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Introduction: The growing limitations of animal models in drug testing and
biomedical research, including ethical concerns, high costs, and poor
translational relevance to human biology, have driven increasing interest in
computational simulation models. These models encompass in silico
approaches, pharmacokinetic/pharmacodynamic frameworks, molecular
simulations, and organ-on-chip technologies, offering greater precision in
replicating human physiological and pathological processes.
Methods: A systematic review was conducted to examine the role of
computational simulation models as alternatives to traditional animal-based
research. Relevant literature on their applications, predictive accuracy,
translational value, and alignment with ethical research practices was analyzed.
Results: Computational models were found to bridge critical gaps in predictive
accuracy and translational relevance, supporting drug development pipelines,
reducing late-stage failures, and enhancing opportunities for personalized
medicine. Additionally, their capacity to reduce reliance on animal models
aligns with global ethical initiatives promoting humane and sustainable
research practices.
Discussion: Simulation-based approaches represent a transformative
opportunity for biomedical research. While their potential to reshape drug
development and improve health outcomes is evident, challenges such as
standardization, scalability, and regulatory integration remain. Addressing
these barriers will be essential to fully realize the potential of computational
simulation models in replacing or reducing animal testing and advancing human-
centered biomedical innovation.
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Introduction

The use of animal models has long been integral to drug
testing and biomedical research, providing a foundation for
understanding disease mechanisms, evaluating therapeutic
efficacy, and ensuring safety before clinical trial (Kinter et al.,
2021; Domínguez-Oliva et al., 2023; Franco, 2013; Fernandes
et al., 2025). These models have enabled researchers to explore
complex biological systems, predict pharmacological responses,
and assess potential adverse effects (Chang and Grieder, 2024;
Soufizadeh et al., 2024). However, animal models are increasingly
recognized as having substantial limitations that hinder their
broader utility in modern biomedical research. One of the most
pressing issues is the ethical concern surrounding the use of
animals in experimental research (Kiani et al., 2022; Andersen
and Winter, 2019; Kekeçoğlu and Kocaman Kalkan, 2024). The
welfare of animals used in studies has become a significant point
of contention, prompting calls for more humane and ethically
justifiable research practices (Neziri et al., 2024; Grandin and
Deesing, 2022; Browning, 2022; Richter, 2024; McGill and
Threadgill, 2023; Kaplan et al., 2024). In addition to ethical
considerations, animal research demands substantial resources,
including specialized facilities and skilled personnel, which can
constrain the scale and duration of studies (Mertz et al., 2024;
Fontana et al., 2021; Neves et al., 2024; Saeidnia et al., 2015;
Khabib et al., 2022; Schluter, 2024; Rudroff, 2024). The scale of
animal use remains high globally, as reflected in reporting
frameworks aligned with international standards (Figure 1)
(Taylor and Alvarez, 2019). A major limitation lies in the poor
translational applicability of animal data to human biology
(Rhrissorrakrai et al., 2015). Interspecies differences in
genetics, immune function, and metabolism often lead to
discrepancies that undermine the predictive value of
preclinical findings (Singh et al., 2024; Mekada and Yoshiki,
2021; Fontaine and Davis, 2016; Pizzollo et al., 2018; Atkins
et al., 2020). As a result, many drugs that perform well in animal
studies ultimately fail in human trials, contributing to high
attrition rates and increased development costs (Van Norman,
2020; Van Norman, 2019).

