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Curcumin, a natural polyphenolic compound derived from Curcuma longa, has
shown great potential in the prevention and treatment of chronic inflammatory
diseases due to its significant antioxidant and anti-inflammatory properties. This
article aims to systematically review the anti-inflammatory molecular
mechanism, clinical application prospects and challenges of curcumin. By
searching the databases of Web of Science, PubMed, Google Scholar and
CNKI, and integrating the latest research progress, it was found that curcumin
exerted its core anti-inflammatory effects mainly by inhibiting the activation of
nuclear factor-κB (NF-κB) signaling pathway, regulating the mitogen-activated
protein kinase extracellular signal-regulated kinase (ERK) phosphorylation
cascade, and regulating the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) pathway. Pharmacological studies have confirmed
the therapeutic value of curcumin in a variety of inflammation-related
diseases, including neurodegenerative diseases, inflammatory bowel disease,
atherosclerosis, diabetes and tumors. Although curcumin has good safety and
extensive sources, its inherent low bioavailability severely limits its clinical
application. This review points out that combining cutting-edge technologies
such as new nano-delivery systems, optimizing the delivery efficiency of
curcumin and exploring its anti-inflammatory mechanism in depth are the
focus of future research, which is expected to promote it to become a more
effective clinical anti-inflammatory drug.
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1 Introduction

Inflammation is a complex defense response of the body to a variety of pathological
stimuli, which involves different types of cells and signaling pathways in the immune
system. Although self-limiting inflammation promotes the healing of damaged tissues, an
imbalance between the recruitment of inflammatory cells in the body and the clearance of
immune infiltrates leads to persistent inflammation, which exceeds the body’s ability to
repair itself and triggers serious diseases (Buckley et al., 2015). Chronic inflammation as a
central pathological mechanism in cardiovascular disease, cancer, diabetes, chronic kidney
disease, steatosis disease, and autoimmune and neurodegeneration diseases, has become a
major driver of the global burden of disease (Furman et al., 2019). Epidemiological studies
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have shown that inflammatory-related diseases account for more
than 60% of global mortality, and the incidence is increasing yearly.
In recent years, the diagnosis and treatment methods have been
improved, but the long-term use of existing anti-inflammatory drugs
(such as non-steroidal anti-inflammatory drug and steroids) is often
accompanied by serious side effects such as gastrointestinal injury
and cardiovascular risk, its clinical application is limited. Therefore,
the development of safe and effective therapeutic drugs is imminent.
In recent years, natural anti-inflammatory compounds have
attracted extensive attention due to their multi-target and low-
toxicity characteristics. Among them, plant-derived active
ingredients such as curcumin have shown great potential in
regulating inflammatory pathways, it provides a new direction for
the prevention and treatment of inflammatory diseases (de Lima-
Vasconcellos et al., 2026; Gharat et al., 2025; Jiang et al., 2025).

Curcumin is a natural polyphenolic compound extracted from
the rhizome of Curcuma longa L., which is widely used in the food
industry as a food additive. Its chemical structure is 1,7-bis (4-
hydroxy-3-methoxyphenyl) −1,6-heptadiene-3,5-dione (Figure 1),
which has anti-inflammatory, anti-oxidation, anti-virus, anti-
infection, anti-tumor and other biological activities (He et al.,
2015; Abdollahi et al., 2018). Among them, anti-inflammatory
properties are considered to be the basis of its multiple biological
activities and play an important role in the treatment of diseases
(Lestari and Indrayanto, 2014). Studies have shown that curcumin
can intervene in the occurrence and development of a variety of
chronic inflammatory diseases by regulating key inflammatory
signaling pathways such as NF-κB, MAPK, and JAK-STAT, such
as rheumatoid arthritis, inflammatory bowel disease and
neurodegeneration (Naksuriya et al., 2014). This paper aims to
explore the anti-inflammatory mechanism of curcumin and its
potential in clinical application, and provide a theoretical basis
for the research and application of curcumin.

2 Anti-inflammatory molecular
mechanism of curcumin

The significant anti-inflammatory activity of curcumin stems
from its regulation of multiple key signaling pathways, including
NF-κB, MAPK, JAK-STAT, NLRP3 inflammasome and Nrf2/ARE
pathways, anti-inflammatory activity (Hanai and Sugimoto, 2009).

