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Melanoma is one of the most common malignancies among fair-skinned
populations. Natural products, a diverse group of bioactive compounds
derived from plants and animals, have demonstrated inhibitory effects on
melanoma growth, invasion, and metastasis. This review summarizes the
mechanisms through which natural products inhibit melanoma progression
and metastasis. These compounds are categorized based on their
mechanisms of action. Many natural products have been found to induce
apoptosis in melanoma cells through various signaling pathways. For instance,
rhodopsin and the triazolylpeptidyl penicillin derivative TAP7f suppress the Wnt/
β-catenin signaling pathway, thereby reducing melanoma cell proliferation and
migration. Resveratrol and vitamin E delta-tocotrienol (δ-TT) inhibit caspase-
dependent mitochondrial and endoplasmic reticulum stress pathways, inducing
apoptosis in melanoma cells. Shikonin and plumbagin exert their antitumor
effects through the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) signaling pathway. In addition, natural products
such as silymarin, capsaicin, and ursolic acid exhibit multi-targeted anticancer
effects with high efficiency and low toxicity by modulating various signaling
pathways. These findings highlight the ability of natural compounds to regulate
multiple biological targets, offering new directions and potential clinical
applications in melanoma therapy. Natural product–based drug development
holds great promise for overcoming current limitations in cancer treatment.
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1 Introduction

Random accumulation of cellular mutations or genetic defects can transform normal
melanocytes into malignant melanoma. Although malignant melanoma accounts for less
than 5% of all skin cancers, it is responsible for the majority of skin cancer–related deaths
(Wilczak et al., 2025). The incidence of malignant melanoma varies by population, based on
the current incidence rate, it is estimated that by 2040, the number of new melanoma cases
will increase by 50%. According to 2020 data, the melanoma-related mortality rate is
projected to rise by 68%, with the highest incidence observed in white populations (Long
et al., 2023; Connor et al., 2025). Cutaneous malignant melanoma is growing faster than any
other cancer and thus poses a significant health threat worldwide.

OPEN ACCESS

EDITED BY

Shashanka Prasad,
JSS Academy of Higher Education and
Research, India

REVIEWED BY

Jayaprakash N. Kolla,
Institute of Molecular Genetics (ASCR), Czechia
Wenfu Ma,
Beijing University of Chinese Medicine, China

*CORRESPONDENCE

Yuesi Qin,
qinyuesi@cdutcm.edu.cn

†These authors have contributed equally to this
work and share first authorship

RECEIVED 05 June 2025
ACCEPTED 05 August 2025
PUBLISHED 26 August 2025

CITATION

Gao H, Huang J, Zhang D, Li S, Long S and Qin Y
(2025) Natural products as therapeutics for
malignant melanoma: preclinical evidence and
mechanism .
Front. Pharmacol. 16:1641838.
doi: 10.3389/fphar.2025.1641838

COPYRIGHT

© 2025 Gao, Huang, Zhang, Li, Long and Qin.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 26 August 2025
DOI 10.3389/fphar.2025.1641838

https://www.frontiersin.org/articles/10.3389/fphar.2025.1641838/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1641838/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1641838/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1641838/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1641838&domain=pdf&date_stamp=2025-08-26
mailto:qinyuesi@cdutcm.edu.cn
mailto:qinyuesi@cdutcm.edu.cn
https://doi.org/10.3389/fphar.2025.1641838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1641838


Most melanomas arise from somatic mutations that are acquired
later in life. Several recently known key genetic mutations in
melanoma, such as BRAF, NRAS, PTEN, MITF, CDKN2A, KIT,
and TP53, have been described as crucial factors in melanoma
development (Zhang et al., 2016; Palmieri et al., 2018; Castellani
et al., 2023). Approximately 50% of malignant melanomas have
mutations in BRAF, which promote melanin production through
conformational activation of the MAPK (RAS/RAF/MEK/ERK)
signaling pathway. This mediates several phenomena, including
cell proliferation, differentiation, and secretion of signaling
molecules associated with the appearance and progression of

melanoma (Czarnecka et al., 2020; Ottaviano et al., 2021).
Mitogen-activated protein kinase (MAPK) signaling pathway is
one of the melanoma’s most common mutational pathways. It
was estimated that 70% of melanomas contained mutations in
the MAPK signaling pathway (Reddy et al., 2017; Cheng et al.,
2018; Davis et al., 2019), and 50% of melanomas contained activated
BRAF (mostly V600E) mutations (Scolyer et al., 2011), another
14%–20% of melanomas had NRAS mutations (Yakovian et al.,
2021), and 2% had CKIT mutations (Kim and Kim, 2024), as shown
in Figure 1.

Surgical resection remains the preferred treatment for
melanoma diagnosed at an early stage, before metastasis has
occurred. However, once metastasis occurs, alternative
therapeutic strategies are required. Chemotherapy has
traditionally been used to alleviate symptoms, control tumor
progression, or, in rare cases, achieve remission. It relies on
cytotoxic agents to inhibit the abnormal proliferation of cancer
cells or slow their overall growth rate (Long et al., 2023). Metastatic
melanoma chemotherapy drugs include dacarbazine, paclitaxel,
platinum compounds, and temozolomide (Megahed and Koon,
2014). Therapies can counteract the molecular defects present in

FIGURE 1
The occurrence and development of melanoma are closely related to multiple signaling pathway mechanisms.

