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Background: Transfer RNA-derived small RNAs (tsRNAs) represent an emerging
class of regulatory molecules with potential as cancer biomarkers. However, their
diagnostic utility and regulatory mechanisms in breast cancer remain poorly
characterized. This study integrates machine learning algorithms with traditional
molecular biology approaches to identify tsRNA-based diagnostic signatures and
their downstream targets.

Methods: We analyzed miRNA-seq data from 103 matched tumor-normal pairs
from TCGA-BRCA as the discovery cohort and GSE117452 as validation. tsRNA
profiles were extracted using a custom bioinformatics pipeline. Random forest
algorithm was employed to develop a diagnostic model. Correlation analysis and
RNAhybrid were used to identify tsRNA-mRNA regulatory relationships.
Comprehensive multi-omics analyses including survival, immune infiltration,
drug sensitivity, and pathway enrichment were performed for identified
targets. Functional validation was conducted in breast cancer cell lines.

Results: We identified 297 differentially expressed tsRNAs and developed a four-
tsRNA signature (tRF-21-FSXMSL73E, tRF-20-XSXMSL73, tRF-23-FSXMSL730H,
tRF-23-YJE76INB0J) achieving AUC of 0.98 in discovery and 0.82 in validation
cohorts. tRF-21-FSXMSL73E showed strong correlation with FAM155B
expression. Pan-cancer analysis revealed FAM155B overexpression in multiple
malignancies with prognostic significance. FAM155B correlated with immune
infiltration, drug resistance, and activation of oncogenic pathways. Functional
studies confirmed FAM155B promotes breast cancer proliferation and migration.

Conclusion: Our machine learning approach successfully identified a robust
tsRNA diagnostic signature and uncovered the tsRNA-FAM155B regulatory axis as
a novel therapeutic target. This integratedmethodology provides a framework for
accelerating biomarker discovery by combining computational prediction with
traditional validation, advancing precision medicine in breast cancer.
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Introduction

The emergence of machine learning algorithms has
revolutionized the field of biomarker discovery, enabling
researchers to uncover complex molecular patterns that
traditional statistical methods might overlook (Duan et al., 2024).
In the context of cancer research, this computational revolution has
coincided with the discovery of novel classes of regulatory
molecules, including transfer RNA-derived small RNAs (tsRNAs),
which have emerged as promising candidates for both diagnostic
markers and therapeutic targets (Grešová et al., 2022). Transfer
RNA-derived small RNAs represent a recently characterized class of
small non-coding RNAs generated through specific cleavage of
mature or precursor tRNAs (Gu et al., 2022). These fragments,
typically ranging from 18 to 40 nucleotides in length, have been
implicated in diverse biological processes including gene regulation,
stress response, and epigenetic inheritance (Suzuki, 2021). Recent
evidence suggests that tsRNAs play crucial roles in cancer
development and progression through mechanisms that extend
beyond traditional RNA interference pathways (Suzuki, 2021;
Xiao et al., 2022). Their stability in biological fluids and disease-
specific expression patterns make them particularly attractive as
biomarkers for cancer diagnosis and prognosis (Yang et al., 2021).

Breast cancer remains a significant global health burden,
representing the most frequently diagnosed cancer among
women worldwide (Kawiak, 2024). Despite substantial advances
in early detection and treatment strategies, the heterogeneous nature
of breast cancer continues to pose challenges for accurate diagnosis
and personalized treatment selection (Lüönd et al., 2021; Sunassee
et al., 2023). The identification of novel biomarkers that can improve
diagnostic accuracy, predict treatment response, and guide
therapeutic decisions remains a critical unmet need in breast
cancer management (Sabit et al., 2025). The application of
machine learning algorithms to high-throughput sequencing data
has opened new avenues for biomarker discovery (Fu et al., 2024).
Random forest algorithms have demonstrated exceptional
performance in handling high-dimensional biological data,
capturing non-linear relationships, and identifying combinatorial
biomarker signatures (Fu et al., 2024; Ng et al., 2023). These
ensemble learning methods are particularly well-suited for tsRNA
analysis, where the regulatory effects often involve complex
networks of interactions that cannot be adequately captured by
univariate statistical approaches (Lu and Wang, 2024).

The integration of machine learning-derived predictions with
traditional molecular biology validation represents a powerful
strategy for accelerating biomarker discovery and validation
(Mottaqi et al., 2025). While computational methods excel at
pattern recognition and feature selection in large-scale datasets,
experimental validation andmechanistic studies remain essential for
establishing biological relevance and clinical utility (Tran et al.,
2021). This complementary approach leverages the strengths of both
computational and experimental methodologies to provide a more
comprehensive understanding of disease mechanisms (Shahwan
et al., 2023).

Recent studies have highlighted the potential of tsRNAs as
cancer biomarkers, with several reports demonstrating their
dysregulation in various malignancies (Jin et al., 2021; Huang
et al., 2024). However, the identification of specific tsRNA

signatures with robust diagnostic performance and the
elucidation of their downstream regulatory targets remain
challenging (Wang et al., 2023). The complexity of tsRNA
biogenesis, the diversity of their sequences, and their context-
dependent functions necessitate sophisticated analytical
approaches that can integrate multiple layers of molecular data
(Pan et al., 2025; Wang et al., 2025). FAM155B (Family with
sequence similarity 155 member B) remains a relatively
understudied gene in cancer biology. Previous reports have
suggested its potential involvement in endoplasmic reticulum
stress response and protein trafficking, but its role in cancer
progression has not been comprehensively characterized. Notably,
no prior studies have identified regulatory relationships between
small non-coding RNAs and FAM155B expression.

