaL respectively. (B–D) Fold
change (log2-transformed) in FDG avidity after treatment normalized to the FDG avidity before treatment starts for (B) all granulomas, (C) only low-
CFU granulomas and (D) only high-CFU granulomas (*p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVAwith Tukey’s adjusted p values). The central red
lines represent the mean, the blue error bars represent the 95% confidence interval.
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(Figures 9B–D). It is also worth noting that FDG avidity is a less
precise indicator of regimen performance than sterilization time, as
the differences between regimens are not always significant (e.g.,
BPaL and HRZE in Figure 9B). Sterilization time provides a clearer
measure of treatment efficacy, as it directly reflects the presence or
absence of bacteria. In contrast, FDG avidity reflects metabolic
activity, which may remain elevated even in the absence of
viable bacteria.

To further validate our PD model, we simulate three drug
regimens for comparison with both marmoset studies and clinical
trials. Our low-CFU virtual granulomas correlate best to
experimental and clinical studies. Regimen rankings indicate that
stress conditions used to generate PD data mimic low-CFU, less
caseous granuloma microenvironments. Furthermore, we observe
that our simulated regimen rankings agree more with marmoset
regimen rankings than published clinical rankings. This might be
due to several reasons. First, clinical rankings occur at a whole host-
scale, unlike our granuloma-scale simulations. Clinical rankings
would include other extrapulmonary factors such as lymph node
infections and disease relapse or the effect of hosts having multiple
lung granulomas. Next, regimens from clinical studies are
combinations of these five drugs HRZEM only and only dosages
and administration frequencies vary. We pooled several different
regimens to match their HRZE ranking. Therefore, it may be harder
to reflect those subtle differences between simulations and clinical
studies, leading to weakly correlated rankings. However, regimens
from marmoset studies have a wider variety of PKPD features with
fixed dosages and frequencies, making it easier to distinguish
rankings. Our high correlations between simulations and NHP
data indicate that we were able to successfully capture the PKPD
dynamics of all regimens under clinical daily dosing conditions.

While correlation coefficients are informative to evaluate
models, they do not capture systematic biases in predictions. The
linear fits of our correlation plots indicate that our model slightly
underpredicts experimental and clinical rankings. This may be due
to the lack of host-scale dynamics, like lymph nodes or multiple
granulomas. To further improve our clinical predictions, current
work has focused on adapting this methodology using our whole-
host scale model that we developed, namely, HostSim, which
includes dynamics of lymph nodes and multiplelung granulomas.
We test drug regimens within virtual cohorts generated with this
model (Joslyn et al., 2022; Michael et al., 2024). Through this
approach, we aim to make more clinically-relevant predictions.

We observe some outliers in our correlation plots for both
clinical and marmoset analyses. The striking difference between
marmoset and GranSim is the rankings of PTM, which performs
significantly better in GranSim. This may be due to marmosets
developing more progressive disease faster, with more caseous
granulomas preventing effective penetration of PTM, significantly
affecting its efficacy. In correlation plots between GranSim and
clinical rankings, regimens with solely INH or RIF tend to perform
better in GranSim than as compared to clinical trials. RIF can
penetrate well into granulomas, hence it performs better in our
granuloma-scale model. However, in the clinic, we need to use other
drugs in combination regimens, such as EMB and PZA, to prevent
resistance, which is not currently captured in these simulations.

The effect of bacterial levels is a phenomenon where drug
efficacy is decreased due to presence of higher number of

microorganisms (inoculum effect in in vitro studies) (Brook,
1989). This phenomenon has previously been observed with
several bacterial species, such as E coli, S aureus, K pneumoniae,
and Mtb (Brook, 1989; Kirby and Dubos, 1947). A mathematical
model has been previously developed to characterize effects of
bacterial burden using ODEs, where the effective concentration
of drugs decreases with increasing bacterial population
(Bhagunde et al., 2010). Here, we incorporate effects of bacterial
burden into GEODE similarly by modifying drug killing rates based
on the number of bacteria in granulomas. We calibrate this using
in vitro data that show PD of different antibiotics when administered
to bacterial plates with different bacterial loads. As expected, we
observe a significant reduction in granuloma sterilization rates due
to effects of bacterial levels (Figure 3) consistent with in vivo
measurements. We noticed that ratios of sterilized granulomas
from macaques are comparable with sterilized granuloma ratios
of simulated low-CFU granulomas including bacterial burden
dynamics. By contrast, sterilized granuloma ratios of marmosets
are comparable with sterilized granuloma ratios of simulated high-
CFU granulomas, when we include bacterial burden effects.

We are able to match outcomes of low- and high-CFU
granulomas (as in the results for our bacterial burden model or
post-infection CFU trends) to macaque and marmoset granulomas,
respectively. This follows as the majority of macaque granulomas
have controlled CFU growth, like our simulated low-CFU
granulomas (Maiello et al., 2018; Flynn et al., 2017), and
marmoset granulomas tend to have high, uncontrolled CFU
growth like our simulated high-CFU granulomas (Via et al.,
2013; Flynn et al., 2017). However, our analyses on metabolic
activity of granulomas in response to treatment indicate that high
metabolic activity of RMZE is observed in each of macaque,
marmoset and simulated high-CFU granulomas, respectively.
This is counterintuitive; however, several studies showed that
FDG avidity is not correlated to CFU levels (Lin et al., 2013).
Another counterintuitive result is that fibrotic marmoset rankings
correlate better to low-CFU granulomas, as evidenced by a higher
correlation coefficient ρ. This is likely due to our granuloma stress
conditions representing microenvironments within cellular
granulomas, which tend to control CFU growth, similar to our
simulated low-CFU granuloma set.

