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Aims: Depression is a leading cause of disability worldwide, with current
treatments often limited by efficacy and side effects. Artemisinin (ART), a
natural compound with known anti-inflammatory and neuroprotective
properties, has not been extensively studied for its potential antidepressant
effects. This study aimed to elucidate the neuroprotective mechanisms of
artemisinin against corticosterone (CORT)-induced toxicity in PC12 cells
model, and to assess its antidepressant-like behavioral effects in a chronic
unpredictable mild stress (CUMS) mouse model.

Methods: In vitro, PC12 cells and primary hippocampal neurons were treated with
CORT and artemisinin to assess cell viability, oxidative stress, mitochondrial
function, and apoptosis. Pharmacological inhibition and CRISPR/Cas9 gene
editing were used to explore the roles of AKT and ERK signaling pathways. In
vivo, CUMS-induced depression-like behaviors in mice were evaluated using
sucrose preference, tail suspension, and forced swim tests. Western blotting and
immunohistochemistry studies were performed to analyze molecular
mechanisms.

Results: Artemisinin attenuated CORT-induced cytotoxicity, oxidative stress,
mitochondrial dysfunction, and apoptosis in PC12 cells and hippocampal
neurons. These effects were mediated through the activation of AKT and ERK
pathways. In CUMS mice, artemisinin improved depression-like behaviors,
upregulated the AKT/GSK/NRF2/HO1 and BDNF/TrkB/ERK/CREB pathways,
modulated astrocyte activity, and promoted neurogenesis in the hippocampus.
Conclusion: Artemisinin exerts significant neuroprotective and antidepressant-
like effects through multiple molecular and cellular mechanisms, highlighting its
potential as a novel therapeutic agent for depression.

KEYWORDS

artemisinin, depression, corticosterone, chronic unpredictable mild stress, oxidative
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1 Introduction

Depression is a major mental disorder, often associated with
significant symptom severity such as cognitive deficits, persistent
negative mood, and physiological impairments (Brzezicka, 2013;
Elderkin-Thompson et al., 2007; Levin et al., 2007; Nutt et al., 2008).
These symptoms can severely limit patients” ability to carry out
major life activities. Moreover, according to the World Health
Organization (WHO), major depression can lead to more than
700,000 suicides per year globally. As of 2017, over 300 million
people around the world suffered from depression (WHO, 2017),
and it is predicted that by 2030, major depressive disorder will
become the leading cause of disability worldwide (Mathers and
Loncar, 2006). Previous research has evidenced an increasing trend
in the incidence of depression (Mojtabai et al., 2016; Weinberger
et al, 2018). Currently, antidepressant medication is a primary

treatment modality for depression. Various types of
antidepressants, including monoamine oxidase inhibitors
(MAOIs), tricyclic antidepressants (TCAs), and selective

serotonin reuptake inhibitors (SSRIs), are available for clinical
treatment. While newer agents such as SSRIs demonstrate
improved safety profiles compared to older TCAs, it is crucial to
acknowledge that all pharmacological agents carry inherent risks of
adverse effects, common side effects associated with antidepressants
include gastrointestinal disturbances, sexual dysfunction, and
withdrawal symptoms (Carvalho et al, 2016; Kennedy, 2006;
Rush et al, 2006; 2023).
approximately 30% of major depressive disorder patients fail to

Strawn et al, Furthermore,
respond adequately to existing antidepressant therapies (Al-Harbi,
2012). These limitations, suboptimal efficacy and the unavoidable
potential for adverse reactions, collectively underscore the pressing
need to develop novel, effective, and safer antidepressants.
Artemisinin (ART), extracted from the plant Artemisia annua, has
been used as a remedy by traditional herbal medicine practitioners in
China for over 2000 years (Maude et al., 2010). Since the late 1990s,
artemisinin compounds have served as frontline antimalarial drugs
(Miller and Su, 2011). Due to its ability to pass the blood-brain barrier
(BBB) and its low side effect profile in clinical use, artemisinin presents
favorable advantages for treating other diseases. Beyond its antimalarial
effects, artemisinin exhibits a wide range of pharmacological properties,
including antiviral, anti-inflammatory, antioxidant, and antitumor
activities (Efferth et al., 2008; Firestone and Sundar, 2009; Ho et al.,
2014; Li et al, 2012; Zhou et al, 2025). Importantly, accumulating
evidence indicates that artemisinin could also be a drug candidate for
treating neurodegenerative diseases such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD). For instance, in vivo and in vitro
experiments have shown that artemisinin has protective effects on
Alzheimer’s disease pathology by activating the ERK pathway (Zeng
et al, 2017; Zhao X. et al, 2020) or suppressing inflammasome
activation (Shi et al., 2013). Artemisinin also shows protective effects
in 1-methyl-4-phenylpyridinium (MPP+)-induced cellular models of
Parkinson’s disease (Yan et al, 2021). Additionally, it can protect
various neuronal cells from oxidative stress damage (Deng et al,
2024; Lin et al, 2018; Zhao et al, 2019a; Zheng et al, 2016).
Critically, recent studies specifically support its antidepressant
potential: Artesunate (an artemisinin derivative) prevented H,0O,-
induced oxidative damage in PCl2 cells and attenuated LPS-
behaviors in mice via