Abbreviations: PI3K, phosphoinositol-3-kinase; PDL-1, programmed death
ligand 1; CDKN, cyclin dependent kinase inhibitors; ERK, extracellular signal-
regulated kinase; Akt, protein kinase B; mTOR, mammalian target protein of
rapamycin; TAP7f, triazolylpeptidyl penicillin derivative; JNK, c-Jun
N-terminal kinase; δ-TT, vitamin E delta-tocotrienol; MAPK, mitogen-
activated protein kinase; TanIIA, tanshinone IIa; ER, endoplasmic reticulum;
UA, ursolic acid; CoQ0, coenzyme Q0; UPR, unfolded protein response; Cud
C, cudraflavone C; PLB, plumbagin; BV, bee venom; PPI, polyphyllin I.
programmed cell death ligand; PD-L1; programmed cell death, PD-1.
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melanoma, among which the most effective are BRAF inhibitors,
which are used to treat metastatic and unresectable BRAF-mutated
melanoma (Pelosi et al., 2024). It is highly effective in about half of
patients with BRAF-mutated melanoma. Immersive checkpoint
inhibitors are the most effective drugs for metastatic melanoma
(Byrne and Fisher, 2017). Currently, the anti-CTLA-4 antibody
(ipilimumab) and two anti-programmed cell death (PD-1)
(nivolumab and pembrolizumab) have been used in clinical
(Rotte et al., 2015). Although the immune checkpoint inhibitors
are therapeutically effective, inevitable complications inhibit the
mechanisms promoting self-cellular tolerance (Sharma and
Allison, 2015). With the emergence of targeted therapy and
immunotherapy over the past decade, significant progress has
been made in the treatment of melanoma. However, ongoing
challenges—such as limited therapeutic efficacy and disease
recurrence—continue to drive the development of novel
approaches and combination strategies.

Natural products and their derivatives are characterized by
diverse structures, biological activities, low toxicity, and
comprehensive sources. Their role in developing new anti-cancer
drugs and lead drug compounds is becoming increasingly important
(Agarwal et al., 2020; Kang et al., 2025; Wang et al., 2025). In

addition, over the past 2 decades, many dietary and natural
compounds with physiological activity—including phenols,
flavonoids, alkaloids, carotenoids, gingerols, and organosulfur
compounds—have been shown to inhibit both early and late
stages of cancer. As a result, increasing attention has been
directed toward the use of novel natural compounds in
melanoma treatment, which has become an active area of
research globally. For example, ginsenoside Rg3 and topotecan (a
derivative of camptothecin) have already been approved for clinical
use. In contrast, compounds such as luteic acid and silybin are still
undergoing clinical evaluation. Their anticancer effects involve
autophagy, apoptosis, and the regulation of multiple signaling
pathways (Wen et al., 2021). This review focuses on natural
products in the treatment of malignant melanoma and highlights
their underlying molecular mechanisms. The identification of novel
antitumor agents from natural products represents a promising
strategy to improve long-term survival in melanoma patients and
serves as a valuable source for anticancer drug discovery. Natural
antitumor agents act through diverse mechanisms to inhibit cancer
progression, including suppression of malignant cell proliferation,
invasiveness, and neoangiogenesis, while typically exhibiting lower
toxicity than conventional chemotherapeutic agents.

FIGURE 2
Natural products can induce apoptosis of melanoma cells through various mechanisms.
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2 Natural products targeting
melanoma-related signal pathways

By screening and summarizing the natural products that can
induce melanoma cell apoptosis, we found that many in vitro and in
vivo studies confirmed that natural products could induce
melanoma cell apoptosis through various mechanisms. We
classify these mechanisms as follows: 1) Wnt/β-Catenin signal
pathway, 2) mediated endoplasmic reticulum (ER) stress signal
pathway, 3) MAPK signal pathway, 4) phosphoinositol-3-kinase/
protein kinase B/mammalian target protein of rapamycin (pl3k/akt/
mTOR) signal pathway, and 5) others. As shown in Figure 2.

3 Wnt/β-catenin signal pathway

Previous studies have shown that Wnt/β-catenin signaling plays
a critical role in embryonic development, cell differentiation and
proliferation, and the ability of stem cells to self-renew (Riccardo
et al., 2014; Li and Hou, 2018). It has now been demonstrated that
the Wnt/β-catenin pathway regulates neural crest melanocyte
formation and development and plays a vital role in the
pathogenesis of melanoma (Umar et al., 2022; Natarelli et al.,
2023). Several specific inhibitors have been developed and have
been used in early clinical trials. However, there are insufficient
nanotherapeutic activities for further registration trials (Voronkov
and Krauss, 2013). Therefore, the Wnt/β-catenin pathway should be
a priority molecular target for new drug development to expand the
efficacy of clinical immunotherapy, as shown in Figure 3.

3.1 Emodin

Emodin is also known as 1,3,8-trihydroxy-6-methylanthraquinone,
its chemical structural formula as shown in Figure 4, and contains
the remaining 18 natural products. It is the active ingredient in
the root and rhizome of Rhubarb. Studies have shown that

emodin has a wide range of pharmacological effects, including
antibacterial, immunomodulation, anti-inflammatory, anti-
tumor and enhanced cancer chemotherapy (Semwal et al.,
2021; Zhang et al., 2022; Wang et al., 2023). It has been
suggested that rhodopsin may impede the migration and
invasion of melanoma B16F10 and A375 cells by inhibiting
the Wnt/β-Catenin signaling pathway (Liu et al., 2021).
Furthermore, rhodopsin also inhibits the growth of cancer
cells by downregulating CD155 in melanoma B16F10 cells
(Fang et al., 2019). Therefore, rhodopsin may be a potential
drug for treating highly metastatic melanoma.

3.2 Aloe-emodin

Aloe-emodin is an anthraquinone extract from the vine with the
chemical formula C15H10O5 (Bhat and Kudva, 2011). Aloe-emodin
has numerous pharmacological effects, including anti-inflammatory,
immunomodulatory, and wound healing (Dong et al., 2020; Luo et al.,
2024). New evidence showed that aloe-emodin exhibited anti-cancer
ability in various cancers by inhibiting cell proliferation, migration, and
invasion (Sanders et al., 2017). It was experimentally demonstrated that
the proliferation, migration, and invasion ability of A375 and SK-MEL-
28 melanoma cells treated with aloe-emodin were significantly
inhibited, and the growth of A375 and SK-MEL-28 melanoma cells
was affected by the inactivation of theWnt/β-catenin signaling pathway.
Furthermore, aloe-emodin also significantly inhibited the growth of
A375 and SK-MEL-28 cells in the mouse model of transplantation
tumors (Du et al., 2021). Therefore, aloe-emodin could be a potential
treatment for melanoma.