Technological advancements have opened new avenues for
innovative alternatives, with simulation models emerging as a
transformative approach in biomedical research (Nithin et al.,
2023; Ingber, 2020; Madden et al., 2020; Huang et al., 2021; Craig
et al., 2023). These models encompass a broad spectrum of
technologies, including in silico computational methods, and
organ-on-chip systems (Agamah et al., 2020; Stavrou et al., 2023;
Kutluk et al., 2023; Alonso-Roman et al., 2024; Koyilot et al., 2022;
Abadi et al., 2020) (Table 1). Designed to replicate human
physiological and pathological processes with remarkable precision,
simulation models offer the potential to overcome many of the
challenges associated with traditional animal models (Madden
et al., 2020). In silico methods utilize sophisticated computational
algorithms to simulate complex biological systems, enabling
predictions of drug behavior, efficacy, and safety across multiple
scenarios (Hasan et al., 2023; Saldanha et al., 2023). These models
integrate data from various sources, including genomics, proteomics,
and pharmacokinetics, to construct virtual representations of human
biology (Shaker et al., 2021). Meanwhile, organ-on-chip platforms

have revolutionized experimental research by recreating the structural
and functional microenvironment of human tissues (Srivastava et al.,
2024; Ma et al., 2021). These microscale systems combine
bioengineering and cellular biology to replicate key aspects of
organ physiology, allowing for dynamic and high-fidelity studies of
drug responses, toxicity, and disease mechanisms (Cho et al., 2023;
Huang et al., 2024; Monteduro et al., 2023).

Beyond ethical advantages, simulation models enhance
predictive accuracy and narrow the translational gap common
with animal studies (Geng et al., 2024; Laman et al., 2017). As a
result, simulation models enable researchers to predict drug
behavior, efficacy, and safety more effectively, minimizing the
risk of late-stage failures in clinical trials (Alqahtani, 2023; Alves
et al., 2021). Additionally, by providing a scalable and resource-
efficient alternative, these models can lower the costs associated with
preclinical research and drug testing (Shaker et al., 2021; Franzen
et al., 2019; Arsène et al., 2023). The integration of human-relevant
data generated by simulation models has profound implications for
the efficiency of drug development pipelines (Agamah et al., 2020; Si
et al., 2021; Azizgolshani et al., 2021; Na et al., 2020; Salahshoori
et al., 2024). Moreover, simulation models allow researchers to test
multiple variables simultaneously, accelerating the discovery and
optimization of novel therapies while maintaining high levels of
reproducibility and control (Cronin et al., 2023; Riggs et al., 2021;
Solim et al., 2022).

Additionally, simulation models align with global initiatives
advocating for the refinement, reduction, and replacement of
animal use in research, as supported by regulatory bodies,
funding agencies, and international ethical guidelines (National
Institute of Environmental Health Sciences, 2025; Singer and
Akhtar, 2024; Hutchinson et al., 2022). The U.S. Food and Drug
Administration (FDA) has been at the forefront of these efforts,
actively promoting the integration of simulation technologies into
drug development and regulatory processes. For instance, the FDA’s
Predictive Toxicology Roadmap emphasizes the use of
computational models, in silico simulations, and other non-
animal methodologies to improve the prediction of drug safety
and efficacy (FDA, 2017). The agency has also launched
initiatives such as the Innovative Science and Technology
Approaches for New Drugs (ISTAND) program, which supports
the qualification of novel tools, including simulation models, to
complement traditional approaches (FDA, 2024). Moreover, the
FDA Modernization Act 2.0 has recently expanded the regulatory
framework to include alternative methods, such as organ-on-chip
systems and computational modeling, as acceptable tools for drug
testing (Han, 2023; Adashi et al., 2023). These initiatives
demonstrate the FDA’s commitment to advancing simulation
models as part of a broader effort to enhance the scientific and
ethical standards of biomedical research.

However, the integration of simulation models into mainstream
research and regulatory frameworks remains limited. Critical
challenges such as validating and standardizing these models,
ensuring scalability, and establishing reliability in capturing
complex biological systems must be addressed (Avramouli, 2020)
(Table 1). Adopting simulation models also necessitates a
paradigm shift in research, fostering multidisciplinary
collaboration among bioengineers, computational scientists, and
regulatory experts.
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The objective of this systematic review is to provide a comprehensive
evaluation of the current landscape of simulation models in drug testing
and biomedical research. It examines their applications, strengths, and
limitations while exploring their future potential as viable alternatives to
animalmodels. By synthesizing evidence fromdiverse sources, the review
highlights the transformative role simulation models can play in
advancing biomedical science while addressing the key challenges that
must be overcome for broader adoption.