2.1 Inhibition of NF-κB signaling pathway
activation

NF-κB is the core regulatory factor of inflammatory response,
and its abnormal activation is closely related to chronic
inflammatory diseases (Yu et al., 2020). Curcumin interferes with
the NF-κB pathway through its multi-target
characteristics (Figure 2).

1. Inhibition of IκB kinase (IKK) activity. In the classical pathway,
the IKK complex can promote IκBα phosphorylation for its
ubiquitinated degradation (Lawrence, 2009; Chen and Greene,
2004). Curcumin inhibits IKKβ subunit activity and blocks
IκBα phosphorylation and NF-κb nuclear translocation,
thereby inhibiting κBα degradation and NF-κB activation
(Zhang et al., 2017).

2. Decreasing transcription factor activity. p65/p50 is a core
member of the NF-κB transcription factor family. Curcumin
attenuates NF-κB transcriptional activity by blocking its
nuclear translocation and inhibiting p65 phosphorylation
(Chen et al., 2018).

3. Regulating microRNA. MiR-146a mainly regulates the target
genes of NF-κB related pathways, thereby affecting the process
of inflammatory response (Zheng et al., 2020). Curcumin can
inhibit the NF-κB signaling pathway by upregulating miR-146a
expression and targeting TRAF6 (Chen et al., 2021).

4. Antioxidant synergistic effect. Reactive oxygen species (ROS) is
an important regulator of NF-κB. Curcumin can inhibit
inflammation by scavenging ROS and inhibiting the
activation of NF-κB (Das and Vinayak, 2012; Saleem
et al., 2025).

2.2 Blocking the cascade reaction of MAPK
signaling pathway

MAPK pathway regulates the expression of pro-inflammatory
genes through ERK, JNK and p38 three branches (Zeyen et al., 2022;
Hepworth and Hinton, 2021; García-Hernández et al., 2021).
Curcumin can inhibit the activation of ERK, JNK and
p38 MAPK, thereby inhibiting cell proliferation, inducing
apoptosis and reducing inflammation (Figure 3).

FIGURE 1
Chemical structure of curcumin.
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1. Inhibition of the ERK signaling pathway. Raf-1 is involved in
the activation of ERK1/2. Curcumin inhibits the
phosphorylation of Raf kinase, thereby blocking MEK1/
2 from phosphorylating ERK1/2, which in turn inhibits the
activation of ERK1/2 (Sun et al., 2017; Wu, 2012).

2. Inhibition of JNK signaling pathway. Curcumin is able to target
MKK4/7 kinases, inhibit JNK phosphorylation, and reduce
c-Jun mediated inflammatory gene transcription (Yu
et al., 2018).

3. Inhibition of p38 MAPK signaling pathway. Curcumin exerts
anti-inflammatory effects by inhibiting the activation of
P38 MAPK through upregulation of the MAPK phosphatase
MKP-1 (Konduru et al., 2017).

2.3 Inhibition of JAK-STAT signaling pathway

The JAK-STAT signaling pathway is one of the most crucial
pathways for regulating immune cell inflammation. It responds to
various pro-inflammatory cytokines by transducing signals from
type I and type II cytokine receptors (O’Shea et al., 2013). Curcumin
can inhibit JAK-STAT signal transduction by directly targeting JAK
kinase activity and modulating STAT function (Figure 4).

1. Inhibition of JAK and STAT phosphorylation. Studies have
shown that curcumin reduces the level of JAK1/2 and STAT1/
3 phosphorylation, thereby inhibiting the expression of pro-

inflammatory factors mediated by the JAK-STATs signaling
pathway (Liu et al., 2025; Zhang et al., 2024).

2. Enhance the expression of negative feedback regulatory
proteins. The SOCS family is a negative regulatory protein
that inhibits the activity of the JAK-STAT signaling pathway
and regulates the duration of the signal. Curcumin induces the
expression of proteins such as SOCS1 and SOCS3,
downregulates JAK2-STAT3/STAT6, inhibits the activity of
the JAK-STAT signaling pathway, reduces the levels of pro-
inflammatory cytokines, increases the levels of anti-
inflammatory cytokines, and alleviates inflammation (Zhao
et al., 2016).