In this study, we present a comprehensive approach that
combines machine learning-based tsRNA profiling with
traditional biomarker discovery and validation methods. By
leveraging random forest algorithms to identify diagnostic tsRNA
signatures from high-throughput sequencing data, followed by
systematic investigation of their regulatory targets and clinical
associations, we demonstrate a novel framework for biomarker
discovery. Our analysis identified a four-tsRNA signature with
exceptional diagnostic performance and revealed FAM155B as a
key downstream target with significant implications for breast
cancer prognosis and treatment response.

Methods

Data sources and patient cohorts

The discovery cohort consisted of breast invasive carcinoma
(BRCA) samples from The Cancer Genome Atlas (TCGA) obtained
through the Genomic Data Commons (GDC) portal. We specifically
selected 103 patients with matched tumor and adjacent normal
tissue samples that had available miRNA-seq data. Clinical
information including age, gender, pathological stage, overall
survival, and progression-free interval was downloaded from the
UCSC Xena platform. An independent validation dataset
(GSE117452) containing miRNA-seq data from breast cancer
patients was obtained from the Gene Expression Omnibus
database. This dataset included 50 tumor and 30 normal breast
tissue samples processed using similar sequencing protocols. For
pan-cancer analysis, we obtained RNA-seq and clinical data for
33 cancer types from TCGA. Normal tissue expression data were
acquired from the Genotype-Tissue Expression (GTEx) project, and
cancer cell line expression profiles were downloaded from the
Cancer Cell Line Encyclopedia (CCLE) database.

tsRNA extraction and quantification
from miRNA-seq data

Raw miRNA-seq FASTQ files were first subjected to quality
control using FastQC. Adapter sequences were removed using
Cutadapt with minimum length 16 nt, maximum length 50 nt,
and minimum quality score 20. A custom bioinformatics pipeline
was developed to extract tsRNA sequences from the processed
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miRNA-seq data. Reference tRNA sequences were downloaded
from GtRNAdb for human genome assembly GRCh38, and
mature tRNA sequences including 5′leader and 3′trailer
sequences were compiled into a custom reference database.
Processed reads were mapped to the tRNA reference database
using Bowtie2 with parameters specifically optimized for short
RNA sequences: -very-sensitive-local mode with--mp 1,1
(mismatch penalty), --rdg 0,1 and--rfg 0,1 (gap penalties), and--
score-min G, 1,4 (minimum alignment score function). These
parameters were chosen based on preliminary testing with
known tsRNA sequences, where default parameters designed for
longer reads resulted in significant mapping artifacts and reduced
specificity for short tsRNA fragments.

Mapped reads were classified into tsRNA subtypes based on
their mapping positions relative to the mature tRNA structure. tRF-
5 fragments were defined as those derived from the 5′end of mature
tRNA before the anticodon, tRF-3 fragments from the 3′end after
the anticodon, tRF-1 fragments from the 3′trailer sequence, and
i-tRF as internal fragments spanning the anticodon region. tsRNA
expression levels were calculated as reads per million mapped reads
(RPM) to normalize for sequencing depth variations. Only tsRNAs
with expression ≥1 RPM in at least 10% of samples were retained for
analysis, resulting in the identification of 1,113 tsRNA species across
all samples.

Differential expression and
statistical analysis

Differential expression analysis between tumor and normal
samples was performed using the DESeq2 package in R. Raw
count data were normalized using the median of ratios method,
and differential expression was assessed using theWald test. tsRNAs
with adjusted p-value <0.05 and absolute log2 fold change >1 were
considered significantly differentially expressed. The Benjamini-
Hochberg method was used to control the false discovery rate.
Volcano plots were generated to visualize the distribution of fold
changes and statistical significance using ggplot2. Unsupervised
hierarchical clustering was performed on differentially expressed
tsRNAs using Euclidean distance and complete linkage method.
Heatmaps were generated using the pheatmap package with row-
wise z-score normalization.

Machine learning model development

Random forest classification was implemented using the
randomForest package in R to develop a diagnostic model. The
model was trained on the TCGA discovery dataset with 10-fold
cross-validation to optimize hyperparameters. The number of trees
was set to 500, and the number of variables tried at each split (mtry)
was optimized through grid search. Feature importance was assessed
using mean decrease accuracy, which measures the decrease in
model accuracy when a variable is randomly permuted. The top-
ranked tsRNAs based on importance scores were selected through
recursive feature elimination to identify the minimal set of features
maintaining optimal performance. Model performance was
evaluated using receiver operating characteristic (ROC) curves,

with area under the curve (AUC) as the primary metric. The
pROC package was used to calculate AUC values and generate
ROC curves. The final diagnostic model consisting of four tsRNAs
was validated in the independent GSE117452 dataset. Sensitivity,
specificity, positive predictive value, and negative predictive value
were calculated at the optimal cutoff determined by maximizing the
Youden index.

tsRNA-mRNA correlation and target
prediction

Correlation analysis between tsRNA and mRNA expression
profiles was performed using Spearman’s rank correlation
coefficient. mRNA expression data from the same TCGA-BRCA
samples were obtained and processed using standard RNA-seq
analysis pipelines. TPM-normalized expression values were used
for correlation analysis. Significant correlations were defined as
absolute correlation coefficient >0.3 and adjusted
p-value <0.05 after multiple testing correction. RNAhybrid was
employed to predict potential tsRNA-mRNA interactions based
on thermodynamic stability of RNA duplexes. The minimum free
energy threshold was set at −20 kcal/mol to identify high-confidence
interactions. This threshold was determined based on a systematic
sensitivity analysis evaluating MFE thresholds from −15 to −30 kcal/
mol. At −15 kcal/mol, we identified over 3,000 potential targets with
relatively weak expression correlations (median |r| = 0.12).
At −25 kcal/mol, only 89 targets were identified. The −20 kcal/
mol threshold yielded 486 targets with optimal balance of quantity
and correlation strength (median |r| = 0.28), which included the
FAM155B interaction. Predicted interactions were filtered based on
seed region complementarity (positions 2-8 of the tsRNA) and
evolutionary conservation of binding sites across species. The
combination of expression correlation and computational
prediction was used to prioritize potential regulatory relationships.