3.3 TAP7f

TAP7f have anti-proliferative activity against different tumor
cell lines (Bellizzi et al., 2022). Its anti-proliferation activity against
tumor cells is 30 times higher than that against normal cells.

FIGURE 3
Compounds affect changes in melanoma markers through related mechanisms.
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Research has demonstrated that TAP7f exerts antitumor effects by
inducing cell cycle arrest and activating death receptors and
mitochondria-dependent apoptotic pathways in melanoma B16-
F0 cells. Moreover, the melanoma tumor growth in the mouse
model treated with TAP7f was reduced by 70% (Blank et al.,
2018). New research has recently revealed that TAP7f may
inhibit melanoma cell proliferation, migration, and invasion by
blocking the Wnt/β-catenin pathway, reducing β-catenin nuclear
translocation, and decreasing β-catenin and specific downstream
targets (Barrionuevo et al., 2020).

3.4 Coenzyme Q0 (CoQ0)

CoQ0 also known as 2,3 dimethoxy-5-methyl-1,4 benzoquinone, is
a common ubiquinone compound with redox activity widely found in
biological mitochondria. CoQ0 has been demonstrated to have
proliferative inhibitory effects on various cancer cell lines (Chung
et al., 2014; Wang et al., 2017). In vitro experiments have shown
that CoQ0 inhibits the proliferation of melanoma B16 cells by
suppressing β-catenin-induced transcriptional activation and by
nuclear translocation of the β-catenin proteasome. In
B16F10 xenograft mice, the expression of β-catenin, Cyclin D1,
Survivin, and MMP-9 was significantly reduced in the CoQ0-treated
animal model (Hseu et al., 2016). These data demonstrate that
CoQ0 inhibits cell growth and apoptosis and prevents metastasis by
suppressing melanoma cells’ Wnt/β-linked protein signaling pathway.

4 ER pathway

ER is a eukaryotic cell organelle responsible for protein synthesis
and calcium (Ca2+) signaling (Zheng et al., 2023). Previous studies have
shown ER stress is strongly associated with cancer (Oakes, 2017). ER
Stress initiates the unfolded protein response (UPR) to re-establish ER
homeostasis as an adaptive pathway in cancer (Urra et al., 2013). Several
studies have reported the involvement of ER stress in regulating the

apoptotic mechanisms leading to melanoma cell death (Selimovic et al.,
2013; Wroblewski et al., 2013). Accumulating evidence has shown that
ER stress-induced autophagy may be a potential pro-survival
mechanism contributing to melanoma development and resistance
to BRAF inhibitors (Meng et al., 2015). Recently, there has been
research on a novel natural compound called kuwanon H that can
induce cytotoxic ER stress, inhibit cell viability, and induce apoptosis in
melanoma cells. And it can induce ER stress-induced autophagosome
formation through the ATF4-DDIT3-TRIB3-AKT-MTOR axis (Hu
et al., 2023). Thus, modulation of ER stressmay improve existing cancer
therapies and identify new targets for therapeutic intervention
in melanoma.

4.1 Resveratrol

Resveratrol is a dietary product found in grapes, vegetables, and
berries. Resveratrol has been reported to affect each stage of
carcinogenesis. Many studies demonstrate that resveratrol can be an
ideal anti-cancer molecule because it has a cytotoxic effect on cancer
cells (Jang et al., 2022). Studies have shown that resveratrol may induce
ROS production and ER stress, thereby hindering the antioxidant effect
of resveratrol and enhancing apoptosis of melanoma A375SM cells
(Heo et al., 2018), revealing the potential use of resveratrol in the
treatment of melanoma. A study has found that resveratrol
downregulates the protein level of anti apoptotic protein Bcl-2 and
activates Bax by promoting the degradation of Bcl-2 and the release of
cytochrome c. In addition, they found that PKM2 plays a crucial role in
triggering cell apoptosis. Summarizing that resveratrol in melanoma
cells and downregulating the Erk/PKM2/BCl-2 axis seems to be a new
method for preventing or treating melanoma (Zhao et al., 2018).

4.2 δ-TT

δ-TT is found in a wide variety of natural products. Due to its
powerful neuroprotective, anti-inflammatory, antioxidant, and

FIGURE 4
Chemical structures of various compounds labeled (A–S). Some examples include Emodin (A), Aloe-emodin (B), TAP7f (C), Coenzyme Q0 (D),
Resveratrol (E), δ-TT (F), Cudraflavone C (G), Shikonin (H), Plumbagin (I), Melittin (J), Fisetin (K), Polyphyllin I (L), Scutellarin (M), Sinomenine (N),
Tanshinone IIa (O), Ursolic acid (P), Capsaicin (Q), bufalin (R) and Silymarin (S).
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cholesterol-lowering potential (Ahsan et al., 2014; Peh et al., 2016). It
works in various chronic diseases, and δ-TT shows antitumor
activity as well (Wang et al., 2022). It has been demonstrated
that δ-TT triggers cell death and activates ER stress-related
pathways such as PERK/p-eIF2α/ATF4/CHOP and IRE1α to
induce apoptosis in melanoma cells and that δ-TT significantly
inhibits tumor growth rate in A375 melanoma animal model
(Montagnani et al., 2016). These studies suggest that δ-TT may
also be a potential drug for the treatment of melanoma.