2.4 Regulates NLRP3 inflammasome

Excessive activation of the NOD-like receptor protein 3
(NLRP3) inflammasome can lead to pyroptosis and tissue
damage (Wang and Hauenstein, 2020). Curcumin specifically
inhibits the initiation and assembly of the NLRP3 inflammasome,
thereby suppressing the inflammatory cascade (Figure 5).

1. Inhibition of NLRP3 inflammasome activation. The activation
of the NLRP3 inflammasome is inhibited by curcumin, which
suppresses K+ efflux, the downstream spatial localization of
mitochondria, ASC dimerization, and speck formation (Gong
et al., 2018; Yin et al., 2018).

FIGURE 2
The anti-inflammatory mechanism of curcumin mediated by NF-κB signaling pathway (Created with BioRender.com).
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2. Inhibition of the NF-κB signaling pathway. The NF-κB
signaling pathway is a crucial upstream regulator of
NLRP3 inflammasome activation. Curcumin inhibits NF-κB
activation by preventing the degradation of IκBα and reducing
the phosphorylation levels of NF-κB subunits (p65 and p50),
thereby hindering the activation of the NLRP3 inflammasome
(Li et al., 2025; Chen et al., 2019; Lan et al., 2023).

3. Antioxidant effect. Curcumin can increase SOD activity,
reduce oxidative stress, and eliminate the oxidative damage
incentives of NLRP3 activation (Yang et al., 2023).

2.5 Activation of Nrf2/ARE
antioxidant pathway

The Nrf2/ARE pathway, a classical oxidative stress signaling
pathway, is closely associated with oxidative stress and
inflammation in the body. Curcumin facilitates the nuclear
translocation of Nrf2, upregulates the expression of
antioxidant genes such as HO-1 and NQO-1, and reduces
LPS-induced oxidative damage as well as the secretion of IL-
1β and TNF-α. Gene knockout experiments have confirmed that
the absence of Nrf2 significantly weakens the anti-inflammatory
effects of curcumin, indicating that this pathway is a key target
for its action (Zhao et al., 2011; Jiang et al., 2020).

Curcumin exerts regulatory effects during the initiation,
development, and chronic stages of inflammation through its
multi-target synergistic actions. It inhibits pro-inflammatory
pathways such as NF-κB, MAPK, and NLRP3, while activating
antioxidant pathways like Nrf2. Additionally, it modulates
cytokine networks and immune cell functions (Vallée et al., 2019;
Yin et al., 2018; Zhang X. Y. et al., 2019). This multifaceted
mechanism gives it potential in treating various diseases,
including arthritis, intestinal inflammation, and
neuroinflammation.

3 Pharmacologic studies of curcumin in
inflammatory diseases

Curcuma longa L. as a traditional Chinese medicine with the
same source of food and medicine, its medicinal use was first
recorded in the Tang Dynasty “Newly Revised Materia Medica”,
which recorded that it is “the main cardiac and abdominal
stagnation, propulsion and resistance, under the gas to break the
blood” and other efficacy. Modern research has further confirmed
that turmeric has anti-hepatic injury, regulating blood pressure and
blood lipids, menstruation and pain relief and other
pharmacological effects. Curcumin extracted from turmeric, as a
natural dual-use ingredient, has been proven to have anti-

FIGURE 3
The anti-inflammatory mechanism of curcumin mediated by MAPK signaling pathway (Created with BioRender.com).
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inflammatory (Zeng et al., 2022), anti-oxidative stress (Ghareghomi
et al., 2021), anti-tumor proliferation (Zhao et al., 2023), mucosal
protection (Sheethal et al., 2020), broad-spectrum antimicrobial
(Reddy et al., 2020), regulation of lipid metabolism (Qin et al.,
2017), improvement of insulin resistance (Heshmati et al., 2021),
promotion of bile excretion (Hong et al., 2022), and hepatopoietic
cell protection (Bavarsad et al., 2019) and other diversified
bioactivities. It has become a hot spot of natural medicine
research at home and abroad. Based on the above wide range of
pharmacological effects, curcumin has shown potential application
value in the treatment of various inflammation-related
diseases (Figure 6).