GEODE is a novel and powerful tool to assess TB regimen
efficacies and to calculate PD and drug-drug interactions for higher
order combinations (combinations with three or more drugs), which
requires data from equipotent combinations. This means that we
need to generate equipotent data for all combinations of interest.
However, the methodology can be improved so that PD of higher
order combinations can be predicted from all 2-way combinations.
For example, this could be done by integrating a dose-response
model into our approach. This is a mathematical model predicting
efficacy of higher order combinations using underlying drug-drug
pairs (Katzir et al., 2019). This would significantly reduce the
required number of experiments for our GEODE pipeline and
would allow us to test all possible higher order combinations
without additional experiments.

An additional area that can be improved is that the current
version of GEODE primarily predicts the outcome of granulomas
with controlled CFU burden, i.e., low-CFU granulomas. However,
high-CFU granulomas with uncontrolled CFU growth are harder-
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to-treat granulomas that lead to treatment failure. Optimizing
treatment for high-CFU granulomas would make GEODE a
more powerful tool to improve TB treatments. To do that, new
stress conditions that mimic caseous, high-CFU granuloma
microenvironments can be designed to generate PD data for
GranSim. This version of GEODE would potentially predict
treatment outcomes in high-CFU granulomas, as the CFU trend
of caseous granulomas tend to increase uncontrollably. We aim to
address these issues in future work to improve GEODE.

Methods

To create the new pipeline GEODE, it is necessary to perform
in vitro studies to determine drug dynamics, update each existing
model component of GranSim, then link them. We describe each
step of the GEODE pipeline (Figure 1).

GranSim model of pulmonary granulomas

GranSim is a computational, hybrid, multi-scale, agent-based
model that we have developed and continuously curated with NHP
data for 2 decades; GranSim simulates host-pathogen interactions
upon Mtb infection in an area of lung tissue (6 mm × 6 mm)
(Segovia-Juarez et al., 2004; Ray et al., 2009; Fallahi-Sichani et al.,
2011; Cilfone et al., 2013). GranSim contains cellular agents, such as
immune cells (e.g., macrophages, T cells), Mtb and signaling
molecules (chemokines and cytokines). We define the rules that
describe the cellular and molecular processes and the agent
interactions within GranSim based on experimental observations
fromNHP studies (for a complete description of our rules, see http://
malthus.micro.med.umich.edu/GranSim/). We represent these rules
using mathematical equations containing parameters and we
calibrated all parameters to NHP datasets (Segovia-Juarez et al.,
2004; Ray et al., 2009; Cilfone et al., 2013). Each simulation begins
with a single infected macrophage in the center of the lung tissue
grid that triggers recruitment of immune cells to the infection site. In
simulations, structured granulomas are a consistent emergent result
of the Mtb and immune dynamics, and that structure shares similar
spatial features as NHP and human granulomas—e.g., a necrotic
core, a cellular rim composed of macrophages surrounding the
necrotic core, and a T-cell cuff as the outermost ring.

To capture the heterogeneity of Mtb metabolic states, we
included three types of Mtb based on their location within a
granuloma: intracellular Mtb reside within macrophages,
nonreplicating Mtb are those trapped in the necrotic core, and
replicating extracellular Mtb are those within granulomatous tissue
(i.e., the non-necrotic region). These Mtb phenotypes have distinct
features in terms of replication rates, interactions with immune cells
and susceptibility to anti-TB drugs (Lenaerts et al., 2015).

In silico granuloma library

To analyze regimen efficacies at the granuloma scale, we use
GranSim to generate an in silico granuloma library that contains
200 granulomas. We generate this granuloma library by sampling

250 parameter sets within biologically relevant ranges using Latin
Hypercube Sampling and simulate granulomas parameterized by
each parameter sample for 300 days post-infection including three
replications of each (to address aleatory (stochastic) uncertainty
(Marino et al., 2008), 750 simulations in total. The parameter
ranges are calibrated to CFU counts from macaque granulomas
(Figure 10A). We then categorize granulomas into low- and high-
CFU granulomas (as described in the next paragraph) and
randomly pick 100 low- and 100 high-CFU granulomas from
the set of 750 granulomas, having 200 granulomas in total. Due
to a random selection process, it is possible to have granulomas
with the same parameter set but different stochastic processes
(i.e., different seeds that determine stochastic events) within the in
silico granuloma library.

To assess how effective regimens are in treating different types of
granulomas, we grouped them by their capacity to control Mtb
growth. To do this, we grouped virtual granulomas into two groups
based on their bacterial growth trends after day 300 post-infection:
low-CFU and high-CFU granulomas. LTBI patients mainly have
sterile or low-CFU granulomas with stable CFU levels, whereas
active TB patients likely have at least one high-CFU granuloma with
uncontrolled CFU growth (Cicchese et al., 2020a; Lin and Flynn,
2018; Gideon et al., 2015). As in our previous work (Budak et al.,
2023; Budak et al., 2024), we define granulomas as low-CFU if they
have nonzero and less than 104 CFU at the end of 300 days post-
infection, and their CFU levels do not increase more than 50 CFU in
the last 20 days of simulation (blue curves in Figure 10). We define
granulomas as if they have CFUs between 104 and 107 at the end of
the 300-day simulation or their CFUs increase more than 50 CFU in
the last 20 days of simulation (red curves in Figure 10) (Our model is
flexible and can easily update these ranges). Out of 750 simulations,
we randomly selected 100 low-CFU and 100 high-CFU granulomas,
generating a library of 200 granulomas. Note that marmosets are
very small animals and GranSim timing was based mostly on
macaques and human datasets; thus, infection-dynamic timing in
marmosets is different than simulations. In fact, CFU counts from
marmoset granulomas correlate better with later time points in
infection dynamics as simulated by GranSim (Figure 10B).