Pan-cancer expression analysis

Comprehensive pan-cancer analysis was performed for
FAM155B using data from 33 cancer types in TCGA. For each
cancer type, differential expression between tumor and normal
samples was assessed using the Wilcoxon rank-sum test. To
increase the sample size for normal tissues, TCGA tumor data
were integrated with GTEx normal tissue data after batch effect
correction using the ComBat algorithm. Expression levels were log2-
transformed after adding a pseudocount of 1. Cancer cell line
expression data from CCLE were analyzed to assess FAM155B
expression across different cancer types and tissue origins.

Clinical association and survival analysis

The relationship between FAM155B expression and
pathological stage was examined using the Kruskal-Wallis test
followed by Dunn’s post hoc test for pairwise comparisons.
Overall survival and progression-free interval analyses were
conducted using the Kaplan-Meier method. Patients were
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stratified into high and low expression groups based on the median
expression value for each cancer type. The log-rank test was used to
compare survival distributions between groups. Cox proportional
hazards regression was employed to calculate hazard ratios and 95%
confidence intervals, adjusting for available clinical covariates
including age, gender, and stage where applicable. Forest plots
were generated to visualize hazard ratios across cancer types. To
assess the added value of FAM155B in prognostic prediction, we
compared nomogram performance with and without FAM155B
expression. The C-index improved from 0.672 (clinical variables
alone) to 0.708 (clinical variables plus FAM155B), representing a
meaningful enhancement in predictive power. This improvement
remained consistent across 1,000 bootstrap iterations, confirming
the robust added value of FAM155B as a prognostic biomarker.

Immune infiltration and
microenvironment analysis

The CIBERSORT algorithm was applied to estimate the relative
abundance of 22 immune cell types in tumor samples based on gene
expression profiles. The LM22 signature matrix was used as reference,
and only samples with CIBERSORT p-value <0.05 were retained for
analysis. Correlations between FAM155B expression and immune cell
fractions were calculated using Spearman’s correlation. Tumor
microenvironment scores including stromal score, immune score,
and ESTIMATE score were calculated using the ESTIMATE
algorithm. The relationship between FAM155B expression and
various microenvironment features was assessed across cancer types.

Drug sensitivity analysis

Drug sensitivity data from the NCI-60 cell line panel were
obtained from the CellMiner database. The dataset included
IC50 values for FDA-approved anticancer drugs and
investigational compounds. FAM155B expression levels in NCI-
60 cell lines were extracted from the same database. Pearson
correlation analysis was performed between FAM155B expression
and drug sensitivity values (log10 IC50). Significant associations
were defined as p < 0.05 after correction for multiple testing using
the Benjamini-Hochberg method.

Pathway enrichment and co-expression
network analysis

Gene Set Variation Analysis (GSVA) was performed using the
GSVA package to assess pathway activities in individual samples.
The Hallmark gene sets from the Molecular Signatures Database
(MSigDB v7.4) were used as reference. Enrichment scores were
calculated using the default parameters, and correlations between
FAM155B expression and pathway scores were assessed. Gene Set
Enrichment Analysis (GSEA) was conducted to identify pathways
enriched in FAM155B-high versus FAM155B-low samples, using
the median expression as cutoff.

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed to identify modules of co-expressed genes. The

analysis was conducted on the top 5,000 most variable genes
based on median absolute deviation. A soft-thresholding power
of 11 was selected based on scale-free topology criteria. The
topological overlap matrix was calculated, and hierarchical
clustering was performed to identify gene modules. Module
eigengenes were correlated with FAM155B expression and
clinical traits. Functional enrichment analysis of module genes
was performed using clusterProfiler with Gene Ontology and
KEGG databases.

Nomogram construction and validation

A prognostic nomogram was constructed using multivariable
Cox regression analysis incorporating FAM155B expression and
clinical parameters. Variables were selected based on univariate
analysis results and clinical relevance. The final model included
age, pathological stage, gender, and FAM155B expression levels. The
nomogram was developed using the rms package in R. Model
performance was assessed using the concordance index (C-index)
and calibration curves. Bootstrap resampling with 1,000 iterations
was used for internal validation. Calibration curves comparing
predicted and observed survival probabilities were generated for
3-year and 5-year time points.

Cell culture and transfection

MDA-MB-231 and MDA-MB-453 breast cancer cell lines were
obtained from the American Type Culture Collection (ATCC) and
cultured in Dulbecco’s Modified Eagle Medium supplemented with
10% fetal bovine serum and 1% penicillin-streptomycin. Cells were
maintained at 37°C in a humidified atmosphere containing 5% CO2.
For FAM155B knockdown, two independent shRNA sequences
targeting FAM155B were designed and cloned into the
pLKO.1 lentiviral vector. For overexpression studies, the full-
length FAM155B coding sequence was cloned into the
pcDNA3.1 expression vector. Lentiviral particles were produced
in HEK293T cells by co-transfection with packaging plasmids
psPAX2 and pMD2.G. Stable cell lines were established by
lentiviral transduction followed by puromycin selection.