3.1 The role of curcumin in
neurodegenerative diseases

Neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and epilepsy, are characterized
by the progressive necrosis or functional loss of nerve cells.
Studies have shown that, besides the reduction of antioxidants
and the oxidative damage to proteins, DNA, and lipids (Lee
et al., 2012; Höhn and Grune, 2013), chronic inflammatory
responses are also significant contributors to disease progression
(Süβ et al., 2021) (Table 1).

Curcumin exerts neuroprotective effects through dual mechanisms:
on one hand, it directly scavenges free radicals or binds with Cu2+ and
Fe2+ to form complexes, thereby alleviating metal ion-induced oxidative
damage; on the other hand, it inhibits the activity of NF-κB,
lipoxygenase, and cyclooxygenase-2, thus mitigating
neuroinflammation (Kant et al., 2014; Lee et al., 2013). In the
lipopolysaccharide (LPS) induced BV2 microglial cell model,
curcumin reduced neuroinflammation by inhibiting the TLR4/NF-
κB pathway, downregulating TREM2 expression, and promoting the
conversion of M1-type microglia to the anti-inflammatory M2-type
(Zhang J. et al., 2019). However, this study only conducted cell
experiments and lacked animal experiments. In Parkinson’s disease
models, curcumin reduced the levels of reactive oxygen species (ROS)
induced by mutant α-synuclein in PC12 cells, inhibited mitochondrial
damage and the activation of caspase-9/3, and improved cytotoxicity
(Liu et al., 2011). Additionally, curcumin decreased oxidative stress
markers in the hippocampal tissue of pilocarpine-induced epilepsy
models and prevented hippocampal neuronal loss (Noor et al., 2012).
This study confirms the antiepileptic effects of curcumin through
animal experiments, but its limitation lies in being limited to
demonstrating therapeutic efficacy without revealing the underlying
mechanisms, resulting in compromised depth of the conclusions. These
effects suggest that anti-inflammatory, antioxidant, and inhibition of
abnormal protein aggregation are the core mechanisms by which
curcumin intervenes in neurodegenerative diseases.

FIGURE 4
The anti-inflammatory mechanism of curcumin mediated by JAK-STAT signaling pathway (Created with BioRender.com).
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3.2 The role of curcumin in inflammatory
bowel disease

Inflammatory bowel disease (IBD) includes ulcerative colitis
(UC) and Crohn’s disease (CD), characterized pathologically by
intestinal oxidative stress, nitrosative stress, leukocyte infiltration,
elevated levels of pro-inflammatory cytokines (Th1-type cytokines
IL-12, IFN-γ, TNF-α, IL-1, and Th17-type cytokine IL-17), and
decreased levels of anti-inflammatory cytokines (Th2-type cytokines
IL-4, IL-5, IL-10) (Table 2) (Zhang et al., 2006).

In a sodium sulfate-induced ulcerative colitis model, oral
administration of curcumin (200 mg/kg) effectively inhibited the
SphK1/NF-κB signaling pathway. This inhibition alleviated
intestinal mucosal damage, promoted the repair of goblet cells,
and reduced serum levels of inflammatory factors (TNF-α, IL-1β,
IL-8) as well as myeloperoxidase (MPO) in colon tissue. Curcumin
demonstrated significant therapeutic effects against ulcerative colitis
(Zhang et al., 2025). Additionally, curcumin regulated the Treg/
Th17 cell balance, increased the secretion of the anti-inflammatory
cytokine IL-10, and decreased the expression of the pro-
inflammatory cytokine IL-17A, thereby mitigating intestinal
inflammatory responses (Guo et al., 2022).