triggered  depression-like suppressing
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neuroinflammation and oxidative stress (Huang et al, 2023).
Specifically, a novel dihydroartemisinin (an artemisinin derivative)-
GABA conjugate (5b) demonstrated potent protective effects against
corticosterone-induced impairments in PC12 cells (a model relevant to
depression) (He et al., 2021). Given these facts, artemisinin and its
derivatives are potential candidates for antidepressant drugs. However,
there is little report on the protective effects of artemisinin itself on
animal and cell models of depression.

Despite the high prevalence of depression, its underlying
mechanisms remain unclear. There is no single cause of the
pathogenesis of depression; environmental stress, brain biochemical
alterations, and genetic vulnerability all contribute (Ruiz et al., 2018).
Studies have suggested that excessive stress plays an important role in
the development of major depressive episodes (Pariante, 2003; Wang,
2005). Stressful events activate the hypothalamic-pituitary-adrenal
(HPA) axis, leading to hyperactivity and the generation of excessive
concentrations of circulating glucocorticoids. Increasing evidence
indicates that the hippocampus is sensitive to glucocorticoids,
exhibiting both structural and functional changes (Holmes and
Wellman, 2009; Lupien et al., 1998; Sapolsky, 2000). Clinical studies
also show that the hippocampal volume of patients with depression is
smaller than that of healthy individuals (Den Heijer et al,, 2011; Nollet
et al,, 2013; Willner, 1997).

Although glucocorticoids help the body deal with stress, the
abundance of glucocorticoid receptors in hippocampal tissue means
that high levels of corticosterone (a type of glucocorticoid) can cause
damage to nerve cells and hippocampal dysfunction, eventually
inducing depression-like behaviors in mice. PC12 cells, derived
from a pheochromocytoma of the rat adrenal medulla, possess
typical features of brain neurons and contain abundant
glucocorticoid receptors. Thus, corticosterone (CORT)-induced
damage to PC12 cells has been widely used as a tool for in vitro
anti-depression pharmacological research (Wang et al., 2013; Zeng
et al.,, 2016).

Given that socio-environmental chronic stressors are involved
in the development of depression, the chronic unpredictable mild
stress (CUMS) model is extensively used in vivo to elucidate the
biological mechanisms of depression and screen antidepressant
drugs. This model can elicit depression-like symptoms such as
anhedonia, as evidenced by decreased sucrose preference, and
abnormalities can be

these reversed by

administration. Accordingly, the PC12 cellular model combined

antidepressant

with the CUMS animal model was applied to assess the potential
antidepressant effects of artemisinin in this study.

The aim of the present study was to examine antidepressant-like
activity of artemisinin, by means of corticosterone-induced
PC12 cell model and CUMS mice model, as well as its
underlying mechanism. These findings could suggest that
artemisinin holds promise as a potential drug for the prevention
and treatment of depression.

2 Materials and methods

2.1 Materials

Analytical-grade artemisinin, CORT, and Fluoxetine were
obtained from Meilunbio (Dalian, China). Dulbecco’s modified
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Eagle’s medium (DMEM), fetal bovine serum (FBS), and 0.25%
trypsin were from GIBCO (USA). DMSO and penicillin/
streptomycin were sourced from Sigma-Aldrich (USA). Poly-
D-lysine, MTT, Lipofectamine 3000, and BCA Protein Assay Kit
were from Thermo Fisher Scientific (USA). Annexin V: FITC
Apoptosis Detection Kit was from BD Biosciences (USA). SDS-
PAGE gels (4%-20%) were purchased from Genscript Biology
(China). Primary antibodies for GAPDH, phospho-AKT]I,
phospho-ERK1/2, phospho-CREB, phospho-TrkB, phospho-
GSK3p, NeuN, and HRP-conjugated secondary antibodies
were from CST (USA). BDNF antibody was from Abcam
(UK), while GFAP, NRF2, and HO1 antibodies were from
Signalway Antibody (USA). MEK inhibitor PD98059 and
PI3K inhibitor LY294002 were from Calbiochem (USA).
Lactate dehydrogenase (LDH) cytotoxicity, mitochondrial
membrane potential (MMP, Aym; JC-1) and reactive oxygen
(ROS)
Biotechnology (China).