Functional assays

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8) assay according to the manufacturer’s instructions. Colony
formation assays were performed by seeding 800 cells per well in 6-
well plates and culturing for 14 days. Colonies were fixed with
methanol, stained with crystal violet, and counted. For wound
healing assays, cells were grown to confluence and scratched with
a pipette tip. Wound closure was monitored at 0-, 6-, and 12-h post-
scratch. For xenograft studies, 5 × 106 cells were subcutaneously
injected into the flanks of 4–5-week-old female BALB/c nude mice.
Tumor volumes were measured every 4 days and calculated using
the formula: volume = (length × width2)/2. All animal experiments
were approved by the Institutional Animal Care and
Use Committee.
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Statistical analysis

All statistical analyses were performed using R version 4.0.5.
Continuous variables were compared using Student’s t-test for
normally distributed data or Wilcoxon rank-sum test for non-
parametric data. Multiple group comparisons were performed
using one-way ANOVA or Kruskal-Wallis test as appropriate.
Correlation analyses were conducted using Spearman’s rank
correlation coefficient. All tests were two-sided, and
p-values <0.05 were considered statistically significant unless
otherwise specified. Multiple testing corrections were applied
using the Benjamini-Hochberg method where appropriate. Data
visualization was performed using ggplot2 and
ComplexHeatmap packages.

Results

Machine learning-based identification of
diagnostic tsRNA signatures in breast cancer

To identify tsRNA-based diagnostic biomarkers for breast
cancer, we implemented a comprehensive machine learning

workflow using matched tumor and adjacent normal tissue
samples from the TCGA-BRCA cohort. From the initial
miRNA-seq data, we successfully extracted and quantified
1,113 tsRNA species across 103 paired samples. Differential
expression analysis revealed substantial dysregulation of
tsRNA profiles in breast cancer tissues, with 297 tsRNAs
showing significant differential expression (adjusted p < 0.05, |
log2FC| > 1). The volcano plot visualization demonstrated a
predominant pattern of tsRNA upregulation in tumor samples,
with several tsRNAs exhibiting fold changes exceeding 4-fold
(Figure 1A). To develop a clinically applicable diagnostic model,
we applied random forest algorithm to the differentially
expressed tsRNAs. Through iterative feature selection based
on mean decrease accuracy, we identified the top 10 tsRNAs
with the highest discriminatory power (Figure 1B). The
diagnostic capability of our four-tsRNA signature was
evaluated using receiver operating characteristic (ROC) curve
analysis. In the TCGA discovery cohort, the model achieved an
exceptional area under the curve (AUC) of 0.98, demonstrating
near-perfect discrimination between tumor and normal tissues.
Importantly, validation in the independent GSE117452 dataset
yielded an AUC of 0.82, confirming the robustness and
generalizability of our tsRNA signature across different patient

FIGURE 1
Machine learning-based identification of diagnostic tsRNA signatures in breast cancer. (A) Volcano plot showing differential expression of
1,113 tsRNAs between breast tumor (n = 103) and adjacent normal tissues (n = 103) from TCGA-BRCA cohort. Red dots indicate significantly upregulated
tsRNAs and blue dots indicate downregulated tsRNAs (adjusted p < 0.05, |log2FC| > 1). (B) Random forest feature importance ranking of the top 10 tsRNAs
based on mean decrease accuracy. (C) Receiver operating characteristic (ROC) curves demonstrating diagnostic performance of the four-tsRNA
signature in the TCGA discovery cohort (AUC=0.98) and independent validation cohort GSE117452 (AUC=0.82). (D)Box plots showing expression levels
of the four signature tsRNAs (tRF-21-FSXMSL73E, tRF-20-XSXMSL73, tRF-23-FSXMSL730H, and tRF-23-YJE76INB0J) in cancer versus normal tissues.
**P < 0.01; ***P < 0.001. (E) Heatmap with hierarchical clustering of differentially expressed tsRNAs clearly separating tumor (red) and normal (green)
samples. Color scale represents z-score normalized expression values.
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populations (Figure 1C). Further optimization revealed that a
four-tsRNA signature (tRF-21-FSXMSL73E, tRF-20-XSXMSL73,
tRF-23-FSXMSL730H, and tRF-23-YJE76INB0J) achieved
optimal diagnostic performance (Figure 1D). Unsupervised
hierarchical clustering of differentially expressed tsRNAs
clearly separated tumor and normal samples into distinct
clusters, indicating robust tsRNA expression signatures
associated with malignant transformation (Figure 1E).

Pan-cancer expression analysis of FAM155B
reveals widespread dysregulation

Following the identification of our diagnostic tsRNA signature,
we performed correlation analysis between tsRNA and mRNA
expression profiles to identify potential regulatory targets. Among
the four signature tsRNAs, tRF-21-FSXMSL73E demonstrated the
strongest correlation with FAM155B expression (rho = 0.42, p <

FIGURE 2
Pan-cancer expression analysis of FAM155B. (A) FAM155B mRNA expression levels across 33 cancer types in TCGA dataset. Tumor samples are
shown in yellow and normal tissues in blue. (B) Comparison of FAM155B expression between tumor and normal tissues integrating TCGA and GTEx
databases. (C) FAM155B expression levels across 30 different cancer cell line types from the CCLE database, grouped by tissue of origin. *P < 0.05, **P <
0.01, ***P < 0.001.

Frontiers in Pharmacology frontiersin.org06

Ma et al. 10.3389/fphar.2025.1640192

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1640192


0.001). RNAhybrid analysis predicted a thermodynamically stable
interaction between tRF-21-FSXMSL73E and FAM155B mRNA
(ΔG = −32.5 kcal/mol), prompting comprehensive investigation
of FAM155B as a potential therapeutic target.