3.3 The role of curcumin in atherosclerosis

Atherosclerosis (AS) is a disease of the peripheral arteries
accompanied by chronic inflammation that can lead to vascular
system dysfunction and a variety of diseases (Table 3). Accumulation
of macrophages within the arterial wall is a prominent feature of
atherosclerotic plaques. Influenced by various stimuli in the plaque
microenvironment, macrophages polarize into pro-inflammatory
M1 and anti-inflammatory M2 macrophages. Studies found that
curcumin (30 μM) inhibited the NF-κB pathway, reduced the
differentiation of M1 pro-inflammatory macrophages, decreased the
activity of the TLR4/MAPK/NF-κB cascade signaling, and promoted
the transformation of macrophages from a pro-inflammatory phenotype
to an anti-inflammatory phenotype (Momtazi-Borojeni et al., 2019).
Furthermore, in vitro experiments treating RAW264.7 macrophages
(M0 and M1 phenotypes) with curcumin analyzed the molecular
basis of its anti-atherosclerotic activity. Curcumin activated PPARγ,
thereby promoting macrophage polarization from M0/M1 to
M2 phenotypes. This polarization increased anti-inflammatory factor
expression, suppressed systemic inflammatory responses, and delayed
atherosclerotic (AS) progression. Tested concentrations were 0, 6.25, 12.5,
and 25 μmol/L (Chen et al., 2014).

FIGURE 5
The anti-inflammatory mechanism of curcumin mediated by NLRP3 signaling pathway (Created with BioRender.com).

Frontiers in Pharmacology frontiersin.org06

Liu et al. 10.3389/fphar.2025.1642248

http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1642248


Curcumin, in addition to its anti-inflammatory effects that help
delay the progression of AS, can also slow down AS progression by
reducing oxidative stress, providing anticoagulant effects, improving
lipid metabolism, enhancing glucose metabolism, regulating the
proliferation and migration of smooth muscle cells, lowering
blood pressure, reducing pathological neovascularization, and
protecting endothelial cells. Further research is needed to fully
understand these specific mechanisms (Wang et al., 2022).

3.4 The role of curcumin in diabetes

In type 1 diabetes, curcumin, as a heme oxygenase-1 (HO-1)
inducer, improved blood glucose levels (27.5% lower) and insulin

secretion (66.67% higher) in diabetic rats, as well as regulating
blood lipids and attenuating lipid peroxidation damage in the
pancreas and liver (Abdel Aziz et al., 2012). In type 2 diabetes,
curcumin exerts its efficacy by inhibiting oxidative stress and
inflammatory response (Nishiyama et al., 2005). At present, there
are limited studies on the role of curcumin in this context, and
there are few studies on its potential mechanism. In the type
2 diabetic rat model established by high-fat diet feeding
combined with intraperitoneal injection of streptozotocin,
curcumin (200 mg/kg) lowered fasting blood glucose,
improved pancreatic β-cell function, and reduced apoptosis.
Mechanistically, it inhibited the inflammatory cascade
response and apoptosis by down-regulating pro-inflammatory
factors such as IL-1β and IL-6 and pro-apoptotic proteins (Bax

FIGURE 6
Clinical effect of curcumin (Created with BioRender.com).
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and caspase-3), up-regulating antioxidant enzymes (SOD2 and
glutathione peroxidase) and the anti-apoptotic protein Bcl-2, and
blocking the RAGE/JNK/NF-κB signaling pathway (Qihui et al.,
2020) (Table 4).

3.5 The role of curcumin in tumor

Inflammatory mediators play an important role in tumors.
Recent basic and clinical studies have shown the efficacy of

TABLE 1 The role of curcumin in neurodegenerative diseases.

Disease Dosages Minimal active
concentration

Positive
control
drug

Model Mechanism References

Alzheimer’s
Disease

150 and
300 mg/kg

150 mg/kg -- 5 × FAD
Transgenic

Mice

Inhibition of BACE1 expression and reduction
of Aβ deposition

Zheng et al.
(2017)

0, 1.25, 5.0 and
20.0 µM

5.0 µM -- SH-SY5Y Inhibition of GSK-3β-mediated PS1 activation
reduces Aβ production

Xiong et al.
(2011)

100 mg/kg -- -- C57BL/6J male
mice

Regulating GSK3β/Wnt/β-catenin and CREB/
BDNF pathways by targeting PI3K/Akt

Lou et al. (2024)