Pharmacokinetic (PK) model in GranSim

We previously included a PK model within GranSim that
simulates spatial distributions of antibiotics within simulated
granulomas following administration of antibiotics (Pienaar et al.,
2015a; Pienaar et al., 2017; Pienaar et al., 2015b), which we continue
to use in the present work. Briefly, we first simulate plasma PK using
a compartmental model with a system of ordinary differential
equations. Drugs concentrations in plasma permeate into lungs,
which we model via flux terms of drugs from plasma onto the
simulation lung grid through vascular source agents. Once a drug
permeates into simulated lung tissue, it diffuses through cellular
tissue, binds to macromolecules (e.g., caseum, epithelial tissue, etc.),
and partitions into macrophages (see http://malthus.micro.med.
umich.edu/GranSim/ for the full list of equations and code files).
We calibrate the parameters that define PK processes using in vivo
studies from humans or animal models (Cicchese et al., 2020a;
Budak et al., 2023; Budak et al., 2024). GranSim currently represents
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eight antibiotic drugs used for treatment of TB: isoniazid (H or
INH), rifampicin (R or RIF), pyrazinamide (Z or PZA), ethambutol
(E or EMB), moxifloxacin (M or MXF), Bedaquiline (B or BDQ),
Pretomanid (Pa or PTM), Linezolid (L or LZD).

In vitro assays

In vitro assays were performed using DiaMOND experimental
design inMycobacterium tuberculosis (Erdman strain). In vitro data
for the cholesterol, butyrate, and acidic conditions were obtained
from Larkins-Ford et al. (2021). For the dormancy (non-replicating)
conditions in this study (Table 1), M. tuberculosis was initially
cultured in Middlebrook 7H9 broth supplemented with OADC
and Tween-80, then acclimated to a lipid-rich medium
containing oleic acid, palmitic acid, arachidonic acid, linoleic
acid, stearic acid, and cholesterol.

The dormancy media were buffered to a pH of 5.5 for acidic
conditions and pH 7.0 for neutral conditions using MES (2-
(N-morpholino)ethanesulfonic acid) and MOPS (3-
(N-morpholino)propanesulfonic acid), respectively. Normoxic
cultures were maintained under ambient oxygen (vented flasks),
while hypoxic cultures were incubated in low-oxygen conditions
(non-vented flasks). The dormancy cultures were incubated at 37 °C
for 4 weeks prior to drug treatment, followed by 1 week of drug
exposure. Given the low metabolic state of non-replicating cells,
cultures were plated on charcoal agar (Gold et al., 2016) to inactivate
residual antibiotics and promote outgrowth. Luminescence was

measured to assess bacterial survival, as the Mtb strain used in
this study carries the autoluminescent reporter plasmid
pMV306hsp+LuxG13 (Larkins-Ford et al., 2021). All assays were
performed in biological triplicate, and the median value across
replicates was used for downstream analyses (see Supplementary
File 2 for the raw data).

Checkerboard calculation method

We create a methodology for predicting bactericidal activities of
various drug dose combinations. Note that we distinguish between
two major measurements of the potency of a drug: bactericidal
activity and bacterial inhibition. To infer the bactericidal activity of
multi-drug combinations in GEODE, we use data provided from
in vitro assays (Cokol et al., 2017; Larkins-Ford et al., 2021) in the
form of fractional inhibitory concentration values (FIC, see
Glossary). Concretely, inhibitory results are represented by a Hill
function that defines the level of bacterial growth inhibition as a
function of drug concentration. The general form of a Hill curve can
be represented as

E C( ) � Emax
Ch

Ch + C50h
(1)

where E is the effect of a drug that depends on its concentration C,
Emax is the maximum effect a drug can reach, C50 is the
concentration needed to reach the half-maximum effect
(Emax/2) and h is the Hill constant, which characterizes the

FIGURE 10
Granuloma CFU trends simulated in GranSim following the onset of infection agrees with the data from nonhuman primate (NHP) studies. (A) Each
curve illustrates the simulation of a single granuloma using a specific parameter set. Black dots are CFU counts of 646 cynomolgusmacaque granulomas
from 42 untreated Cynomologus macaques, where each NHP has 2–40 granulomas (the median is 14.5, 25th and 75th percentiles are 9 and 20,
respectively.) (Budak et al., 2023; Joslyn et al., 2022; Hult et al., 2021). We categorize simulated granulomas based on their CFU trends into low-CFU
(blue curves, N = 100) and high-CFU (red curves, N = 100) granulomas that represent granulomas with controlled and uncontrolled CFU burden,
respectively. (B)Comparison of CFU counts ofGranSim granulomas 300 days after infection to 76Marmoset granulomas from four untreatedmarmosets
40 days after infection, where each monkey has 13, 7, 18 and 38 granulomas (Budak et al., 2024). Blue and red dots are from low- and high-CFU virtual
granulomas, respectively.
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steepness at the inflection point. Here, we present two sets of Hill
curve parameters: growth inhibition-based parameters (Emaxinh;
C50inh, hinh) obtained from in vitro assays and, inferred from that
in the next subsection, bactericidal activity-based parameters
(Emax frac killed,i{ }, Emaxi, C50 N,i{ }, hi for drug i; Emaxcomb and
Emax frac killed,comb{ } for combinations).