species detection kits were from Beyotime

2.2 Cell culture and treatment

PCI12 cells were provided by Dr. Gordon Guroff (NIH, USA)
and cultured in DMEM with 10% FBS and penicillin/streptomycin
at 37 °C in 5% CO2. Cells were sub-cultured 2-3 times per week at a
1:5 split. Primary neurons were obtained from one-day-old C57BL/
6 mice as per Zhao and colleagues (Zhao et al., 2019b). Artemisinin
and CORT were dissolved in DMSO (<0.1% final concentration).
Experimental groups included: (1) Control: serum-free medium, (2)
CORT group: 200 uM CORT, and (3) CORT + Artemisinin: 200 uM
CORT with 3.125-100 puM artemisinin for 48 h.

2.3 MTT assay

Cell viability was assessed using the MTT assay. Cells (6-8 x 10°/
well) were treated with artemisinin and CORT for 48 h, followed by
incubation with 0.5 mg/mL MTT for 3-4 h. Formazan crystals were
dissolved in 150 uL. DMSO, and absorbance was measured at 490 nm
using an Infinite M200 PRO microplate reader (Tecan, Switzerland).
Cell viability was expressed as a percentage of control.

2.4 LDH cytotoxicity assay

LDH release was measured using a commercial kit
(Beyotime). Cells (6-8 x 10°/well) were treated as described,
and fluorescence intensity was measured at 560/590 nm using an
Infinite M200 PRO microplate reader. LDH release was
normalized to the control group.

2.5 ROS detection

ROS levels were detected using DCFH-DA (Beyotime). Cells
were incubated with 10 pM DCFH-DA in DMEM at 37 °C for
30 min, washed, and fluorescence was observed using an EVOS FL
Imaging System. ROS levels were semi-quantified using Image].
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2.6 Mitochondrial membrane potential
(MMP) assay

MMP (Aym) was assessed using the JC-1 kit (Beyotime). Cells
(1 x 10* cells/cm?) were treated for 48 h, stained with JC-1 (10 pg/
mL) at 37 °C for 20 min, washed, and fluorescence was analyzed
using a fluorescence microscope. The red/green fluorescence ratio
was normalized to the control group.

2.7 Apoptosis assay

Apoptosis was measured using an Annexin V-FITC/PI
apoptosis detection kit (BD Biosciences, San Diego, CA, USA)
according to the manufacturer’s instructions. Cells were treated
for 48 h, then 1 x 10° cells were collected and stained with Annexin
V-FITC and PI. Based on the assay principle, intact cells were
double-negative for Annexin V and PI; early apoptotic cells were
identified as Annexin V-positive/PI-negative, while late apoptotic or
necrotic cells were positive for both Annexin V and PI. To quantify
the apoptotic cells, CellQuest™ Pro Software (BD Biosciences, San
Diego, CA) was utilized, and the apoptosis rate was determined as
the percentage of cells positive for Annexin V.

2.8 CRISPR/Cas9 gene editing

The gene editing was carried out as previously described (Ran et
al., 2013). Rat AKT1 was targeted using sgRNA sequences rAKT1-
gRNA-F1: CACCGAGGTGCCATCATTCTTGAGG and rAKT1-
gRNA-R1: AAACCCTCAAGAATGATGGCACCTC. The sgRNA
was cloned into PX459 V2.0 and transfected into PCI2 cells using
lipofectamine 3000. Cells were screened with puromycin, and AKT1
expression was verified by Western blot.

2.9 Western blot analysis

Protein lysates were prepared from the mouse hippocampus or
PC12 cells using RIPA buffer with protease and phosphatase
inhibitors. Protein concentrations were determined using the
BCA assay. Samples (20 pg) were separated via 4%-20% SDS-
PAGE, transferred to PVDF membranes, blocked with 5% BSA,
and incubated overnight with primary antibodies (1:500-2000) at
4 °C. Membranes were incubated with HRP-conjugated secondary
antibodies (1:4000) for 2 h, and bands were detected using ECL.
Protein expression was normalized to GAPDH. The intensity of the
bands was semi-quantified by using ImageJ software.

2.10 Animal studies and drug administration

Male C57BL/6 mice (n = 48, 6-8 weeks, 18-21 g) were housed
under standard conditions (25 °C, 12 h light/dark cycle) with food
and water ad libitum. All procedures followed the University of
Macau Animal Ethics Committee guidelines. Mice were divided into
six groups: Control, CUMS, artemisinin (0.3, 1 and 3 mg/kg), and
fluoxetine (10 mg/kg) which is a selective serotonin reuptake
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inhibitor (SSRI) and well-established antidepressant used as a
positive control in this study (Dulawa et al., 2004; Levy et al,
2019). Drugs were administered via intraperitoneal injection
30 min after stress daily for 4 weeks. Mice were sacrificed post-
behavioral tests.