Parkinson’s
Disease

0, 0.1,
0.5 and 1 µM

0.1 µM -- PC12 cells Inhibition of oxidative stress and
mitochondrial cell death pathways, inhibition
of A53T mutant α-synuclein-induced cell
death

Liu et al. (2011)

80 mg/kg -- Levodopa Adult male
Swiss albino

mice

Improves α-synuclein levels and reduces lewis
and inflammatory mediator levels

Motawi et al.
(2020)

1, 2 and 4 μM 1 μM Levodopa SH-SY5Y cells -- Guo et al. (2025)

Epilepsy 200 mg/kg -- -- Male ICR mice Reduce the levels of GFAP, eNOS and HO-1 in
hippocampus, inhibit the expression of
reactive astrocytes, and prevent the death of
hippocampal cells

Shin et al. (2007)

0.4, 2, and
10 mg/kg

0.4 mg/kg -- C57BL/6 mice Upregulation of NF1X level increased the
proliferation activity of neural progenitor
cells (NPC)

Lee et al. (2023)

TABLE 2 The role of curcumin in inflammatory bowel disease.

Disease Dosages Minimal active
concentration

Positive
control drug

Model Mechanism References

Inflammatory
bowel disease

100 and
200 mg/kg

100 mg/kg -- BALB/c male
mice

Inhibition of SphK1/NF-κB signaling
pathway activation

Zhang et al. (2025)

100 and
300 mg/kg

100 mg/kg -- Sprague-
Dawley rats

Regulating the balance of Treg/
Th17 and the secretion of related
cytokines

Guo et al. (2022)

40 mg/kg -- Mesacol tablet Rat -- Desai and Momin
(2020)

TABLE 3 The role of curcumin in atherosclerosis.

Disease Dosages Minimal active
concentration

Positive
control
drug

Model Mechanism References

Atherosclerosis 0, 7.5, 15, and
30 μM

7.5 μM -- TJP-1 cells Reduce TLR4 expression and inhibit MAPK/
NF-κB pathway

Momtazi-Borojeni
et al. (2019)

0, 6.25, 12.5,
and 25 μM

6.25 μM -- RAW264.7 Activation of IKBα inhibits M1 inflammatory
phenotype, and activation of PPARγ polarizes
macrophages to M2 phenotype

Chen et al. (2014)
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curcumin as a multi-target intracellular signaling pathway
modulator in ameliorating tumors such as lung, liver, gastric,
colorectal, pancreatic and cervical cancers (Table 5).

Inflammation is closely related to tumor development, and
curcumin, as a multi-target signaling modulator, shows
intervention potential in a variety of tumors (Coussens and
Werb, 2002). Treatment of pancreatic stellate cells with curcumin
reduced pancreatic stellate cell activation andmigration and blocked
tumor-stromal crosstalk and pancreatic cancer metastasis by
inhibiting the IL-6/ERK/NF-κB signaling axis (Li et al., 2020). In
ovarian cancer, it reduced fascin protein expression and inhibited
tumor cell recurrence and metastasis by inhibiting the JAK/
STAT3 pathway (Kim et al., 2020). In addition, curcumin is an
inhibitor of the transcription factor NF-κB and downstream gene
products (Hasima and Aggarwal, 2012). Curcumin ameliorated
skeletal muscle atrophy and mitochondrial dysfunction in breast
cancer models by modulating the NF-κB/ubiquitin-proteasome
system (UPS) axis, suggesting its therapeutic value in tumor-
related complications (Zhang et al., 2022). Although a large
number of in vitro/animal models have revealed the multi-target
anti-tumor mechanism of curcumin, it lacks clinical experimental
data verification. At present, the clinical research on the anti-tumor
effect of curcumin is limited by small samples, short-cycle trials and
inconsistent preparations, resulting in a weak clinical
transformation.