Pan-cancer analysis using TCGA data revealed significant
overexpression of FAM155B across multiple cancer types. FAM155B
showed elevated expression in 10 of 33 analyzed cancer types, including
breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL),
kidney chromophobe (KICH), kidney renal papillary cell carcinoma
(KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pheochromocytoma
and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), and
uterine corpus endometrial carcinoma (UCEC) (Figure 2A). Integration
of TCGA and GTEx data confirmed that FAM155B expression was
significantly higher in tumor tissues compared to corresponding normal
tissues across these cancer types (Figure 2B). Analysis of FAM155B
expression in cancer cell lines using CCLE data demonstrated
widespread expression across diverse cancer types, with particularly
high levels in gallbladder, leukemia, and lymphoma cell lines (Figure 2C).
This broad expression pattern suggests that FAM155B may play
fundamental roles in cancer cell biology across multiple tissue types.

FAM155B expression correlates with
advanced cancer stage and poor
clinical outcomes

To investigate the clinical relevance of FAM155B expression,
we examined its association with pathological stage across

multiple cancer types. FAM155B expression showed
significant positive correlations with tumor stage in several
cancers, including esophageal carcinoma (ESCA), kidney
renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), pancreatic adenocarcinoma (PAAD),
stomach adenocarcinoma (STAD), and thyroid carcinoma
(THCA) (Figure 3). In breast cancer specifically, FAM155B
expression progressively increased from stage I to stage IV,
suggesting its involvement in cancer progression and
metastasis. Survival analysis revealed that FAM155B
expression had significant prognostic implications across
multiple cancer types. Forest plot analysis of overall survival
(OS) demonstrated that high FAM155B expression was
associated with poor prognosis in several cancers, with the
most significant associations observed in BRCA (HR = 1.120,
p = 0.023), KIRP (HR = 1.123, p = 0.017), LAML (HR = 1.197, p =
0.023), and PRAD (HR = 1.483, p < 0.001) (Figure 4A). Kaplan-
Meier analysis confirmed these findings, showing significantly
reduced survival in patients with high FAM155B expression
(Figures 4B–G).

Similar patterns were observed for progression-free interval
(PFI), where high FAM155B expression correlated with increased
risk of disease progression. The most pronounced effects were
seen in BRCA (HR = 1.159, p = 0.003), KIRP (HR = 1.093, p =
0.094), PAAD (HR = 0.441, p < 0.001), and PRAD (HR = 1.041,
p = 0.503) (Figure 5A). Kaplan-Meier curves for PFI further
validated these associations, demonstrating that FAM155B
expression could serve as a prognostic biomarker for disease
recurrence (Figures 5B–G).

FIGURE 3
Association of FAM155B expression with pathological stages across multiple cancer types. Box plots showing FAM155B expression levels across
different pathological stages in multiple cancer types. From left to right, the first row includes ACC, BLCA, BRCA, CHOL, and COAD; the second row
includes ESCA, HNSC, KICH, KIRC, and KIRP; the third row includes LIHC, LUAD, LUSC,MESO, and PAAD; and the fourth row includes READ, SKCM, STAD,
TGCT, and UVM. Statistical significance was determined using the Kruskal–Wallis test followed by Dunn’s post hoc test.
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FIGURE 4
Association of FAM155B expression with overall survival in pan-cancer analysis. (A) Forest plot showing hazard ratios for the relationship between
FAM155B expression and overall survival across 33 cancer types. (B–G) Kaplan-Meier survival curves comparing overall survival between FAM155B high
and low expression groups in selected cancer types. P-values were calculated using log-rank test.

FIGURE 5
Association of FAM155B expression with progression-free interval in pan-cancer analysis. (A) Forest plot showing hazard ratios for the relationship
between FAM155B expression and progression-free interval across 33 cancer types. (B–G) Kaplan-Meier curves comparing progression-free interval
between FAM155B high and low expression groups in selected cancer types. P-values were calculated using log-rank test.
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FAM155B expression shapes the tumor
microenvironment and immune landscape

Given the increasing recognition of the tumor
microenvironment’s role in cancer progression and treatment
response, we investigated the relationship between FAM155B
expression and various microenvironmental features. Correlation
analysis across multiple cancer types revealed significant
associations between FAM155B expression and key tumor
microenvironment processes, including angiogenesis, epithelial-
mesenchymal transition, and hypoxia (Figure 6A). In breast
cancer specifically, FAM155B expression showed strong positive

correlations with TMEscoreB and negative correlations with
immune checkpoint-related parameters (Figure 6B).

Detailed immune cell infiltration analysis using CIBERSORT
revealed that FAM155B expression was associated with specific
immune cell populations across different cancer types. FAM155B
showed positive correlations withM0macrophages in 7 cancer types
and M1 macrophages in 10 cancer types, while demonstrating
negative correlations with resting dendritic cells in 8 cancer types
(Figure 7A). In breast cancer, high FAM155B expression was
associated with increased infiltration of M0 macrophages and
decreased presence of resting memory CD4+ T cells and resting
dendritic cells (Figure 7B).