2.11 Chronic unpredictable mild stress
(CUMS) protocol

The CUMS procedures were performed according to previous
reports (Xu et al., 2020; Zhao Y.-N. et al., 2020; Zhu et al., 2020), with
some modifications. CUMS was applied for 5 weeks with random
exposure to stressors, with each stressors applied 3-4 times per
week: (1) overnight flash illumination, (2) 8-h ultrasonic noise, (3)
12-h wet bedding, (4) 12-h water deprivation, (5) 24-h food
deprivation, (6) 4-h cage tilt, (7) 1-min tail nip, (8) 5-min cold
swim (4 °C), (9) 2-h physical restraint, (10) 8-h exposure to a
pungent odor, (11) overnight light exposure. After 5 weeks of CUMS
exposure, mice were subjected to different behavioral tests such as
sucrose preference test (SPT), Tail suspension test (TST) and forced
swim test (FST).

2.12 Behavioral tests

SPT: The test was carried out based on previously established
methods, with a few alterations (Liu et al., 2015). Briefly, mice were
trained to consume 1% sucrose solution, followed by 12 h water
deprivation. Sucrose preference was calculated as (sucrose intake/
total liquid intake) x 100%. TST: This test was performed based on
the previous description (Steru et al., 1985), with slight modification.
Briefly, mice were suspended by the tail (60 cm above ground) for
5 min. Immobility duration was recorded. FST: The test was
conducted according to the method of Porsolt, with some
modifications (Porsolt et al., 1977). Briefly, mice were placed in
water-filled cylinders (25 °C + 2 °C) for 5 min. Immobility was
recorded during the last 4 min.

2.13 Immunohistochemistry and
immunofluorescence

Mice were perfused with PBS, and brains were fixed in
paraformaldehyde. Sections (5 pm) were dewaxed, rehydrated,
blocked, and incubated with primary antibodies (1:200) overnight
at 4 °C. For DAB staining, sections were treated with secondary
followed by
immunofluorescence, sections were incubated with Alexa Fluor

antibodies, color development. For

488-conjugated secondary antibodies (1:500) and counterstained

with DAPI. Images were acquired using an EVOS FL Imaging
System or Carl Zeiss Axio Observer.

2.14 Statistical analysis

In vitro experiments were performed in at least three independent
replicates. In vivo data are based on a sample size of 8 animals per
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group. The data analysis was conducted by GraphPad Prism
8.0 statistical software (GraphPad software, Inc., SanDiego, CA,
USA) and presented as mean + SD. Statistical significance was
determined using unpaired t-test for comparisons between two
groups, and one-way ANOVA followed by post hoc Tukey’s test
for multiple group comparisons. Statistical significance was defined
as p < 0.05, P < 0.01 or P < 0.001.

3 Results

3.1 Artemisinin (ART) attenuated the
decrease in cell viability caused by CORT
in PC12 cells

We first examined whether artemisinin could protect PC12 cells
from CORT-induced cell toxicity. Figure 1A displays the chemical
structure of artemisinin. The results of MTT assay showed that the
viability of PCI2 cells exposed to 200 uM of CORT for 48 h was
significant decreased by 30% (Figure 1B), thus this concentration was
chosen for further study. We further co-treated PC12 cells with 200 uM
of CORT and different concentrations of artemisinin. The MTT results
showed that artemisinin dose-dependently attenuated the loss of cell
viability caused by CORT. Specifically, 25 pM of artemisinin restored
cell viability to over 95% of that in the control group (Figure 1C).
Furthermore, the effect of artemisinin on LDH release in CORT-treated
PC12 cells was examined. The results indicated that treating PC12 cells
with 200 uM corticosterone for 48 h induced a significant increase in
LDH leakage compared to the control group (P < 0.01). Conversely, the
addition of artemisinin significantly reduced corticosterone-induced
LDH release, as shown in Figure 1D.

3.2 Artemisinin decreased intracellular ROS
levels and attenuated CORT-induced MMP
reduction in PC12 cells

As shown in Figure 2A, exposure of PC12 cells to 200 uM CORT
for 48 h resulted in a significant increase in green fluorescent signals,
indicating that CORT induced oxidative stress. In contrast, co-
treatment with artemisinin (25 uM) for 48 h resulted in a reduction
of green fluorescent signals. As shown in Figure 2C, quantitative
analysis demonstrates that the intracellular ROS level in CORT-
treated PC12 cells significantly increased to 179.5% compared to the
control value (100%, P < 0.001). However, co-treatment with 25 uM
artemisinin significantly reduced that value to 137% (P < 0.01).