4.3 Cudraflavone C (Cud C)

Cudraflavone C is a natural flavonoid compound with anti
proliferative activity, which was initially found to inhibit melanin
production (Zheng et al., 2012; Chan et al., 2021). Tumor specific
apoptosis of rectal cancer cells can be induced by targeting the PI3K/
AKT pathway (Soo et al., 2018). Research proves that cudraflavone C
induces apoptosis in A375.S2 melanoma cells by increasing the
production of mitochondrial ROS, activating p38, ERK and JNK,
and increasing the expression of apoptotic proteins (Lee et al., 2017).
Thus, cudraflavone C may be considered a potential therapeutic
agent for treating malignant melanoma.

4.4 11-dehydrosinulariolide

11-Dehydrosinulariolide is a cembranolide analog, with a variety
of biological activities (Chen et al., 2016). It has also been shown that
11-dehydrosinulariolide induces apoptosis in human melanoma
cells by up-regulating PERK/eIF2α/ATF4/CHOP and ATF6/
CHOP coupled with elevated ER stress chaperones GRP78,
GRP94, calcium-linked protein, calreticulin, and PDI, which
impede cystein-dependent mitochondrial function and ER stress
pathway in human melanoma cells A2058 (Su et al., 2012). The
present findings suggest that 11-dehydrosinulariolide is an effective
compound against powerful melanoma cells in vitro, facilitating the
drug development of anti-melanoma drugs.

5 MAPK

The MAPK cascade regulates cell proliferation, growth, and
migration, an ordinarily active pathway but overactivated in almost
all melanomas (Long et al., 2014). Mutations in NRAS or BRAF
genes were observed in 80% of melanoma or melanocytic nevus
cases, confirming the critical role of the MAPK pathway (Huang
et al., 2023). New drugs targeting theMAPK pathway have produced
excellent clinical responses in melanoma treatment, from the
discovery of BRAF mutations in melanoma in 2002 to the FDA’s
approval of the first BRAF inhibitor, vemurafenib, for melanoma
treatment in 2011, therapies targeting the MAPK pathway have
proven effective in less than a decade (Cheng et al., 2013). However,
sequential treatment with BRAF/MEK inhibition and
immunotherapy may increase the toxicity of sepsis-like syndrome
and is associated with severe side effects (Moreira et al., 2021).
Consequently, there is a need to develop new drugs that target the
MAPK pathway for the treatment of melanoma.

5.1 Shikonin

Shikonin is a natural product isolated from comfrey, a member
of the comfrey family, and has long been used in China to treat
inflammation, burns, ulcers, infections, and cancer (Sun et al., 2022).
Experiments have shown that increased phospho-ERK1/2,
phospho-JNK, and phospho-p38 were observed in phycocyanin-
treated cells, and total-ERK1/2, total-JNK, and total-p38 tended to
decrease in phycocyanin-treated cells. Identifying apoptosis in
A375SM melanoma cells induced by comfrey treatment through
MAPK pathway. In a mouse animal model, the tumor volume was
reduced by Shikonin administration. P38, an essential protein in the
MAPK pathway, was significantly increased (Liu et al., 2019). The
above results demonstrate that the apoptosis induction of paclitaxel
in A375SM melanoma cells seems to be mediated by the expression
of ERK and JNK proteins in the MAPK pathway, especially the
expression of p38 (Lee et al., 2021).

5.2 L. barbarum extracts

L. barbarum is a traditional Asian food and medicine rich in
zeaxanthin. Many studies have shown that L. barbarum extract has
immunomodulatory effects and anti-tumor activity (Ceccarini et al.,
2016; Wawruszak et al., 2016). L. barbarum extract containing
zeaxanthin has been shown to inhibit the proliferation of human
melanoma A375 cells, induce the expression of MAPK factors
ERK1/2, JNK, and p38 in A375 skin cells, upregulate total NF-
kB, thereby inducing apoptosis and reducing tumor cell growth.
Therefore, L. barbarum extract may be used as an adjuvant for
standard antitumor chemotherapy (Cenariu et al., 2021).

5.3 Plumbagin (PLB)

PLB is a naphthoquinone derivative derived mainly from plants
that exhibit anti-cancer potential in different cancers (Yin et al.,
2020; Zhang et al., 2020). Plumbagin was shown to downregulate
MAPK-related genes, including Map3k3, MAPK14, Braf, c-Myc,
and MAPK1, and induce enhanced gene expression of Igfbp5 and
Pten, thus promoting further activation of the MAPK pathway, and
thus acting as an anti-invasive and anti-metastatic agent in
melanoma B16F10 cells (Alem et al., 2020). Meanwhile, PLB can
trigger cell-specific cytotoxic effects and metabolic responses in
melanoma A375 cells (Zhang et al., 2021). Combining Celecoxib
and Plumbagin reduces the proliferation of melanoma cells and
inhibits COX-2 and STAT3-mediated tumor vascular development,
thereby inducing apoptosis in human fibroblast FF2441 cells
(Gowda et al., 2017). Hence, it is necessary to investigate PLB as
an antitumor agent and further develop its potential clinical
applications.

5.4 Melittin

Bee Venom (BV) is a natural toxin produced by honey bees
(Apis mellifera) and has been widely used as a traditional medicine
for many diseases (Sadek et al., 2024). Melittin is the main bioactive

Frontiers in Pharmacology frontiersin.org06

Gao et al. 10.3389/fphar.2025.1641838

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1641838


component of BV. Moreover, in the current study, melittin has been
shown to act against melanoma A375 cells by downregulating PI3K/
AKT/mTOR and MAPK signaling pathways. Moreover, the growth,
migration, and invasion of melanoma B16F10, A375SM, and SK-
MEL-28 cells treated with different melittin concentrations were
inhibited (Lim et al., 2019). Ultrasmall lipid nanoparticles driven by
mixed melittin proteolytic peptides inhibit tumor cell growth in a
mouse melanoma model, with no side effects observed (Huang et al.,
2013). The current findings suggest that melittin could be used as a
potential targeting agent in melanoma treatment.