Methods

This systematic review aimed to comprehensively evaluate the
potential of simulation models as alternatives to animal models in
drug testing and biomedical research. The study followed a
predefined protocol registered on the International Platform of
Registered Systematic Review and Meta-Analysis Protocols
(INPLASY) under registration number INPLASY2024110028,

TABLE 1 Comparison of key simulation models in drug testing and biomedical research.

Model type Validation
metrics

Endpoints Strengths Weaknesses Key references

Pharmacokinetics/
Pharmacodynamics
(PK/PD)

R2, MAE, Clinical
Concordance

Drug absorption,
distribution,
metabolism, elimination

Mechanistic clarity, human-
relevant, scalable

Requires extensive data,
may lack immunological
complexity

Chan et al. (2019), Van
Tongeren et al. (2021),
Kammala et al. (2023)

In Silico Molecular Docking Binding Affinity
(kcal/mol), AUC

Drug-target binding,
toxicity prediction

High-throughput, cost-
effective, guides compound
prioritization

Dependent on structural
data, limited by docking
assumptions

Adnan et al. (2020), Alam
et al. (2021), Alauddin
et al. (2024), Paul et al.
(2021), Rani et al. (2024)

Machine Learning (ML) &
Deep Learning (DL)

Accuracy, AUC,
MCC, F1-score

Toxicity classification,
drug absorption,
structure prediction

Data-driven, high accuracy,
interpretable (with
explainability)

Requires quality data, risk
of overfitting, black-box
nature

Di Stefano et al. (2024),
Feng et al. (2021), Sharma
et al. (2023), Chen et al.
(2023), Li et al. (2023),
Zhou et al. (2024), Im
et al. (2023)

Organ-on-Chip TEER Values,
Permeability
Correlation (r)

Tissue permeability,
drug response, barrier
function

Mimics physiological
microenvironments, real-
time response

Expensive setup, limited
scalability, technical
complexity

Kim et al. (2023),
Kammala et al. (2023)

Physiologically-Based
Pharmacokinetic Models
(PBPK)

Fold-Deviation from
Clinical PK, R2

Plasma concentration,
clearance prediction

Accurate exposure
simulation, reduces in vivo
studies

Needs in vitro data
integration, species-specific
limitations

Chan et al. (2019), Van
Tongeren et al. (2021),
Leedale et al. (2018)

Generative Models (such as
AnimalGAN, and
TransOrGAN)

Similarity Scores,
Consistency with Real
Data

Clinical pathology,
transcriptomic
variability

Handles biological variability,
predicts unseen outcomes

Complex training,
potential overfit, validation
still evolving

Chen et al. (2023), Li et al.
(2023)

FIGURE 1
The top ten animal-using countries based on actual, adjusted and estimated figures. The figures represent the numbers of procedures with animals.
Figures were adjusted according to the European Union (EU) definitions and estimated figures were derived from the statistical model. Taken from Taylor
and Alvarez (2019) under the Creative Commons Attribution-NonCommercial 4.0 License.
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ensuring methodological rigor and transparency throughout the
review process.

Search strategy

A systematic search was conducted across databases PubMed
(MEDLINE), Embase, Scopus, and ScienceDirect. Keywords and
Medical Subject Heading (MeSH) terms such as “simulation
models,” “in silico models,” “computational simulations,” “animal
alternatives,” “drug testing,” and “biomedical research” were
employed in various combinations using Boolean operators. As
narrative or systematic review articles were available covering
studies up to 2017, the searches were performed between
1 January 2018 to 1 September 2024.