Mitochondria generate membrane potential through the activity
of enzymes in the electron transport chain. During apoptosis, the
collapse of MMP coincides with the opening of mitochondrial
permeability transition pores, leading to the release of
cytochrome C into the cytoplasm and triggering downstream
events in the apoptotic cascade. To study whether CORT-
induced apoptosis is associated with the loss of MMP, we
performed JC-1 assay and found that MMP was indeed
significantly decreased in PC12 cells after 48 h of treatment with
200 uM CORT, whereas artemisinin reversed this effect (Figures
2B,D). These findings suggest that artemisinin may have a positive

impact on mitochondrial function.
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Artemisinin mitigates the reduction in cell viability caused by CORT in PC12 cells. (A) The structure of artemisinin. (B) The cytotoxicity of CORT on
PC12 cells. Cells were treated with CORT (100-800 uM) for 48 h, and cell viability was measured using the MTT assay. (C) Artemisinin mitigates the
reduction in cell viability induced by CORT in PC12 cells. Cells were co-treated with artemisinin and corticosterone at indicated concentrations for 48 h,
and cell viability was measured using the MTT assay. (D) Cells were co-treated with artemisinin and CORT for 48 h, and cytotoxicity was measured
using the LDH assay. Data represent means + SD (n = 3). *P < 0.05, **P < 0.01 vs. CORT; ###P < 0.001, ***P < 0.001, ****P < 0.0001 vs. control. CTL,
control; ART, Artemisinin; CORT, exposed to corticosterone only; ART/CORT, co-treated with artemisinin and corticosterone.

3.3 Effect of artemisinin on corticosterone-
induced apoptosis

Annexin V-FITC is a fluorescent probe that binds to
phosphatidylserine in the presence of calcium. As shown in Figure 3,
treatment with 200 pM CORT for 48 h significantly increased the
percentage of Annexin V+/PI + cells, indicating a substantial increase in
the apoptosis rate of PCI2 cells following CORT-induced damage.
However, treatment with 25 pM artemisinin significantly reversed
this effect, suggesting that artemisinin can mitigate corticosterone-
induced apoptosis in PCI12 cells.

3.4 Artemisinin confers neuroprotective
effect through AKT and ERK
signaling pathways

The AKT and ERK signaling pathways have been shown to play

crucial roles in promoting cell survival and combating apoptosis. To
determine whether artemisinin exerts its anti-apoptotic effects by

Frontiers in Pharmacology

modulating the AKT and ERK pathways, we treated PC12 cells with
varying concentrations of artemisinin for different durations and
then extracted proteins to analyze the expression levels of related
proteins. We found that artemisinin upregulated the expression of
phosphorylated AKT and ERK proteins in a time-dependent
manner (Figure 4). Additionally, artemisinin also increased the
expression of BDNF and phosphorylated GSK in a time-
dependent manner. To further confirm whether the PI3K/AKT
and ERK signaling pathways mediate the neuroprotective effect
of artemisinin, PC12 cells were pre-treated with the specific PI3K
inhibitor LY294002 (25 puM) and the MEK inhibitor PD98059
(25 uM) for 30 min. Subsequently, the cells were exposed to
200 uM CORT in the presence or absence of artemisinin, and
cell viability was assessed using the MTT assay. The results
(Figure 4B) showed that both inhibitors significantly blocked the
cytoprotective effect of artemisinin. Moreover, knocking down
AKT1 (Figure 4C) in PCI12 cells also declined the protective
effect of artemisinin against CORT (Figure 4D). These results
further confirm the involvement of the AKT and ERK pathways
in the neuroprotective action of artemisinin.
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artemisinin or 200 uM CORT for 48 h, followed by fluorescent visualization of ROS production. CORT-treated cells displayed green fluorescence,
indicating increased ROS production (n = 3; scale, 200 um). (B) PC12 cells were treated with 25 pM artemisinin or CORT for 48 h, and MMP was analyzed
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scale, 200 um). (C,D) Quantitative analysis of intracellular ROS in (A) and JC-1in (B), respectively. Data are presented as mean + SD (n = 3). *P < 0.05, **P <

0.01 versus CORT.

3.5 Neuroprotective effects of artemisinin
against CORT-induced injury in primary
hippocampal neurons

To investigate if the neuroprotective effect of artemisinin against
CORT-induced toxicity is not only limit to PC12 cells line, the
neuroprotective effect of artemisinin on primary hippocampal
neurons was also examined. The viability of primary cultured
neurons was significantly reduced in a dose-dependent manner
following treatment with CORT concentrations of 50, 100, and
200 uM (Figure 5A). As shown in Figure 5B, artemisinin (25 pM)
was also able to protect hippocampal neurons from the deleterious
effects of CORT.