3.6 Other effects

In addition to the above pharmacological effects, curcumin also
plays a role in the prevention and treatment of obesity. It enhanced
triacylglycerol lipase activity and reduced the level of low-density
lipoprotein by activating the peroxisome proliferator-activated

receptor γ (PPAR-γ) signaling pathway, thereby regulating lipid
metabolism and improving dyslipidemia (Lee et al., 2020). In the
field of autoimmune diseases, curcumin showed potential
intervention value in rheumatoid arthritis, multiple sclerosis, and
systemic lupus erythematosus. Its mechanism of action mainly
involved inhibiting the proliferation of T-cells, B-cells, and
dendritic cells, and regulating the levels of a variety of cytokines,
thereby inhibiting excessive immune responses (Yang et al., 2019).
Although curcumin has shown potential in a variety of disease
models, current experimental studies generally design hard wounds
and lack positive drug controls. This defect seriously hinders its
transformation into clinical practice.

4 Safety and toxicity

Curcumin is approved by the U.S. Food and Drug
Administration (FDA) as a “Generally Recognized as Safe”
(GRAS) substance, and its safety has been demonstrated in
multiple studies. The compound has demonstrated therapeutic
potential for a wide range of diseases in a wide range of doses
with very low risk of toxicity. Cellular experiments showed that
although high concentrations of curcumin might have some
inhibitory effects on the proliferation and viability of normal
cells, the threshold for safe concentrations was much higher than
conventional therapeutic doses (Hollborn et al., 2013).

Human clinical studies showed that curcumin exhibited good
tolerance even when administered orally at a dose of 6 g/day for
4–7 weeks, with only a few cases reporting mild side effects such as
itching, reddening of the tongue, tachycardia, or gastrointestinal
disturbances (Ryan et al., 2013). Animal experiments further
demonstrated that oral administration of curcumin during
pregnancy was not significantly toxic to the mother and fetus.

TABLE 4 The role of curcumin in diabetes mellitus.

Disease Dosages Minimal active
concentration

Positive
control drug

Model Mechanism References

Diabetes 10 mg/kg -- -- Rats -- Abdel Aziz et al.
(2012)

200 mg/kg -- -- Sprague-
Dawley rats

Inhibition of phosphorylated JNK and NF-κB
protein expression, blocking RAGE/JNK/NF-κB
signaling pathway

Qihui et al. (2020)

500 mg/
person

-- Zinc Diabetic
patients

-- Karandish et al.
(2021)

TABLE 5 The role of curcumin in tumor.

Disease Dosages Minimal active
concentration

Positive control
drug

Model Mechanism References

Tumor 0, 5, 10, 20 µM 20 µM -- Human
PSCs

Inhibition of IL-6/ERK/NF-κB axis Li et al. (2020)

0, 5, 10, 20 µM 5 µM -- Human
PSCs

Inhibition of ROS/ERK/NF-κB
signaling pathway

Cao et al. (2016)

30 mg/rat -- -- BALB/c
mice

Regulating the NF-KB/UPS axis Zhang et al.
(2022)
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However, high doses (approximately 1,000 mg/kg body weight)
resulted in a mild decrease in weight gain in F2 pups, suggesting that
potential intergenerational effects required further investigation for
long-term high-dose use (Ganiger et al., 2007). Overall, the available
evidence supports the high safety profile of curcumin in human
applications, especially at routine therapeutic doses, with almost
negligible toxic side effects.

5 Clinical translational challenges
and solutions

Although curcumin exhibits a wide range of safety and
pharmacological activities, its clinical translation still faces
significant challenges, with low bioavailability at the core of the
problem. The poor water solubility and inefficient gastrointestinal
absorption of curcumin make it difficult to reach effective

therapeutic concentrations in the body. To address this problem,
the recent development of nanomedicine delivery systems has
provided an innovative pathway to break through this limitation
by significantly improving its pharmacokinetic properties through
carrier modification (Figure 7).

5.1 Curcumin liposomes

Since curcumin is a difficult drug to dissolve in water, liposomes
were prepared to improve the water solubility and bioavailability of
curcumin. The DSPE-PEG2000 modified liposomes constructed by
film hydration method had a particle size of about 110–116 nm and
an encapsulation rate of 62.5%. Further surface modification by anti-
transferrin antibody could specifically recognize the blood-brain
barrier transferrin receptor and significantly improve the uptake in
the blood-brain barrier cell model, which has potential therapeutic

FIGURE 7
The main nano-preparations of curcumin (Created with BioRender.com).
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effects in Alzheimer’s disease (Mourtas et al., 2014). Another study
utilized rabies virus glycoprotein-derived peptide (RDP)-modified
liposomes with a particle size of approximately 100 nm and an
encapsulation rate of greater than 85%, which was able to delay the
release of Cur compared to the cumulative release degree of ordinary
curcumin liposomes (Xiang et al., 2015).