5.5 Fisetin

Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a dietary flavonoid
found in various fruits and vegetables, including strawberries,
grapes, apples, onions, and cucumbers (Khan et al., 2018). In
many biological activities, including neuroprotective, anti-
arthritic, and anti-allergic activities (Ahmad et al., 2017; Zheng
et al., 2017). Fisetin was shown to inhibit phosphorylation of MEK1/
2 and ERK1/2 in the MAPK signaling pathway activation pathway
and inhibit NFκB in signaling to reduce melanoma A375 cell
invasion and metastasis. Fisetin reduced the invasion of
melanoma cells into the dermis in 3D skin consisting of
A375 cells mixed with average human keratin-forming cells
embedded in a collagen-constricted fibroblast matrix (Pal et al.,
2014). In 3-D melanoma constructs, fisetin inhibits the growth of
human melanoma A375 cells by directly binding to p70S6K and
mTOR (Syed et al., 2014). The above experimental results
demonstrate that fexofenadine can be developed as a potential
anti-melanoma drug.

6 PI3K/AKT/mTOR

PI3K/Akt/mTOR pathway regulates cell proliferation, growth,
size, metabolism, and motility (Alzahrani, 2019). Since multiple
genes of the PI3K/Akt/mTOR signaling pathway are frequently
altered in human cancers, dysregulation through mutation or
amplification of genes involved in the PI3K pathway, loss of the
tumor suppressor PTEN or over-activation of RTK leads to tumor
progression and metastasis. The genes comprising this pathway are
an essential molecular therapeutic target for human cancers
(Murugan et al., 2013; Arafeh and Samuels, 2019).

6.1 Polyphyllin I (PPI)

PPI is a bioactive component derived from Paris polyphylla with
a wide range of biological and pharmacological activities (Yang et al.,
2024; Zhang et al., 2024). It was demonstrated that the expression of
p-PI3K, p-Akt, and p-mTOR was significantly reduced in A375 cells
after PPI treatment, and inhibited melanoma cell proliferation and
enhancedmelanoma cell apoptosis by suppressing PI3K/Akt/mTOR
signaling pathway, which blocked melanoma cells at G0/G1 stage,
thus reducing melanoma progression. In addition, the weight and
size of melanoma mice treated with PPI was significantly reduced,
and apoptosis of melanoma cells was significantly enhanced (Long

and Pi, 2020). Therefore, PPI may be a promising, targeted drug for
melanoma treatment.

6.2 Scutellarin

Scutellarin (4′,5,6-hydroxyl-flavone-7-glucuronide) is a
flavonoid derived from Calendula officinalis with a variety of
functions including antioxidant, anti-inflammatory,
cardioprotective, and vasodilator (Wang and Ma, 2018).
Scutellarin promotes A375 cell apoptosis by upregulating bax and
cleaved caspase-3 levels, downregulating bcl-2 levels, Inhibit the
growth of A375 cells in G0/G1 phase, Enhance cellular autophagy by
regulating the levels of Beclin 1, LC3II, and p62. And block the
melanoma cell cycle by inhibiting the PI3K/Akt/mTOR signaling
pathwa (Li et al., 2019). It has also been demonstrated that lanosterol
inhibits the proliferation of human melanoma cells
RPMI7951 melanoma cells by targeting TOPK. In addition, in
vivo experiments demonstrated that SCU inhibited the growth of
RPMI7951 cell xenografts and reduced the phosphorylation levels of
ERK 1/2 and histone H3 in vivo (Mu et al., 2021). It suggests that
scutellarin may be a potential compound for treating
malignant melanoma.

6.3 Bornyl cis -4-hydroxycinnamate

Bornyl cis-4-hydroxycinnamate, an active compound isolated
from Piper betle stem, could inhibit cell viability, migration, and
invasion of A2058 and A375 melanoma cells in a dose-dependent
manner. The expression of FAK/PI3K/Akt/mTOR signaling-related
proteins, including Akt, p-Akt, PI3K, p-PI3K, mTOR, p-mTOR, and
FAK, was reduced in cis-4-hydroxycinnamate treated melanoma
cells, which inhibited the metastasis of human melanoma cells
through the FAK/PI3K/Akt/mTOR signaling pathway (Yang
et al., 2018a). Additionally, cis-4- hydroxycinnamate has been
shown to mediate apoptosis in melanoma cells by activating the
cystathionine cascade, inducing mitochondrial dysfunction, and
causing endoplasmic reticulum stress-related stress mechanisms
(Yang et al., 2018b). The above results demonstrate that bornyl
cis-4-hydroxycinnamate can potentially be a chemotherapeutic
agent for human melanoma development.

6.4 Sinomenine

Sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-
methylmorphinane-6-one; SIN) is the active compound of the
Chinese herb Cyanidin. SIN has an antitumor effect (Gao et al.,
2019), including lung cancer and breast cancer (Song et al., 2015;
Jiang et al., 2016). Recent studies have shown that SIN inhibits
proliferation and promotes apoptosis in melanoma B16F10 cells via
PI3K/Akt/mTOR-dependent autophagic pathway. In a melanoma
xenograft mouse model, tumor volume and weight were
significantly reduced after SIN treatment, and the expression
levels of Ki67 and PCNA were significantly reduced (Sun et al.,
2018). It suggests that SIN can reduce the tumor growth of
melanoma in vivo. However, SIN also has some disadvantages,
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for example, poor gastrointestinal response, short biological half-life,
and unstable physicochemical properties (Zhang et al., 2018).
Therefore, the role of SIN in the treatment of melanoma deserves
further investigation.