Datasets from these assays represent growth inhibition-based PD
for single-drug dynamics (x- and y-axis of a standard checkerboard
assays) and equipotent drug combinations (diagonals of the same
checkerboard) (Larkins-Ford et al., 2021). Herein we derive a method
to calculate the bactericidal activities of all possible dose combinations
(i.e., the whole checkerboard) by using growth-inhibition-based dose
response curves for single drugs and the equipotent combinations,
and colony counts for different growth inhibition levels.

Conversion of in vitro growth inhibition-based
parameters to bactericidal activity-based
parameters
Conversion of Hill curve parameters

As the PD model in GranSim for drug action is based on
bactericidal activity of drugs, we convert the growth inhibition-
based Hill curve parameters (Emaxinh; C50inh, hinh) and inhibitory
concentrations (ICs) to bactericidal activity-based Hill curve
parameters and bactericidal concentrations (BCs). To do this, we
generate maps that determine relative CFU corresponding to the
optical densities of bacterial cultures (OD600), a measure proportional
to the concentration of bacteria, for bactericidal (Figure 11A) and
bacteriostatic drugs (Figure 11B). The logarithm of the normalized
CFU counts (CFU counts normalized to the untreated case,
i.e., fractional survival) decreases linearly for increasing normalized
OD values (OD600 values normalized to the untreated case), also
known as growth inhibition level (X/100, see ICX in Glossary):

log10 CFU frac survival,X{ }( ) � m · X/100 + n (2)
where X is the growth inhibition level, CFU frac survival,X{ } is the
fraction of live bacteria after being treated with ICX , m and n

are the constants for the best linear fit (m � −1.47 and n � −0.35 for
bactericidal drugs, m � −0.87 and n � 0.12 for bacteriostatic drugs).

We used these linear maps (see Equation 2) to calculate fractional
survivals of bacteria when they are exposed to various drug
concentrations. Those drug concentrations are IC values (IC10,
IC25, IC50, IC75, IC90 and IC95, see Glossary) determined by the
OD600 values of drug-treated bacterial cultures, which is used to derive
growth inhibition-based Hill curve parameters for single drugs and
equipotent combinations. We fit these concentration-to-fractional
survival maps to a Hill curve to obtain bactericidal activity-based
hill curve parameters (Emax, C50 and h, see Equation 1) for both
single drugs and equipotent combinations to be used in GranSim. To
find the best fits for these parameters, we use

dB
dt

� −k · B (3)

where B is the bacterial level (i.e., CFU counts), and k is the drug
killing rate defined as

k C( ) � Emax
Ch

Ch + C50h
(4)

Additionally, we calculate the maximal fraction of killed bacteria
(Emax frac killed{ }) using the linear maps and Emaxinh as:

Emax frac killed{ } � 1 − 10m·Emaxinh+n (5)

For calculations below, we refer to these calibrated parameters as
Emax frac killed,A{ }, EmaxA, C50 N,A{ } (C50A normalized to BC90A) and
hA for the parameters of drug A calibrated using Equations 1–5. We
refer to Emax of bactericidal activity of the equipotent combination
as Emaxcomb and maximal fraction of killed bacteria using
equipotent combination as Emax frac killed,comb{ }.

Conversion of FIC values to fractional bactericidal concentration
(FBC) values

Using the linear maps (Figure 11), we convert growth inhibition
levels to bactericidal killing levels. For example, if a drug

FIGURE 11
Maps to convert growth inhibition levels to bactericidal activity levels for (A) bactericidal and (B) bacteriostatic drugs (see Equation 2). Normalized
OD values (OD600 values normalized to the untreated case) correspond to the growth inhibition level ratios (growth inhibition level X divided by 100). For
example, a normalized OD value of 0.5 means a 50% of growth inhibition which is caused by a drug concentration of IC50. The y-axis refers to the log10
fraction of survived CFU levels; a value of −1 means 10% of the bacteria is survived and 90% died by exposure to a drug concentration of BC90 (OD,
optical density; CFU, colony forming unit; X, growth inhibition level; RIF, rifampicin; EMB, ethambutol; PZA, pyrazinamide).
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concentration inhibits X% of bacterial growth and kills Y% of
bacteria, then ICX = BCY, which means FICX = FBCY. With this
method we generate FBC50 and FBC90 of the equipotent
combination. During the calculations below, we will refer to
FBC50 and FBC90 of the equipotent combination as FBC50Diag
and FBC90Diag, respectively.

Derivation of Hill curve parameters based on drug
concentrations within a combination

Initially, we derive the bactericidal activity-based Hill curve
parameters of all single drugs and equipotent drug combinations
(i.e., diagonals on the checkerboard) in A. Using these derivations,
we determine the parameters for all off-diagonal combinations. We
normalize the bactericidal concentrations for each drug to compute
fractional bactericidal concentrations by assuming a linear transition
between the Emax of an individual drug and a two-way combination
of drugs. This allows us to know the effective killing rate of an
arbitrary combination of drugs (i.e., a completed checkerboard)
given a normalized concentration of each drug. We estimate these
effective concentrations by leveraging the Bliss Independence Model
(Bliss, 1939) to compute overall kill rate. As an example, we walk
through the steps below for the case with two drug combinations,
drug A and drug B with concentrations CA and CB.

i. Derivation of Emax comb,obs{ }
We assume that Emax changes linearly between the Emaxcomb

and individual Emax values (EmaxA and EmaxB, whichever is in
excess) with the ratio of concentrations of A and B normalized to
their BC90 values (Conc N,A{ } and Conc N,B{ }). This assumption is
justified as follows: The drug with the lower dose units is paired with
the other drug to behave as the combination (Emaxcomb) and the
remainder of the drug in excess behaves as a single drug. We then
take the weighted average of Emax values, such that the Emax of
combination of interest varies between Emaxcomb and EmaxA or
EmaxB, whichever is in excess (Supplementary Figures S1A–C).