3.6 Artemisinin improved depression-like
behaviors in CUMS mice

In this study, we evaluated the antidepressant-like activity of
artemisinin in the CUMS mice model and used fluoxetine as a
reference positive drug. As shown in Figures 6A,B, the immobility
duration significantly increased in the CUMS-induced depressive mice
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in the tail suspension and the forced swimming test. While treatment
with artemisinin or fluoxetine can all significantly decreased the
immobility duration in both tail suspension and forced swimming
tests compared to the CUMS group, and there was no significant
difference in the immobility duration between the artemisinin group
and the fluoxetine group in the two tests. Similarly, we also assessed
depression-like behavior by sucrose preference test in CUMS mice. As
shown in Figure. 6C, 5-week CUMS exposure significantly decreased
the percentage of sucrose consumption in the CUMS mice as compared
to control group; 1 mg/kg dose artemisinin administration significantly
and dose-dependently reversed the decrease in sucrose preference in the
stressed mice. However, the doses of 0.3 mg/kg and 3 mg/kg artemisinin
did not show significant difference in sucrose consumption after
4 weeks of treatment.

3.7 Artemisinin stimulated the activation of
AKT/GSK/NRF2/HO1 and BDNF/TrkB/ERK/
CREB the signaling pathway in mice brain

To examine whether Artemisinin confers anti-depression effect
via AKT/GSK/NRF2/HO1 and BDNF/TrkB/ERK/CREB pathway,
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Artemisinin confers cytoprotective effects towards CORT-induced apoptosis in PC12 cells. (A) Apoptotic cell death in PC12 cells was analyzed using
Annexin V-FITC/PI staining, detected byflow cytometry and quantified as the apoptosis rate (B). Data are presented as mean + SD (n = 3). **P < 0.01 vs.

control; #P < 0.5 vs. CORT.

we performed Western blot analysis to check the levels of
phosphorylation of those proteins (Figure 7A). The results
indicated that artemisinin treatment increased the level of AKT,
GSK, ERK and CREB phosphorylation, as well as stimulated the
expression of NRF2, HO1 and BDNF in brain extracts of CUMS
mice (Figure 7B). Quantification results of the protein bands from
the western blots are presented in Figures 7C-].

3.8 Artemisinin mitigates depression-
associated glial dysregulation and
neurogenesis impairment in CUMS model

CUMS induces pathological alterations in hippocampal
astrocytes and neurogenesis, both hallmarks of depression. To
evaluate artemisinin’s cellular effects in this context, we analyzed
astrocyte activity and neuronal maturation in the CA1 region, with
fluoxetine serving as a positive control. Immunohistochemical
staining for GFAP, a marker of astrocyte activation, revealed a
significant increase in GFAP + cells in CUMS mice compared to
controls, stress-induced  astrocytic  hyperactivity.
Artemisinin treatment markedly reduced GFAP levels, similar to

reflecting
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the effect of fluoxetine, suggesting its potential to normalize
astrocyte activity in the depressed hippocampus (Figure 8A).
Concurrently, we assessed neurogenesis by quantifying NeuN +
mature neurons, which are critical for functional hippocampal
circuitry. CUMS exposure caused a severe loss of NeuN +
neurons, consistent with impaired neurogenesis in depression.
Artemisinin administration significantly restored NeuN* cell
numbers, indicating its capacity to counteract stress-induced
neuronal deficits (Figure 8B). These results collectively highlight
artemisinin’s dual role in ameliorating depression-associated glial
dysregulation and neurogenesis impairment.

4 Discussion

Although significant efforts have been made to improve the
diagnosis and treatment of depression, a large percentage of patients
still do not respond well to current interventions that modulate the
monoaminergic system. Additionally, these drugs may be
accompanied by undesirable side effects. Therefore, there is a
critical need for new therapeutic drugs with high efficacy and
low toxicity. In this study, we demonstrated that artemisinin
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0.001, ###P < 0.001.

significantly increased the viability of PC12 cells and neurons treated
with CORT in vitro. It markedly inhibited CORT-induced leakage of
LDH, production of ROS, and dysfunction of MMP in PCI12 cells. In
vivo, chronic administration of artemisinin improved CUMS-
induced depression-like behaviors in both the FST and the TST,
which are two commonly used screening tests for antidepressant-
like activity (Castagné et al,, 2010). Our study presents novel
findings on the neuroprotective and antidepressant-like effects of
artemisinin in both in vitro and in vivo models, indicating its
potential as a drug treating depression.