The selection of search terms was guided by an iterative strategy
that integrated subject matter expertise, preliminary scoping
searches, and structured vocabularies, including MeSH (Medical
Subject Headings) for PubMed and Emtree for Embase. Core
concepts central to the study such as “in silico models,” “drug
toxicity,” and “organ on chip” were initially identified and
systematically expanded using relevant synonyms, hierarchical
terms, and Boolean logic to optimize search precision and recall.
Keyword refinement was informed by term frequency analysis and
relevance assessments conducted during pilot searches, ensuring
alignment with current terminologies and indexing practices
across databases.

Eligibility criteria

Studies were included in this review if they focused on
computational simulations, in silico models, or predictive
algorithms designed to assess drug responses, toxicity, or disease
progression. Eligible models included pharmacokinetics/
pharmacodynamics (PK/PD) models, systems biology
frameworks, molecular simulations, virtual organs, tissue models,
and multi-scale simulations. Applications of these models in drug
testing (such as efficacy, safety, toxicity), disease modeling (such as
cancer, diabetes, neurodegenerative diseases), and other biomedical
research areas (such as organ function simulations, virtual clinical
trials) were considered relevant. Additionally, studies were required
to provide direct comparisons between simulation models and
traditional animal models, focusing on predictive accuracy,
reliability, and ethical or cost considerations.

Exclusion criteria encompassed studies solely focused on
traditional animal models or in vitro approaches without any
simulation component. Reviews, commentaries, and opinion
articles lacking primary data were excluded, as were studies with
insufficient methodological detail to allow thorough assessment.
These criteria ensured a focused and meaningful synthesis of the
available evidence.

Study selection

The study selection procedure was performed in three sequential
stages: title screening, abstract screening, and full-text assessment.

Three independent reviewers (AH, HA, and MS) systematically
evaluated all retrieved records to determine their eligibility
according to the inclusion criteria. Inter-rater reliability was
assessed at each stage using Cohen’s kappa (κ) statistic.
Interpretation of κ values followed established thresholds:
values < 0 indicated no agreement; 0.00–0.20 denoted slight
agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate
agreement; 0.61–0.80, substantial agreement; and 0.81–1.00,
almost perfect agreement. Consistent with prior literature, a κ
value exceeding 0.60 was considered indicative of substantial
agreement, thereby supporting the methodological rigor of the
selection process. Any discrepancies between reviewers were
resolved through discussion with another reviewer or senior
authors (RM and KH).

Data extraction

Data from the included studies were systematically extracted
using a structured template to ensure consistency and
comprehensiveness. For each study, detailed characteristics of the
simulation models were captured, such as model type,
computational methods, algorithms, input parameters, and
validation strategies. The model applications were categorized
according to specific disease areas such as cardiovascular,
neurological, metabolic, and infectious disorders allowing for
domain-relevant insights into drug testing, safety profiling, and
disease modeling. Additionally, outcomes were analyzed for
predictive accuracy, translational relevance, cost-effectiveness,
reduction in animal usage, and alignment with ethical
considerations. This rigorous extraction process ensured a
thorough evaluation of the studies’ contributions to the field.

Risk of bias and quality assessment

The methodological quality and potential for bias in the
included studies were appraised using standardized instruments
developed by the Joanna Briggs Institute (JBI). The choice of tool
was based on study design and adapted as appropriate for
computational research contexts. For quasi-experimental studies,
the JBI Critical Appraisal Checklist for Quasi-Experimental Studies
was utilized. This tool systematically evaluates internal validity
across multiple domains, including the clarity of cause-effect
relationships, presence and comparability of control groups,
consistency in intervention delivery, reliability of outcome
measurement, and adequacy of follow-up.

For studies evaluating diagnostic test accuracy using computational
models, a modified version of the JBI Critical Appraisal Checklist for
Diagnostic Test Accuracy Studies was utilized. This adaptation
addressed core domains relevant to computational methodologies,
such as dataset representativeness, class balancing, exclusion criteria,
independence of test generation, threshold pre-specification, reference
standard validity, blinding of training and evaluation, dataset
partitioning, validation consistency, and data completeness.