Emax comb,obs{ } � Emaxi +
Conc N,j{ }
Conc N,i{ }

( )
× Emaxcomb − Emaxi( ) for Conc N,i{ } >Conc N,j{ }

(6)
For example, if EmaxA is 0.8 and Emaxcomb is 0.9, the

combination of 0.1 B (Conc N,B{ }) and 0.2 A (Conc N,A{ }) would
have an Emax (Emax comb,obs{ }) as 0.85 by Equation 6.

ii. Derivation of BC50obs and BC90obs

We first derive BC50exp and BC90exp (BC50 and BC90 values of
the combination of interest under the assumption that there is no
drug-drug interaction involved) by taking the weighted average of
the BC values that are normalized to their BC90 values (BC50 N,A{ }
and BC90 N,A{ } for drug A, BC50 N,B{ } and BC90 N,B{ } for drug B),
assuming that both drugs contribute equally to the BC values of the
combination (Supplementary Figure S2):

BC i{ }exp � Conc N,A{ } · BC i{ } N,A{ } + Conc N,B{ } · BC i{ } N,B{ }
Conc N,A{ } + Conc N,B{ }

(7)

where i � 50 or 90.
To derive BC50obs and BC90obs of the combination of interest,

we use FBC values (see Equation 5 in Glossary). We first derive
FBC50obs and FBC90obs, the FBC50 and FBC90 of the combination
of interest. Here, we assume FBC values of different angles of the
checkerboard (i.e., different relative concentrations of drugs–for
example, the diagonal of 45° is the equipotent combination, the
x- and y-axes correspond to 0 and 90° with drug 1 or drug 2 only,
respectively) vary quadratically with the angle between 1 and FBC
values of the diagonal, which results in the expected concave and
convex contours for synergistic and antagonistic drug interactions,
respectively (Supplementary Figures S1D–F):

FBC i{ }obs � FBC i{ }Diag + Concdiff
2 1 − FBC i{ }Diag( ) (8)

for i � 50 or 90.
Here, Concdiff is the normalized concentration difference

between drugs A and B, which varies between 0 (at the diagonal)
and 1 (single drug cases at the x- and y-axis), calculated as
(Supplementary Figure S3)

Concdiff � Conc N,A{ } − Conc N,B{ }
∣∣∣∣ ∣∣∣∣
Conc N,A{ } + Conc N,B{ }

(9)

We then calculate BC50obs and BC90obs as:

BC i{ }obs � BC i{ }exp · FBC i{ }obs where i � 50 or 90. (10)

iii. Derivation of h comb,obs{ } and C50 N,comb,obs{ }

Using BC50obs, BC90obs calculated with Equations 7–10 and
Emaxfrac killed, we infer h comb,obs{ } and C50 N,comb,obs{ } by assuming
that the concentrations BC90obs and BC50obs lead to 90% and 50%
bacterial killing, respectively:

0.9 � Emaxfrac killed
BC90obs

h comb,obs{ }

BC90obs
h comb,obs{ } + C50 N,comb,obs{ }h comb,obs{ }

(11)

and

0.5 � Emaxfrac killed
BC50obs

h comb,obs{ }

BC50obs
h comb,obs{ } + C50 N,comb,obs{ }h comb,obs{ }

(12)

By solving Equations 11, 12 for h comb,obs{ } and C50 N,comb,obs{ } we
get Equations 13, 14:

h comb,obs{ } �
log 2Emaxfrac killed−1

1.1Emaxfrac killed−1( )
log BC90obs

BC50obs
( ) (13)

and

C50 N,comb,obs{ } � BC50obs 2Emaxfrac killed − 1( )1/h comb,obs{ } (14)

iv. Calculating the effective concentration (Conceff) assuming
Bliss independence model

To calculate the killing rate using Hill curve parameters, we need
to determine the effective normalized concentration of a given
combination of arbitrary drug concentrations. The FIC values
used here were calculated using the assumption of the Bliss
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Independence Model (Bliss, 1939), as this model enables us to
calculate FIC values at different inhibition levels of the individual
drugs. The Bliss IndependenceModel assumes that drugs act on cells
through independent mechanisms and the combined drug effects
are additive (Bliss, 1939). This means, the expected killing rate, EA+B,
of two drugs A and B would be:

EA+B � EA + 1 − EA( ) · EB

where

Ei � Emax frac killed,i{ }
Conc N,i{ }hi

Conc N,i{ }hi + C50 N,i{ }hi
(15)

where i � Aor B
We then calculate EA+B and derive Conceff from the

equation below:

EA+B � Emax frac killed,comb{ }
Conceff

h comb, exp{ }

Conceff
h comb, exp{ } + C50 N,comb, exp{ }h comb, exp{ }

(16)
where

h comb, exp{ } �
log 2Emax frac killed,comb{ }−1

1.1Emax frac killed,comb{ }−1( )
log BC90exp

BC50exp
( ) (17)

And

C50 N,comb, exp{ } � BC50exp 2Emax frac killed,comb{ } − 1( )1/h comb, exp{ } (18)