Our findings that artemisinin reverses CORT-induced apoptosis
and mitochondrial dysfunction extend prior evidence of its
neuroprotective capacity. This discovery is supported by earlier
studies which, for example, demonstrated that artemisinin can
stimulate neuronal cell viability and protect against certain types
of cellular stress in neuronal-like cells (Pukhov et al., 2025; Zhao
et al., 2019a; Zhao X. et al.,, 2020; Zheng et al., 2016). While these
effects are not directly linked to antidepressant outcomes, they
support the possibility that artemisinin may enhance brain health
and resilience.

Frontiers in Pharmacology

Our data demonstrate that artemisinin effectively attenuated
corticosterone-induced ROS overproduction in neuronal-like cell
models, which appears to contrast with its well-established role as a
pro-oxidant antimalarial agent. This apparent paradox may be
explained by the context-dependent redox activity of artemisinin. Its
antimalarial action is mediated by iron-dependent cleavage of the
endoperoxide bridge—primarily by heme iron derived from
hemoglobin digestion within the parasite—leading to localized
radical formation and cytotoxic effects specifically targeting
Plasmodium. In non-malarial systems, artemisinin and its derivatives
have been reported to exhibit antioxidant properties, possibly through
free radical scavenging or modulation of cellular antioxidant pathways.
Thus, the compound’s redox behavior may shift from pro-oxidant in
parasite-infected erythrocytes to antioxidant in neuronal cells, reflecting
differences in local chemical microenvironments and metal availability
(Posadino et al.,, 2023; Zheng et al., 2024).

Notably, the result show that after 4 weeks of treatment, only the
1 mg/kg ART group produced a significant reversal of the CUMS-
induced decrease in sucrose preference; the 0.3 mg/kg and 3 mg/kg
groups did not reach significance, reflecting an inverted-U
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Artemisinin improved depression-like behaviors in CUMS mice. Effect of artemisinin on the immobility duration of mice in the tail suspension test (A)

and the forced swimming test (B), as well as on sucrose preference (C) in stressed mice. The tail suspension test, forced swimming test, and sucrose
preference test were carried out 5 weeks after CUMS. Results are presented as mean + SD (n = 8 per group). **p < 0.01 and ***p < 0.001 versus the control
group; #p < 0.05 versus the CUMS group. CUMS: exposed to chronic unpredictable mild stress; ART 0.3: treatment with 0.3 mg/kg dose of
artemisinin; ART 1: treatment with 1 mg/kg dose of artemisinin; ART 3: treatment with 3 mg/kg dose of artemisinin; FLU: treatment with 10 mg/kg dose
of fluoxetin.

which has been frequently reported in  associated with neuroinflammation, limited investigation has been

neuropharmacological studies (Baldi and Bucherelli, 2005; Stone
et al., 2011).

Previous studies have primarily focused on artemisinin’s anti-
inflammatory and anti-cancer properties. Although depression is

Frontiers in Pharmacology

09

conducted into artemisinin’s potential antidepressant effects. A
study found that dihydroartemisinin, a derivate of artemisinin,
improved performance of mice in open-field test and closed-field
test, implies that dihydroartemisinin can improve depression-like
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Mechanism of the effect of artemisinin on depression. Mice were treated with different doses of artemisinin (0.3 mg/kg, 1 mg/kg, and 3 mg/kg) once
daily for 4 weeks. Hippocampal protein was analyzed by Western blotting. (A) Protein expression levels of NRF2, HO1, and phosphorylation of AKT/GSK3pB
(Ser9). (B) Protein expression levels of BDNF and phosphorylation of ERK, CREB and TrkB. (C—F) Quantitative analysis of (A). (G—J) Quantitative analysis of
(B). Results are shown as the mean + SD of (n = 3). **P < 0.01 and ***P < 0.001versus control group; #p < 0.05, ##p < 0.01, versus CORT group.

behavior (Gao et al, 2020). A recent study also reported that
from  CUMS-induced
depression-like behaviors, evidenced by sugar water preference,

dihydroartemisinin ~ protected = mice
forced swimming and tail suspension experiments, and the effect
is associated with gut microbes (Tang et al, 2024). However,
whether artemisinin has antidepressant effect was unclear. Our
study fills this gap by demonstrating that artemisinin can
mitigate  CORT-induced improve
depressive symptoms in CUMS mice model, highlighting its
potential

neuronal damage and

as a novel therapeutic agent for depression.

Furthermore, emerging evidence suggests that the antidepressant-
like effects of artemisinin derivatives may be enhanced by
with  y-aminobutyric (GABA). Hybrid

interaction acid
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compounds of dihydroartemisinin and GABA have demonstrated
significant antidepressant-like effects in cell models, further
supporting the therapeutic potential of this pathway (He et al,
2021). Whether artemisinin confers its antidepressant effect by
mediating gut microbes as dihydroartemisinin does or through
GABAergic mechanisms suggested by these hybrid studies, are
compelling questions requiring further investigation.