FIGURE 6
FAM155B expression correlates with tumor microenvironment features. (A) Heatmap showing correlations between FAM155B expression and
15 tumor microenvironment processes across multiple cancer types. (B) Box plots comparing tumor microenvironment scores between FAM155B high
and low expression groups in breast cancer. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

FIGURE 7
FAM155B expression is associated with immune cell infiltration patterns. (A) Heatmap showing correlations between FAM155B expression and
infiltration of 22 immune cell types across pan-cancer analysis. (B) Box plots showing differences in immune cell proportions between FAM155B high and
low expression groups in breast cancer. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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FAM155B correlates with immune regulatory
networks and checkpoint molecules

To further understand FAM155B’s role in immune regulation, we
analyzed its correlation with various immune-related gene categories.
FAM155B expression showed significant correlations with multiple
chemokines, immune checkpoints, immunoinhibitors,
immunostimulators, MHC molecules, and their receptors across
different cancer types (Figures 8A–F). These widespread correlations
suggest that FAM155B may function as a master regulator of tumor
immune responses. Analysis of FAM155B expression in relation to
tumor mutational burden (TMB), microsatellite instability (MSI), and
neoantigen load revealed cancer-specific patterns. FAM155B showed
significant positive correlations with TMB in CHOL, LAML, and
THYM, while demonstrating negative correlations in PRAD and
LUAD (Figure 9A). MSI associations were observed in THYM,
LUSC, STAD, and COAD (Figure 9B), and neoantigen correlations
were significant in HNSC, PRAD, LUAD, and STAD (Figure 9C).

FAM155B expression predicts drug
sensitivity and resistance patterns

Analysis of drug sensitivity data from the CellMiner database
revealed that FAM155B expression was associated with response to
multiple anticancer agents. High FAM155B expression correlated
with resistance to Tegafur (r = 0.290, p = 0.030), AFP464 (r = 0.289,
p = 0.025), and 5-fluoro deoxyuridine 10mer (r = 0.268, p = 0.038),
suggesting that FAM155B may contribute to chemotherapy
resistance mechanisms. Conversely, FAM155B expression showed
negative correlations with Abiraterone (r = −0.267, p = 0.039) and

Ponatinib (r = −0.258, p = 0.047), indicating potential sensitivity to
these agents (Figure 9D).

Pathway analysis reveals FAM155B
involvement in critical cancer processes

To elucidate the biological mechanisms underlying FAM155B’s
role in cancer, we performed comprehensive pathway enrichment
analysis. GSVA analysis in breast cancer revealed that high
FAM155B expression was associated with activation of multiple
cancer-related pathways, including glycolysis, protein secretion,
peroxisome function, unfolded protein response, UV response,
DNA repair, oxidative phosphorylation, adipogenesis,
mTORC1 signaling, and estrogen response (Figure 10A). GSEA
further confirmed enrichment of these pathways, with particularly
strong associations observed for oxidative phosphorylation, DNA
repair, and mTORC1 signaling (Figure 10B).

WGCNA identifies FAM155B-Associated
gene modules in breast cancer

To identify co-expression networks associated with FAM155B in
breast cancer, we performed weighted gene co-expression network
analysis (WGCNA). This analysis identified seven distinct gene
modules, with the brown module (MEbrown) showing the
strongest correlation with FAM155B expression (cor = −0.3, p =
7e-27) (Figure 11A). Functional enrichment analysis of the brown
module genes revealed significant enrichment for biological
processes related to vasculature development, angiogenesis, and

FIGURE 8
Correlation of FAM155B expression with immune regulatory genes. Heatmaps showing correlations between FAM155B expression and (A)
chemokine genes, (B) immune checkpoint genes, (C) immunoinhibitor genes, (D) immunostimulator genes, (E) MHC genes, and (F) receptor genes
across multiple cancer types. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 9
FAM155B expression correlates with TMB, MSI, and drug sensitivity. (A) Correlation between FAM155B expression and tumor mutational burden
(TMB) across cancer types. (B)Correlation between FAM155B expression andmicrosatellite instability (MSI). (C)Correlation between FAM155B expression
and neoantigen load (NEO). (D)Drug sensitivity analysis showing correlations between FAM155B expression and IC50 values of selected anticancer drugs.
*P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 10
Pathway enrichment analysis of FAM155B in breast cancer. (A) GSVA analysis showing correlation between FAM155B expression and hallmark
pathway activities. (B) GSEA plots showing enrichment of selected pathways in FAM155B high expression group.
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extracellular matrix organization (Figure 11B). KEGG pathway
analysis highlighted enrichment for critical signaling pathways
including PI3K-Akt, focal adhesion, complement and coagulation
cascades, and MAPK signaling (Figure 11C).

Development of a prognostic nomogram
integrating FAM155B expression

To translate our findings into a clinically applicable tool, we
developed a prognostic nomogram integrating FAM155B
expression with traditional clinical parameters. The nomogram
incorporated patient age, tumor stage, gender, and FAM155B
expression levels to predict 3-year and 5-year overall survival
probabilities (Figure 12A). Calibration curves demonstrated

excellent agreement between predicted and observed survival
outcomes, with the model showing good discrimination for both
3-year and 5-year predictions (Figure 12B). This integrated model
provides a practical framework for incorporating molecular
biomarkers into clinical decision-making.

Functional validation confirms FAM155B’s
role in breast cancer progression

To validate the functional significance of FAM155B in breast
cancer, we performed loss-of-function and gain-of-function
experiments in breast cancer cell lines. Western blot analysis
confirmed successful knockdown of FAM155B using two
independent shRNA constructs (shFAM155B-1 and shFAM155B-2)

FIGURE 11
WGCNA identifies FAM155B-associated gene modules in breast cancer. (A) Module-trait relationship heatmap showing correlation between gene
modules and FAM155B expression. (B)GO biological process enrichment analysis of genes in the brownmodule. (C) KEGG pathway enrichment analysis
of genes in the brown module.