5.2 Curcumin solid dispersions

The solid dispersion technology significantly improved
curcumin solubilization performance through the solubilizing
effect of the carrier material. The solid dispersion with octenyl
succinate hydroxypropyl phytoglycogen as the carrier showed a
solubility of 1,462.2 μg/mL in phosphate buffer, which was
16,000 times enhancement compared to curcumin, and the
15 min dissolution reached 50% (Xie and Yao, 2020). When
Utage® polyacrylic acid resin and hydroxypropyl methyl cellulose
were used as the composite carrier, the cumulative drug release
could reach more than 90%, which was a 9.7 times enhancement
over the free drug and significantly increased the solubility of
curcumin (Zhang X. Y. et al., 2019).

5.3 Curcumin polymer nanoparticles

Curcumin polymer nanoparticles were prepared by emulsification
solvent volatilization method using polylactic acid/hydroxyacetic acid
copolymer as a carrier with an average particle size of about 100 nm,
encapsulation rate of (81.63 ± 1.96)%, and drug loading capacity of
(4.55 ± 0.15)%. In vivo studies in rats showed that compared to the free
drug, the nanoparticles increased the area under the concentration time
curve (AUC) by 2.6 times, prolonged the mean residence time (MRT)
by 1.7 times, and the brain drug AUC (0-t) increased from (31.33 ± 6.38)
μg·g-1·h-1 to (45.39 ± 2.08) μg·g-1·h-1, significantly improving drug
distribution in the central nervous system (Ye et al., 2017).

5.4 Curcumin polymer micelles

Self-assembled curcumin micelles based on hydroxypropylated
debranched starch showed an encapsulation efficiency of 70.3% and
a drug loading of 5.33% when the amylose content was at its lowest,
with water solubility increased by 300 times compared to the raw drug.
In vitro release experiments demonstrated a cumulative release of 78%
at 6 h, while free drug showed almost no release. Cytotoxicity tests
indicated that within the concentration range of 62.5–1,000 μg/mL, the
survival rate of Caco-2 cells remained above 90%, and hemolysis was
below 5%, exhibiting good biocompatibility and safety (Zhi et al., 2021).

6 Conclusion

Curcumin, a natural polyphenolic compound, exhibits broad
research and application prospects due to its multi-dimensional
regulatory effects on several key inflammatory pathways, including
NF-κB, MAPK, JAK-STAT, and the NLRP3 inflammasome, as well
as its potential therapeutic value in various inflammation-related

diseases such as neurodegenerative disorders, inflammatory bowel
disease, atherosclerosis, diabetes, and cancer.

However, its clinical application faces significant bottlenecks,
primarily manifested in its inherent extremely low water solubility,
poor bioavailability, and unfavorable pharmacokinetic profile. These
issues severely limit the realization of its therapeutic potential. To
overcome these core barriers, future research urgently needs to focus
on several key directions: First, studies on novel delivery systems such
as nanoliposomes, solid dispersions, polymeric nanoparticles, and
micelles should be deepened, with an emphasis on optimizing the
targeting specificity of carrier materials. This aims to significantly
enhance curcumin’s water solubility and bioavailability, prolong its
circulation time in vivo, and precisely increase its drug concentration
in target tissues. Second, more rigorously designed, high-quality
clinical studies must be conducted to provide conclusive evidence
validating curcumin’s actual efficacy and safety in specific diseases.
Simultaneously, multi-omics technologies including genomics,
transcriptomics, proteomics, and metabolomics should be
integrated to deeply analyze curcumin’s mechanism of action
within complex disease networks, particularly its synergistic effects
with other molecules or pathways. By comprehensively advancing
these strategies, it is expected to overcome the current limitations,
accelerate the transformation of curcumin from a natural product into
a safe and effective clinical drug, and ultimately provide innovative
therapeutic solutions for preventing and treating inflammation-
related diseases.
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