6.5 Tanshinone IIa (TanIIA)

TanIIA, a compound isolated from Salvia miltiorrhiza, has
various biological activities, including apoptosis and autophagy,
anti-inflammation, oxidation, anti-thrombosis, and anti-
proliferation of vascular smooth muscle cells (Luo et al., 2015;
Naz et al., 2020). It was shown that the phosphorylation levels of
PI3K, P-AKT, P-mTOR, and P-p7036k1 were reduced in melanoma
A375, MV3, and M14 cells treated with TanIIA, which inhibited the
proliferation and invasion, and migration ability of melanoma cells,
and promoted the autophagosome production of A375, In addition,
TanIIA inhibits the development of A375melanoma-induced tumor
weight and volume in mice (Li et al., 2017). Research has found that
TanIIA photosensitization has significant toxicity to choroidal
melanoma cells and can effectively induce cell apoptosis and
necrosis. Increase intracellular ROS levels, decrease mitochondrial
membrane potential, and cause cell arrest in G2/M phase (Juan et al.,
2021). In a recent report, the first study to link Tan IIA induced
ferroptosis with the STAT1/PTGS2 axis in melanoma was found.
Tan IIA regulates the key marker of ferroptosis, PTGS2, and
knocking down PTGS2 weakens Tan IIA induced ferroptosis in
melanoma cells. In addition, they found that Tan IIA stimulated the
downregulation of signal transduction and transcription factor
STAT1, leading to the downregulation of PTGS2 and inhibiting
ferroptosis in melanoma (Chen et al., 2025).

7 Other mitochondrial mechanisms of
resistance to melanoma

7.1 Ursolic acid (UA)

UA3-(β-hydroxy-urs-12-en-28-oic acid) is a pentacyclic
triterpenoid compound commonly found in fruits, foods, and
medicinal plants (Castro et al., 2015; Huang et al., 2015; Yin
et al., 2018). Recent experiments have shown that ursolic acid
activates the proteolytic processing of caspase-3 in isolated
human melanoma cells and induces apoptotic cell death
(Mahmoudi et al., 2015; Alvarado et al., 2018). Nanoemulsion of
ursolic acid isolated from egg flowers enhances melanoma cells’
antioxidant and cytotoxic activity. When UA and chloroquine were
synergistically applied to B16F10 mouse melanoma and
A375 human melanoma cells, cell viability was strongly reduced
(Junco et al., 2015). The above results suggest that ursolic acid could
be a new potential tool for further research as an anti-cancer agent.

7.2 Capsaicin

Capsaicin is a component of chili peppers, the active ingredient
in chili peppers. Capsicum is widely used as a pungent spice in food.
Previous studies have demonstrated that capsaicin has anti-

inflammatory, analgesic, anesthetic, and detoxifying effects
(Bernstein et al., 2011; Patel et al., 2014; Fattori et al., 2016).
Capsaicin was shown to affect cancer cell viability negatively and
induce apoptosis in human melanoma A375 and C8161 cells by
activating cleaved caspase-3 and PARP (Chu et al., 2019). There is
also evidence that capsaicin inhibits the growth of SK-MEL-
28 melanoma cells and increases apoptosis by inhibiting plasma
membrane NADH oxidase activity (Morré et al., 1996). Capsaicin
also inhibits the migration of B16-F10 melanoma cells by
suppressing the PI3K/AKT/Rac-1 pathway (Shin et al., 2008).
Therefore, capsaicin administration can be an effective method
for the treatment of malignant melanoma.

7.3 Toad venom

Toad venom is a traditional natural medicine that has been used
for centuries in China, and a growing body of research suggests that
toad venom is a source of lead compounds for the development of
potential cancer therapeutics (Li et al., 2021). Na+/K+ATPase is
overexpressed in a variety of cancer types, including metastatic
melanoma. Recent studies have shown that toad venom’s active
ingredient, toadienolactone, acts on the Na+/K+-ATPase pump to
exert anti-proliferative effects on melanoma cells (Soumoy et al.,
2020). Bufalin, another active ingredient, can act through extrinsic
andmitochondrial-mediated signaling pathways to trigger apoptosis
(Hsiao et al., 2012). Bufalin can also potentially stimulate tyrosinase
activity to promote melanin synthesis (Zhang et al., 1992). It may
lead to the production of toxic melanin precursors, which inhibit
melanoma growth.

7.4 Silymarin

Silymarin is the main bioactive component of silybum
marianum and has long been used for the prevention of allergies
and liver damag (Gillessen and Schmidt, 2020). Several studies have
demonstrated the chemopreventive or chemotherapeutic effects of
silymarin on various cancers (Dagne et al., 2011; Ramasamy et al.,
2011). It has been shown that silymarin induces cell cycle arrest and
inhibits the growth of human melanoma SK-MEL-5 and SK-MEL-
28 cells in the G1 phase by blocking MEK1/2-RSK2 signaling,
leading to a decrease in the activation of various transcriptional
regulators of proliferation genes in melanoma, such as nuclear
factor-kappaB, activator protein-1, and signal transduction and
transcriptional activator 3. Silymarin also attenuates the growth
of melanoma xenografts in nude mice (Lee et al., 2013).
Furthermore, the combination of cold atmospheric plasma and
silymarin nanoemulsion inhibited the HGF/c-MET signaling
pathway to promote apoptosis in G-361 human melanoma cells
and reduce tumor growth in a tumor xenograft nude mouse model
(Adhikari et al., 2019), as shown in Table 1.

8 Discussion

Currently, the etiology of melanoma is generally believed to
involve: 1) exposure to sunlight, 2) racial and genetic factors, 3)
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TABLE 1 Natural products have been proven to have an antagonistic effect on melanoma through in vitro and in vivo experiments.

Signal pathway Natural products Cell/animal
model

Mode of action Concentration Ref.