FIGURE 12
Prognostic nomogram integrating FAM155B expression with clinical parameters. (A) Nomogram for predicting 3- and 5-year overall survival in
breast cancer patients based on FAM155B expression, age, stage, and gender. (B)Calibration curves showing agreement between predicted and observed
3- and 5-year survival probabilities.
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FIGURE 13
FAM155B knockdown inhibits breast cancer cell proliferation and colony formation. (A) qRT-PCR and (B)Western blot analysis confirming FAM155B
knockdown efficiency in MDA-MB-231 and MDA-MB-453 cells. (C) qRT-PCR confirming FAM155B overexpression. (D) Colony formation assay showing
reduced colony numbers following FAM155B knockdown. (E) Colony formation assay showing increased colony numbers following FAM155B
overexpression. **P < 0.01.

FIGURE 14
FAM155B promotes breast cancer cell migration and tumor growth. (A) Wound healing assay demonstrating reduced migration in FAM155B
knockdown cells. (B)Wound healing assay showing enhancedmigration in FAM155B overexpressing cells. (C) Representative images of xenograft tumors
from mice injected with control or FAM155B knockdown cells. (D) Tumor growth curves and final tumor weights showing reduced tumor growth
following FAM155B knockdown. *P < 0.05; **P < 0.01.
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and overexpression using a FAM155B expression vector in both MDA-
MB-231 and MDA-MB-453 cells (Figures 13A–C). Colony formation
assays revealed that FAM155B knockdown significantly reduced the
clonogenic potential of breast cancer cells, while overexpression
enhanced colony formation capacity (Figures 13D,E). Wound
healing assays demonstrated that FAM155B knockdown
substantially impaired cell migration, with shFAM155B-1 and
shFAM155B-2 reducing wound closure by approximately 60% and
75%, respectively, compared to control cells. Conversely, FAM155B
overexpression accelerated wound closure (Figures 14A,B). In vivo
validation using xenograft models confirmed that FAM155B
knockdown significantly reduced tumor growth. Mice bearing
tumors from shFAM155B-2 transduced cells showed markedly
reduced tumor volumes compared to control groups, with final
tumor weights approximately 50% lower than controls (Figures
14C,D). These functional studies validate FAM155B as a critical
regulator of breast cancer cell proliferation, migration, and tumor
growth, supporting its potential as a therapeutic target.

Discussion

This study represents a significant advancement in cancer
biomarker discovery by successfully integrating machine learning
algorithms with traditional molecular biology approaches. Our
findings demonstrate that tsRNAs, previously underappreciated
regulatory molecules, can serve as highly accurate diagnostic
biomarkers for breast cancer when analyzed through sophisticated
computational methods. The identification of a four-tsRNA
signature with exceptional diagnostic performance (AUC = 0.98)
exemplifies how machine learning can extract clinically relevant
patterns from complex molecular data that would be challenging to
identify through conventional analytical approaches.

The discovery of the tsRNA-FAM155B regulatory axis
highlights the power of combining computational predictions
with experimental validation. Traditional approaches to
biomarker discovery often focus on individual molecules or rely
on prior biological knowledge, potentially missing novel regulatory
relationships. Our unbiased machine learning approach identified
tRF-21-FSXMSL73E as a key diagnostic marker, which subsequently
led to the discovery of its association with FAM155B. This finding
would have been difficult to achieve through hypothesis-driven
research alone, demonstrating the value of data-driven discovery
in revealing unexpected biological connections.

The positive correlation between tRF-21-FSXMSL73E and
FAM155B expression challenges conventional understanding of
small RNA function. While most studies focus on the repressive
roles of small RNAs, our findings suggest more complex regulatory
mechanisms. This positive correlation might result from several
mechanisms: tRF-21-FSXMSL73E could stabilize FAM155B mRNA
through competing endogenous RNA networks, regulate upstream
transcription factors that control FAM155B expression, or
participate in feedback loops that coordinate their expression. These
possibilities warrant further mechanistic investigation and highlight the
importance of avoiding preconceived notions about molecular
interactions when interpreting machine learning predictions. Our
WGCNA analysis provides mechanistic insights into this positive
correlation. The co-expression of FAM155B with ATF/CREB family

transcription factors in the brownmodule, combined with the sequence
complementarity between tRF-21-FSXMSL73E and miRNAs targeting
these factors, strongly suggests a competing endogenous RNA
mechanism. In this model, tRF-21-FSXMSL73E may function as a
molecular sponge that sequesters repressive miRNAs, thereby allowing
increased transcription factor activity and subsequent FAM155B
upregulation. This mechanism aligns with recent discoveries about
tsRNA functions in competing endogenous RNA networks and is
supported by our pathway analysis showing enrichment of unfolded
protein response pathways.

Our comprehensive validation of FAM155B using traditional
biomarker analysis approaches confirms its clinical significance
across multiple dimensions. The pan-cancer overexpression
pattern suggests that FAM155B may represent a fundamental
mechanism in cancer biology rather than a tissue-specific
phenomenon. The progressive increase in FAM155B expression
with advancing tumor stage, combined with its association with
poor survival outcomes, positions it as both a prognostic marker and
potential therapeutic target. These findings gained additional
credibility through validation across multiple independent
datasets and cancer types, demonstrating the robustness of our
integrated approach. To our knowledge, this is the first study to
comprehensively characterize FAM155B as an oncogenic driver in
breast cancer and establish its regulation by tsRNAs. While
FAM155B has appeared in various expression profiling studies,
its functional role in cancer biology has remained largely
unexplored until now.