The equations for h comb, exp{ } and C50 N,comb, exp{ }
(Equations 15–18) are derived from the assumptions that the
concentrations BC90exp and BC50exp lead to 90% and 50%
bacterial killing, respectively, which can be defined from the Hill
equation in Equations 19 and 20 as:

0.9 � Emax frac killed,comb{ }
BC90exp

h comb, exp{ }

BC90exp
h comb, exp{ } + C50 N,comb, exp{ }h comb, exp{ }

(19)
and

0.5 � Emax frac killed,comb{ }
BC50exp

h comb, exp{ }

BC50exp
h comb, exp{ } + C50 N,comb, exp{ }h comb, exp{ }

(20)

Calculating the killing rate of the combination of
interest (k(CA + CB))

Once we derive hCombobserved, C50 N,comb,obs{ }, Emax Combobserved
and

Conceff , we can calculate the killing rate of the combination drug
A and drug B with the concentrations CA and CB as:

k CA + CB( ) � Emax comb,obs{ }
Conceff

h comb,obs{ }

Conceff h comb,obs{ } + C50 N,comb,obs{ }h comb,obs{ }

(21)
Using Equation 21, we estimate the missing data from a

checkerboard assay of drug-drug interaction (Figure 4, see
Supplementary File 5 for killing rates of all drug combinations
and concentrations).

Including in vitro measurements into GranSim to track PD
and drug-drug interactions

For each drug combination, we generate lookup tables that
contain the overall regimen killing rate corresponding to the
collection of concentrations of each individual drug within the
combination. We calculate the killing rates of each combination
using the method described in Section 5 above. We use these lookup
tables in GranSim to determine the killing rates (k) that each
bacterium is exposed to within a simulation based on the spatial
concentrations of drugs. Bacteria are killed on each timestep with
probability 1 − e−k using a stochastic process.

Antibiotic treatment simulations

Using GranSim, we simulated each regimen using our in silico
granuloma library containing 100 high-CFU and 100 low-CFU
granulomas, totaling 200 granulomas, for a maximum of 180 days
(shorter simulations to be consistent when comparing to
experimental/clinical studies are clarified below). Unless otherwise
stated, we administer human or human-equivalent doses of each drug
within a regimen daily, based on the model we used for PK calibration
(Budak et al., 2023; Budak et al., 2024): 5 mg/kg of isoniazid (World
Health Organization, 2014), 10 mg/kg of rifampicin (World Health
Organization, 2014), 7 mg/kg of moxifloxacin (World Health
Organization, 2014), 20 mg/kg of ethambutol (World Health
Organization, 2014), 25 mg/kg of pyrazinamide (World Health
Organization, 2014), 20 mg/kg of Bedaquiline (human-equivalent
dose for rabbits), 20mg/kg of pretomanid (human-equivalent dose for
rabbits), and 90 mg/kg of linezolid (human-equivalent dose for
rabbits) (Budak et al., 2024).

We performed three complete sets of antibiotic treatment
simulations:

a. Treatment simulations to replicate clinically relevant regimens
and to choose the right stress condition that models the PD of
nonreplicating Mtb:
We simulated regimens that have been widely studied in
clinical and preclinical trials, namely, BPaMZ (Cevik et al.,
2024; Tweed et al., 2019; Li et al., 2017; Xu et al., 2019), BPaL
(Tasneen et al., 2016; Xu et al., 2019; Bigelow et al., 2020; Berry
et al., 2022; Conradie et al., 2020; Conradie et al., 2022), HRZE
(Burman et al., 2006; Gillespie et al., 2014; Dorman et al., 2009;
Johnson et al., 2009), RMZE (Nuermberger et al., 2004a;
Gillespie et al., 2014; Nuermberger et al., 2004b; Li et al.,
2015; Dorman et al., 2009) and HRZM (Nuermberger et al.,
2004a; Burman et al., 2006; Conde et al., 2009; Gillespie et al.,
2014; Li et al., 2015), for 180 days using 15 different sets of
in vitro measurements to model the PD and drug interaction
against nonreplicating Mtb (Table 1).

b. Treatment simulations to replicate regimens used in marmoset
studies (marmoset regimens):
Marmosets were treated with RMZE, BPa, BPaL, BL, RM,
HRZE, PaL, B, Pa, RZ, HZ, M, Z, R, H for 60 days (Budak et al.,
2024). For validation, we simulated the same regimens for
60 days using the maximum of AN and NH as the PD and drug
interaction model for nonreplicating Mtb chosen in the
previous step (8a).
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c. Treatment simulations with the regimens used within Phase
IIb meta-analysis human studies (Bonnett et al., 2017) (clinical
regimens):
We simulated regimens for 8 weeks using the maximum of AN
and NH as the PD and drug interaction model for
nonreplicating Mtb. As the doses and dosing interval of
these regimens are different than standard, we abbreviate
the regimens with the one-letter abbreviation of the drugs
within the regimen followed by the dose of that drug in mg/kg,
with the doses per week (dpw) listed at the end of the regimen
abbreviation, as we have done previously (Cicchese J. et al.,
2020). For example, E45R23.5dpw2 means that we simulated
dosing granulomas with 45 mg/kg of E and 23.5 mg/kg of R
2 days per week.