Wnt/β-catenin signal
pathway

Emodin B16F10 MMP-2↓
MMP-9↓

20 μm
40 μm
60 μm

(Liu et al., 2021)

A375

Aloe-emodin SK-MEL-28
A375

caspase −3↑
bax ↑

cyclinD1↓
c-myc↓
bcl-2↓
wnt3a↓

β-catenin↓
p-GSK3β↓

5 μg/mL
10 μg/mL
15 μg/mL

(Du et al., 2021)

nude mouse model the weight of the tumors↓ 20 μg/mL

TAP7f B16F10 cyclin-D1↓
c-Myc↓
αvβ3↓

5 μm
10 μm
15 μm
20 μm

(Blank et al., 2018; Barrionuevo
et al., 2020)

A375 cyclin-D1↓
c-Myc↓

e-cadherin↑

5 μm
10 μm
15 μm
20 μm

Coenzyme Q0 B16F10 GSK3β↓ c-Myc↓
cyclin D↓
survivin↓
MMP-2/9↓
TIMP-1/2↑

5 μm
10 μm
15 μm
20 μm

(Hseu et al., 2016)

Mediated ER stress signal
pathway

Resveratrol A375SM ROS↑
p-eIF2α↑
CHOP↑

1 μm
10 μm

(Heo et al., 2018)

MV3 Bcl-2↓
ERK1/2 ↓
PKM2↓

50 μm
100 μm
200 μm

(Zhao et al., 2018)

δ-TT A375 PERK↑
IRE1α↑
ERO1α↑

5 μm
10 μm
15 μm
20 μm

(Montagnani et al., 2016)

Cudraflavone C A375 ROS↑
caspase-3/7/9↑

puma↑
bax↑
bad↑
bid↑

apaf-1↑

9.2 μm (Lee et al., 2017)

11-dehydrosinulariolide A2058 PERK↑
eIF2α↑
ATF4↑
CHOP↑

5 μm
10 μm
15 μm
20 μm

(Su et al., 2012)

MAPK signal pathway Shikonin A375 ERK1/2↑
JNK↑
P38↑
ROS↑

1 μm
2 μm
4 μm
8 μm

(Liu et al., 2019)

nude mice model inhibits the growth and
progression

4 mg/kg (Lee et al., 2021)

L. barbarum Extracts A375 ERK↑
JNK↑ p38↑
NF-kB↑

100 μm
200 μm

(Cenariu et al., 2021)

(Continued on following page)
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malignant transformation of benign pigmented nevi, 4) trauma and
chronic irritants, which are also considered to be associated with
melanoma development. Dacarbazine (1975), high-dose
interleukin-2 (1992), and high-dose interferon α-2b (1995) were
approved by the U.S. Food and Drug Administration (FDA) for the
treatment of advanced melanoma. Although these advancements
over 2 decades have offered hope for treating melanoma, the overall
therapeutic outcomes remain unsatisfactory (Atkins et al., 1997;

Kirkwood et al., 2004; Yang and Chapman, 2009). Since the early
2000s, the emergence of targeted therapies has highlighted the
critical role of oncogene mutations—particularly in BRAF and
NRAS—in activating cellular survival and proliferation pathways,
including the MAPK and PI3K/AKT signaling cascades. The
inhibition of mutated BRAF proteins by selective kinase
inhibitors represents the most significant breakthrough in
targeted melanoma therapy to date (Lim et al., 2017). Among the

TABLE 1 (Continued) Natural products have been proven to have an antagonistic effect on melanoma through in vitro and in vivo experiments.

Signal pathway Natural products Cell/animal
model

Mode of action Concentration Ref.

Plumbagin B16F10 map3k3↓
mapk14↓
braf↓
c-Myc↓
mapk1↓

Igfbp5↑ pten↑

1 μ/m
2 μ/m

Alem et al. (2020)

A375 1 μm
3 μm

(Zhang et al., 2021)

Melittin B16F10 PI3K↓
AKT↓
mTOR↓
MAPKs↓

0.5 μg/mL
1 μg/mL
1.5 μg/mL

(Lim et al., 2019)

Fisetin A375 MEK1/2↓
ERK1/2↓
NF-κB↓

5 μm
10 μm
20 μm

(Pal et al., 2014)

SK-MEL-28 5 μm
10 μm
20 μm

PI3K/AKT/mTOR signal
pathway

Polyphyllin I A375 p-PI3K↓
p-Akt ↓
p-mTOR↓

1.5 mg/L
3 mg/L
6 mg/L

(Long and Pi, 2020)

BALB/c nude mice Inhibit melanoma growth 1.5 mg/L
3 mg/L
6 mg/L

Scutellarin A375 p-Akt↓
p-mTOR↓
VEGF-A↓
MMP-2↓
MMP-9↓

5 μm
10 μm
20 μm

(Li et al., 2019)

Bornyl cis -4-
hydroxycinnamate

A2058 akt↓
PI3K ↓ mTOR↓

FAK↓

3 μm
6 μm
9 μm
12 μm
15 μm
18 μm

(Yang et al., 2018a; Yang et al.,
2018b)

A375

Sinomenine B16F10 eclin1↑
bcl-2↓
bax↑

caspase-3↑

12.5 μm
25 μm
50 μm
100 μm

(Sun et al., 2018)

BALB/c mice reduce the tumor growth 20 μm

Tanshinone IIa A375 PI3K↓
P-AKT↓
P-mTOR↓
P-p7036k1↓

0.5 μg/mL
1 μg/mL
2 μg/mL
4 μg/m

(Li et al., 2017)

MV3

M14

BALB/e nude
mice

reduce the tumor growth 1 μg/mL
2 μg/mL
4 μg/m

Abbreviations: ROS, reactive oxygen species; CHOP, C/EBP, homologous protein; p-eIF2α, phosphorylated eukaryotic initiation factor 2α; Bcl-2, b-cell lymphoma-2; Wnt3a, recombinant

wingless type MMTV, integration site family, member 3A; GSK-3β,glycogen synthase kinase 3β; PKM2, M2-type pyruvate kinase; PERK, protein kinase PKR-like ER, kinase; IRE1α, inositol-
requiring enzyme 1α; MMP,matrixmetalloproteinase; TIMP, tissue inhibitor of metalloproteinases; NF-kB, nuclear factor kappa-B; mTOR,mammalian target of rapamycin; Igfbp5, insulin-like