The relationship between FAM155B and the tumor immune
microenvironment reveals another layer of complexity in cancer
biology (Zhang and Chen, 2024). Our findings showing positive
correlations with immunosuppressive M0 macrophages and
negative correlations with antigen-presenting dendritic cells
suggest that the tsRNA-FAM155B axis may contribute to
immune evasion mechanisms. This observation has important
implications for immunotherapy, as FAM155B expression could
potentially serve as a biomarker for immune checkpoint inhibitor
response or resistance. The integration of machine learning-
identified biomarkers with immune profiling represents a
promising approach for personalizing immunotherapy strategies.

The drug sensitivity analysis provides actionable insights for
precision medicine applications. The association of FAM155B
expression with resistance to conventional chemotherapeutic agents
like Tegafur and 5-fluorouracil derivatives suggests it may contribute to
treatment failure in breast cancer patients (Botticelli et al., 2020).
Conversely, the sensitivity to agents like Abiraterone indicates
potential therapeutic vulnerabilities that could be exploited. These
findings demonstrate how machine learning-guided biomarker
discovery can inform treatment selection and identify patients who
might benefit from alternative therapeutic strategies.

Our pathway analysis reveals that FAM155B influences multiple
hallmark cancer processes, including DNA repair, oxidative
phosphorylation, and mTORC1 signaling. This multifaceted
involvement suggests that targeting the tsRNA-FAM155B axis
could have broad therapeutic effects. The enrichment of DNA
repair pathways is particularly intriguing, as it may explain the
observed chemotherapy resistance and could indicate synthetic
lethal opportunities with DNA-damaging agents or PARP
inhibitors. The connection to metabolic pathways like oxidative
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phosphorylation also suggests potential vulnerabilities to metabolic
inhibitors.

The successful validation of our findings through functional
experiments strengthens the biological relevance of our
computational predictions. The dramatic effects of FAM155B
modulation on cancer cell proliferation, migration, and tumor
growth confirm its role as a driver of malignant phenotypes.
These results provide the necessary biological validation that
transforms computational predictions into actionable therapeutic
targets. The consistency between in vitro and in vivo results further
supports the potential clinical translation of targeting FAM155B.

From a methodological perspective, our study provides a
blueprint for future biomarker discovery efforts. The integration
of machine learning with traditional validation approaches leverages
the strengths of both methodologies: computational methods excel
at pattern recognition and handling high-dimensional data, while
experimental approaches provide mechanistic insights and
biological validation. This synergistic approach is particularly
valuable in the era of big data, where the volume and complexity
of molecular information exceed human analytical capacity.

Several limitations should be acknowledged. First, while our
correlation and computational analyses suggest regulatory
relationships between tRF-21-FSXMSL73E and FAM155B, direct
molecular interactions require experimental validation through
RNA pulldown or CRISPR-based approaches. Second, the
decrease in diagnostic performance between discovery and
validation cohorts, while still maintaining good discrimination,
highlights the challenges of biomarker generalization across
different populations and technical platforms. Third, the
mechanisms underlying the positive correlation between tsRNA
and target expression require further investigation to fully
understand the regulatory networks involved.

Future research directions should focus on several key areas.
Mechanistic studies using RNA immunoprecipitation, CLIP-seq,
and CRISPR screens could elucidate the precise molecular
interactions between tRF-21-FSXMSL73E and FAM155B.
Development of tsRNA-based therapeutics, such as antisense
oligonucleotides or small molecule inhibitors targeting the
tsRNA-FAM155B axis, represents an exciting translational
opportunity. Large-scale clinical validation studies are needed to
establish the diagnostic utility of our tsRNA signature in clinical
settings. Additionally, exploring the role of tsRNAs in other cancer
types using our integrated approach could reveal common and
tissue-specific regulatory mechanisms.

The clinical implications of our findings are substantial. The four-
tsRNA diagnostic signature could be developed into a non-invasive
liquid biopsy test for breast cancer detection, given the stability of
tsRNAs in biological fluids (Wen et al., 2021). FAM155B expression
profiling could guide treatment selection, identifying patients likely to
respond to specific therapies. The integration of tsRNA and FAM155B
measurements into existing clinical decision-making frameworks, as
demonstrated by our nomogram, provides a practical path toward
implementation. The translation of our tsRNA signature to liquid
biopsy applications faces several important considerations. While
our tissue-based analysis provides proof-of-concept, previous studies
have demonstrated that tsRNAs are remarkably stable in biological
fluids due to their association with protein complexes and extracellular
vesicles. The specific tsRNAs in our signature have been detected in

circulating biofluid studies, with tRF-21 and tRF-23 fragments
particularly enriched in extracellular vesicles. However, critical steps
remain before clinical implementation, including: (1) validation of our
signature in matched tissue-plasma pairs, (2) optimization of extraction
protocols for low-abundance circulating tsRNAs, (3) establishment of
reference ranges in healthy populations, and (4) development of
specialized protocols to enrich for tsRNA-containing extracellular
vesicles. Digital PCR or next-generation sequencing approaches may
be required for sensitive detection in liquid biopsies.

In conclusion, our study demonstrates the transformative
potential of integrating machine learning with traditional
biomarker discovery approaches. The identification of a robust
tsRNA diagnostic signature and the discovery of the tsRNA-
FAM155B regulatory axis exemplify how computational methods
can accelerate biological discovery. As precision medicine continues
to evolve, such integrated approaches will be essential for translating
the complexity of cancer biology into clinically actionable tools. Our
findings not only advance understanding of breast cancer biology
but also provide a methodological framework that can be applied
across cancer types and molecular data types, ultimately
contributing to improved patient outcomes through more precise
diagnosis and targeted treatment strategies.
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