Methods to evaluate regimen efficacy

Metabolic activity using 2-deoxy-2-[18F]-fluoro-
D-glucose (FDG) avidity

Positron Emission Tomography and Computed
Tomography (PET-CT) scans are widely used methods to
assess the metabolic activity of granulomas in clinical or
NHP studies by measuring the uptake of the glucose analog
FDG (White et al., 2017). To compare to experimental studies,
we quantify the metabolic activity in GranSim as a proxy for
PET-CT scan measurements. This measure is called FDG
avidity and considers pro- and anti-inflammatory activity
within granulomas. We calculate FDG avidity of a granuloma
at time t in GranSim as:

FDG avidityt � ∑n
k�1

4Mik +Mcik + 6Mak + 3Tgamk
+ 3Tcytk + 3Tregk

(22)
where n is the number of microgrids on GranSim’s simulation grid,
Mi, Mci, Ma, Tgam, Tcyt and Treg are the number of resting
macrophages, infected macrophages, chronically infected
macrophages, active macrophages, IFN-γ producing T cells,
cytotoxic T cells and regulatory T cells at microgrid k,
respectively. We modified this measure from (Budak et al., 2023)
to account for anti-inflammatory activity.

We then measured the fold change in FDG avidity of a
granuloma as:

Fold change in FDG avidity � log2
FDG avidityt2 + 0.01
FDGavidityt1 + 0.01

( )
(23)

Where t1 and t2 are a day before treatment starts and treatment
end day, respectively.

Sterilization time
The effectiveness of a regimen depends on how quickly it can

eliminate all CFUs within a granuloma. Therefore, we assessed the
efficacy of a regimen based on the time needed for that regimen to
kill all Mtb within a granuloma, i.e., sterilization time. Lower
sterilization times of a regimen means higher efficacy and vice
versa. If a regimen has not sterilized a granuloma by the end of

the simulation, we assume the sterilization time of that regimen is
the length of simulation. Our simulations are typically 6 months
long that reflects standard treatment time. If we simulate regimens
to compare to experimental datasets, then we adjust the treatment
time to match experiments (see “Antibiotic treatment simulations”
in Methods for details).

Ranking regimens in a regimen set

A regimen set is a group of regimens to be ranked based on their
simulated efficacies using GranSim. We assess regimen efficacies
based on sterilization times of each granuloma and rank them
accordingly. To rank the regimens in a regimen set, we calculate
a ranking score for each regimen as described in Budak et al. (2024).
We refer to the reference regimen as the regimen for which the
ranking score is calculated. Briefly, we compare the sterilization
times of the reference regimen pairwise to that of the rest of the
regimens in the regimen set. We do this using a one-tailed t-test,
assuming the measures are normally distributed. A regimen is
considered more potent than a reference regimen if its
sterilization times are significantly lower than that of the
reference regimen, and vice versa (p < 0.05, one-tailed t-test). We
then count the number of significantly more (and less) potent
regimens than the reference regimen to calculate ranking score as:

Ranking scorereference regimen �

no. of more potent regimens than the reference regimen( )
− no. of less potent regimens than the reference regimen( ) (24)

We calculate ranking scores of each regimen in a regimen set
and used these scores to rank regimens, in that higher ranking scores
and lower ranks mean the regimen performs better overall within
that specific regimen set.

Including the effect of bacterial burden
into GEODE

To assess the impact of bacterial burden on drug killing rates
(i.e., inoculum effect in in vitro studies),M. tuberculosiswas cultured
under a single-stressor assay, the butyrate condition. Cultures were
grown to mid-log phase, then diluted to three starting bacterial load
levels: OD600 of 0.05, 0.1, and 0.15 for the drug susceptibility assay
(see Supplementary File 3 for the raw data). From these experiments,
we derive Hill curve parameters (Emax, C50 and h) that yield drug kill
rates dependent on drug concentrations for varying drugs (d) and
bacterial load (OD600) (Figure 2). We define the drug effect as kill
ratio, which indicates the ratio of the killed bacteria to total bacteria
(i.e., the portion of the killed bacteria) depending on the drug
concentration:

Kill ratio C( ) � Emax
Ch

Ch + C50h
(25)

Since the PK of each drug varies and the drug effect depends on
drug concentration, we define PK-relevant drug effect EPK for each
bacterial load and drug as:
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EPK OD600, d( ) �
EmaxOD600,d∫Cmaxd

0
ChOD600,d

ChOD600,d+C50OD600,dhOD600,d
dC

Cmaxd
(26)

where EmaxOD600,d , C50OD600,d and hOD600,d are Hill curve parameters
for drug d and bacterial load value of OD600, Cmaxd is the maximum
concentration of drug d based on GranSim PK simulations
(Supplementary Table S11; Supplementary Figure S4, see Figure 2
for the Hill curves of all drugs and bacterial loads).

We then convert OD600 values from bacterial culture to CFU
concentrations (to make it consistent with GranSim which is based
on CFU):

CFU/ml OD600( ) � 1.198 · 108/ml ·OD600 + 1.297 · 106/ml

(27)
OD-based CFU quantification (Equation 27) was based on

standard microbiology technique where replicate Erdman-strain
Mtb were grown at 37 °C/5% CO2 in liquid culture without
agitation. The OD600 was measured with a spectrophotometer at
different timepoints, and then dilutions were plated on 7H11 plates
so that the CFU/mL could be calculated and compared against the
OD from that culture.

Once we calculate CFU/mL values and their corresponding EPK

values for each drug using Equation 26, we then fit these datapoints
using an exponential function in the form of Ae−Bx such that:

EPK
CFU
ml

, d( ) � Ade
−Bd ·CFUml (28)

where Ad and Bd are drug-dependent parameters (see
Table 2; Figure 12).