growth factor-binding protein 5; ATF4,recombinant activating transcription factor 4; Apaf-1, apoptotic protease activating factor 1.
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most established therapies targeting the BRAFV600E mutation site
are vemurafenib (approved in 2011) and dabrafenib (approved in
2013), which serve as first-line treatments for advanced BRAF-
mutant melanoma (Garbe and Eigentler, 2018; Long et al., 2024).
Extensive studies have demonstrated that the immunosuppressive
molecular marker PD-L1 plays a pivotal role in the mechanism of
tumor immune evasion. Monoclonal antibodies such as nivolumab
and pembrolizumab, which target PD-1, and atezolizumab, which
targets PD-L1, have been shown to effectively block the PD-1/PD-
L1 interaction (Hamanishi et al., 2016). The immune checkpoints
they mediate inhibit the activity of reactivated immune cells, thereby
enabling tumor cells to escape immune surveillance. Moreover,
nivolumab and pembrolizumab have been approved as first-line
therapies for surgically unresectable or metastatic malignant
melanoma. Targeted therapy and immunotherapy have
significantly altered the treatment landscape for both resectable
and unresectable melanoma, representing a major advance in
melanoma management.

Although progress has been made in melanoma treatment,
immunosuppressive agents currently employed in clinical practice
are characterized by limited specificity, and their use is constrained by
toxic side effects and elevated costs. To date, the clinical efficacy of
monotherapy remains insufficiently defined, and the development of
individualized treatment regimens and combination approaches
based on a patient’s immune status remains a priority for future
investigation. Consequently, the exploration of novel natural products
and their extracts as integral components of combination therapy has
been widely investigated in oncology. These compounds are
characterized by low toxicity, wide availability, and modest cost
(Sflakidou et al., 2022). A comprehensive understanding of the
relationship between chemical structure and biological activity,
along with the optimization of structure–activity relationships, can
help clarify the diverse structures of plant-derived compounds and
facilitate the investigation of correlations between nanostructures and
biological activity. This, in turn, may enhance the immunological
potential of compound extracts and support the rational design of
more effective drug candidates. In addition, mouse models represent
the most widely utilized animal models in preclinical research.
Melanoma mouse models are typically categorized into three types:
inducible models (e.g., UV-induced models and chemically induced
models using DMBA or TPA), transplantable models (including
syngeneic and xenograft models), and transgenic models (such as
Lum−/− knockout mice, TyrN-RasQ61K transgenic mice, and
BrafV600E transgenic mice) (Kuzu et al., 2015; Day et al., 2017),
these models have become essential tools for investigating the
pathogenesis, metastasis, and therapeutic evaluation of melanoma.
The models discussed in this review are broadly classified into two
categories: in vivo and in vitro experimental systems. In vitro studies
primarily involve melanoma cell lines such as B16F10, A375, SK-
MEL-28, and A2058, whereas in vivo studies utilize animal models
including BALB/c nude mice. In addition, other animal models such
as C57BL/6, C3H/HeN, and CB17-SCID mice have also been utilized
in various melanoma-related studies (Liu et al., 2018; Saleh, 2018).
This research aims to identify susceptibility and risk factors for
melanoma development, assess the efficacy of immunotherapies
and tumor–immune cell interactions, elucidate the signaling
pathways involved in tumor progression, clarify gene functions,
and define potential therapeutic targets.

Natural product–derived compounds have been applied in
clinical oncology; however, their clinical utility is often limited by
inherent physicochemical and pharmacokinetic properties. For
instance, poor water solubility, limited biocompatibility, low oral
bioavailability, chemical instability, and suboptimal
pharmacokinetics significantly hinder their clinical translation
(Bitterman and Chung, 2015; Khoury et al., 2015; Cai et al.,
2016; Kharat et al., 2017; Wen et al., 2017; Velavan et al., 2018;
Wei et al., 2019). Therefore, there is a growing need for further
studies to clarify the bioavailability and pharmacokinetic behavior of
these bioactive compounds. Natural products in melanoma therapy
are currently in the early stages of investigation, and their anticancer
effects appear to vary in a dose-dependent manner. Although
physiological effects have been observed in animal models, there
are currently few clinical studies assessing the efficacy of these
compounds in humans.

However, these active ingredients exhibit low bioavailability,
poor stability, and limited water solubility, which restrict their
clinical application and highlight the need for new strategies to
enhance their absorption and therapeutic efficacy. In particular, the
application and development of nanotechnology has emerged as a
promising approach. In conclusion, natural product–derived
compounds represent promising anticancer agents that warrant
further investigation to better elucidate the mechanisms
underlying their antitumor activity. Moreover, combining these
compounds with conventional antitumor therapies may enhance
their therapeutic potential through synergistic effects and reduced
toxicity. Such combinations may offer safer and more effective
strategies for clinical intervention. Natural products are expected
to contribute to future breakthroughs in tumor immunotherapy.

Overall, the treatment of melanoma continues to face numerous
challenges, including: 1) significant biological differences between
animal and cell-based models and human physiology, such as
variations in genome organization, gene regulation, cell types,
and organ structures, which limit the ability to fully replicate
human pathological processes; 2) uncertainty regarding how
newly identified compounds can achieve optimal bioactivity in
vivo to exert therapeutic effects; 3) incomplete understanding of
the mechanisms of action of novel compounds; 4) the potential for
immune-related toxicities associated with the widespread use of
bioactive agents; 5) unclear interactions between compound-based
therapies and existing targeted or immunosuppressive treatments;
and 6) limitations related to sample size and study duration in
experimental research. Therefore, in addition to fully understanding
the advantages, disadvantages, and applicability of these compounds
and animal models, it is also necessary to develop individualized
diagnosis and treatment plans for different types of melanoma to
provide valuable information for optimizing melanoma models and
drug evaluation. Furthermore, the application of drug-specific
biomarkers may enable more precise and personalized treatment
approaches. The research and development of new drugs remain a
long-term task that requires joint efforts from researchers.
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