Our study also provides mechanistic insights into the
neuroprotective and antidepressant effects of artemisinin. We
found that artemisinin activates AKT and ERK pathways in
PCI12 cells, and results of both pharmacological inhibition and
genetic knocking down reveal that its neuroprotective effects are
dependent on these pathways. Our findings are consistent with
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CUMS+ART

FIGURE 8

Artemisinin modulates astrocyte activation and neuronal maturation in the hippocampal CAl region of CUMS mice. (A) Representative
immunohistochemical images (200x) of GFAP in the hippocampal CAl region. Blue arrows highlight GFAP* cells. Fluoxetine treatment serves as the
positive control. Scale bars = 200 um (white lines on the pictures) (B) Representative immunofuorescence images for NeuN (green) and DAPI (blue) in the
mice hippocampal CAl region.
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existing literature on the role of AKT and ERK signaling in
neuroprotection and neurological functions. Studies have shown
that activation of the AKT pathway promotes neuronal survival and
growth (Dudek et al., 1997), while ERK signaling is essential for
synaptic plasticity and cognitive functions (Thomas and Huganir,
2004).
neuroprotective effects of artemisinin, thereby expanding the

However, our study links these pathways to the

potential applications of this compound beyond its traditional uses.

A recent work studied pathogenesis of depression in four
stress-induced models (Li et al., 2023). By combining proteomic
and metabolomic approaches, they found that molecular
alterations in depression converge on a common AKT and
ERK molecular pathways. Indeed, the antidepressant effects of
many interventions are associated with these two pathways. For
example, creatine and taurine mixtures showed antidepressant
effects by mediating Akt and ERK/BDNF pathways (Kim et al,,
2020). The anti-depressant effect of vanillic acid was Akt-
dependent, although was ERK-independent (Chuang et al,
2020).  The AKT by
dihydroartemisinin, although this was not further validated by
using AKT Our
mechanistic study also in agreement with abovementioned
studies, highlighting the essential role of AKT and ERK
pathways in the pathogenesis of depression. Further studies of

pathway  was  upregulated

inhibitors or knockdown experiments.

these pathways could contribute to developing pharmacological
interventions of depression.

Glia cells play a key role in brain inflammation and depression
(Novakovic et al., 2023; Wang et al., 2022; Zhou et al, 2021).
Previous study has revealed that artemisinin could alleviate
sepsis-associated neuroinflammation and cognitive impairment
by modulating the activity of microglia (Lin et al., 2021). In the
present study, we found that artemisinin inhibited the activity of
astrocyte in CUMS mice, presenting a more comprehensive role of
artemisinin in modulating glia cells and neurological disorders.
Depression is also characterized by impaired neurogenesis in the
brain (Hanson et al, 2011). We also found that artemisinin
promoted neurogenesis in the hippocampal CA1 of CUMS mice.
These findings highlight the cellular mechanisms underlying its
antidepressant effects.

5 Conclusion

In conclusion, our study highlights the potential of artemisinin
as a novel therapeutic agent for depression, providing robust
evidence of its neuroprotective and antidepressant-like effects in
both cellular and animal models. By modulating key signaling
pathways, artemisinin offers a promising alternative to traditional
antidepressants with the potential for lower toxicity. Future research
should aim to translate these findings into clinical settings, paving
the way for new treatments for depression.
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Glossary

AD Alzheimer’s Disease
AKT Protein Kinase B

ART Artemisinin

BBB Blood-Brain Barrier
BCA Bicinchoninic Acid
BSA Bovine Serum Albumin

CORT Corticosterone

CST Cell Signaling Technology

CUMS Chronic Unpredictable Mild Stress
DAPI 4',6-diamidino-2-phenylindole
DMEM  Dulbecco’s Modified Eagle’s Medium

DMSO Dimethyl sulfoxide

ERK Extracellular Signal-Regulated Kinase
FDA Food and Drug Administration

FBS Fetal Bovine Serum

FST Forced Swim Test

H&E Hematoxylin and Eosin

HPA Hypothalamic-Pituitary- Adrenal
HRP Horseradish Peroxidase

LDH Lactate Dehydrogenase

MAOIs  Monoamine Oxidase Inhibitors

MEK Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated
Kinase Kinase

MMP Mitochondrial Membrane Potential

PC12 Pheochromocytoma cell line

PD Parkinson’s Disease

PI3K Phosphoinositide 3-Kinase

ROS Reactive Oxygen Species

SPT Sucrose Preference Test

SSRIs Selective Serotonin Reuptake Inhibitors

TCAs Tricyclic Antidepressants

TST Tail Suspension Test
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