In GranSim, we calculate a modified killing rate kbacterial load by
scaling the killing rate k (calculated in 5) using EPK values
depending on CFU concentration:

kbacterial load � k · EPK
CFU
ml GranSim( )

EPK
CFU
ml OD600 � 0.05( )( ) (29)

where CFU
ml GranSim is the CFU concentration of simulated granulomas.

In Equation 29, we normalize it to EPK(CFUml (OD600 � 0.05)), as
in vitro experiments (that were used to calculate k) were performed
using Mtb with OD600 � 0.05.

Whenmultiple drugs are available in a microgrid, g, inGranSim,
then we calculate the bacterial load-dependent killing rate k at grid
point g by taking themean of kbacterial load values of all available drugs:

kbacterial loadg �
k ·∑n

d�1Ade−Bd ·
CFU
ml GranSim

n·EPK
CFU
ml OD600 � 0.05( )( ) (30)

where n is the number of drugs available in the microgrid g.

Drug treatment studies in macaques

Adult male Mauritian cynomolgus macaques were used in
this study and obtained from Bioculture US. All experimental
procedures involving care of animals complied with ethical
regulations of the University of Pittsburgh School of Medicine
Institutional Animal Care and Use Committee. Macaques were
housed and cared for in accordance with local, state, federal, and

institute policies in facilities accredited by the American
Association for Accreditation of Laboratory Animal Care,
under standards established in the Animal Welfare Act and
the Guide for the Care and Use of Laboratory Animals as
mandated by the U.S. Public Health Service Policy. Macaques
were monitored for physical health, food consumption, body
weight, temperature, complete blood counts, and serum
chemistries. Examination of animals was performed in
quarantine upon arrival at the University of Pittsburgh to
assess physical health and confirm no previous Mtb infection
was detected via ELISpot assays. All Mtb infections were
performed a Biosafety Level 3 (BSL3) facility. Bronchoscopic
instillation with Mtb Erdman was performed as previously
described with an average dose of ~19 CFU (Capuano et al.,
2003; Lin et al., 2009). Veterinary staff regularly monitored
clinical signs following challenge, including appetite, behavior
and activity, weight, erythrocyte sedimentation rate, Mtb growth
from gastric aspirate, and coughing.

Five adult male Mauritian cynomolgus macaques were
obtained from Bioculture, Inc (Mauritius), with an age range of
5–9 years (Supplementary Material 1 provides all macaque data
from the BPaL study). Macaques were co-housed in a Biosafety
Level 3 facility and infected with 8–22 CFU M. tuberculosis strain
Erdman via bronchoscope as described previously (Winchell et al.,
2023). Approximately 8 weeks after M. tuberculosis infection, the
animals were treated with the BPaL regimen daily via oral
administration in food treats for 4 weeks. Drug doses:
Bedaquiline (B) 40 mg/kg, Pretomanid (P) 62 mg/kg, Linezolid
(L) 20 mg/kg. RMZE and HRZE treated animals were obtained
from Valley Biosystems (5 adult males with age range of 4–9 years)
and were infected with 8–21 CFU (Budak et al., 2023).
Approximately 12 weeks after Mtb infection, the animals were
treated with HRZE (n = 3) or RMZE (n = 2) for 8 weeks. Drug
doses: Isoniazid (H) 15 mg/kg; Rifampicin (R) 20 mg/kg;
Pyrazinamide (Z) 150 mg/kg; Ethambutol (E) 55 mg/kg;
Moxifloxacin (M) 35 mg/kg. For all drug regimens, PET CT
scans were performed immediately prior to initiation of drug
treatment, and 4 and 8 weeks after initiation of drug treatment
using 18-F fluorodeoxyglucose as a PET probe as previously
described (White et al., 2017; Winchell et al., 2020). The BPaL-
treated animals had only the 4 weeks post-drug treatment scan
directly prior to necropsy with the shorter treatment time. The

TABLE 2 A and B values for all drugs (see Equation 25).

Drugs A (unitless) B (mL)

INH 0.99 4.1e−9

RIF 0.95 6.4e−9

PZA 0.67 1.2e−7

EMB 0.2 7.5e−8

MXF 0.98 6.4e−9

BDQ 0.99 2.9e−9

PTM 0.99 6e−9

LZD 0.98 4.9e−9
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FIGURE 12
Effects of PK for different bacterial loads for different drugs. PK-relevant drug effect for different bacterial loads calculated using Equation 28 (black
circles) and the exponential fit (blue dashed lines) for (A) INH, (B) RIF, (C) PZA, (D) EMB, (E) MXF, (F) BDQ, (G) PTM and (H) LZD.
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HRZE- and RMZE-treated animals had both a 4 weeks and 8 weeks
scans. Granuloma size (measured by maximum diameter in mm)
and avidity (measured by maximum SUV and corrected for
granuloma size) were evaluated using OsiriX DICOM imaging
software in the axial view. Avidity was measured for granulomas
resulting in SUVR values pre- and post-drug treatment (White
et al., 2017). A fold change was calculated per granuloma to
measure drug effect on an individual granuloma basis (see
Equation 31 below). At necropsy the final PET CT scan was
used as a map to identify and individually isolate all
granulomas or other pathologies, uninvolved lung lobes,
thoracic lymph nodes and any signs of extrapulmonary disease.
Each sample was plated for bacterial burden individually on
7H10 plates; the plates were incubated at 37° with 5% CO2 and
counted for colony forming units (CFU) after 3 weeks. The fraction
(%) of sterile (CFU negative) granulomas was calculated for
each animal.

Fold change in SUVR � log2
prenecropsy SUVR + 0.01
predrug SUVR + 0.01

( ) (31)
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