Each study was independently reviewed by three evaluators
(AH, HA, and MS), with the findings compiled into a
comprehensive risk of bias table. Any discrepancies between
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reviewers were resolved through discussion and consensus or
discussion with the senior authors (RM and KH), ensuring a
robust and unbiased assessment process.

Data synthesis

Given the anticipated heterogeneity in study designs and
outcomes, a narrative synthesis was conducted to provide a
structured and comprehensive analysis. Extracted data were
categorized by application type, such as drug testing and disease
modeling, and systematically analyzed to identify patterns,
strengths, and limitations of simulation models in comparison to
traditional animal models. Key outcomes, including predictive
accuracy, translational relevance, cost-effectiveness, and ethical
considerations, were emphasized. Comparative analyses further
delineated areas where simulation models demonstrate significant
advantages and highlighted opportunities for improvement and
further development.

Results

A total of 202 records were identified through database searches.
After removing 22 duplicates, 180 records were screened for
relevance. Of these, 127 studies were excluded based on titles and
abstracts. The remaining 53 studies were assessed for eligibility.
Eight full-text articles were excluded, six due to unavailability and
two for not meeting the inclusion criteria. Ultimately, 45 studies
were included in the qualitative synthesis. The study selection
process is detailed in the PRISMA flow diagram (Figure 2). A
summary of the studies’ characteristics is shown in
Supplementary Table S1.

Inter-rater reliability was evaluated using Cohen’s kappa (κ)
statistics to quantify the level of agreement between reviewers at
each stage of study selection. The analysis demonstrated
substantial agreement, with a κ value of 0.746 for title and
abstract screening and 0.866 for full-text screening, indicating
a high degree of consistency and methodological rigor in the
screening process.

FIGURE 2
A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of study selection process.
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Risk of bias assessment

The risk of bias across the included studies was systematically
evaluated using appropriate tools tailored to each study design. For
quasi-experimental studies, domains assessed included selection
bias, performance bias, detection bias, attrition bias, and
reporting bias (Figure 3). The majority of these studies
demonstrated a low to moderate risk of bias, with some concerns
arising mainly in blinding and confounding domains.

For studies assessing diagnostic test accuracy, a modified tool
was used to accommodate computational approaches (Figure 4).
Key areas of concern included patient selection, index test conduct,
reference standard applicability, and flow and timing. While most
studies scored favorably, some exhibited potential bias related to the
lack of clarity in test procedures and standardization.

Applications of computer modelling for
various disorders

Gastrointestinal and hepatic disorders

In the field of gastrointestinal and hepatic disorders, recent research
has increasingly emphasized the integration of computational
simulations with in vivo experimentation to enhance both the
discovery and mechanistic validation of therapeutic compounds,
particularly those derived from natural sources. This dual-modality
approach allows researchers not only to observe pharmacodynamic

outcomes in animal models but also to interrogate molecular
interactions at the target-receptor level using in silico techniques. A
study evaluated themethanolic leaf extract of Cuscuta reflexa inmurine
models of diarrhea and oxidative stress (Adnan et al., 2020). The extract
produced a statistically significant reduction in castor oil-induced
diarrhea, while biochemical assays revealed decreased
malondialdehyde (MDA) levels and increased catalase (CAT) and
superoxide dismutase (SOD) activity, indicating a strong antioxidant
response. Subsequent molecular docking analysis revealed that active
constituents such as kaempferol and quercetin exhibited high binding
affinities to muscarinic acetylcholine receptors and cyclooxygenase-2
(COX-2), with docking scores ranging from −8.1 to −9.4 kcal/mol,
supporting their roles in modulating intestinal motility and
inflammatory pathways (Adnan et al., 2020).

Similarly, the antidiarrheal, antimicrobial, and antioxidant
potential of Colocasia gigantea leaf extract was demonstrated in a
separate study (Alam et al., 2021). In vivo assays in mice showed dose-
dependent reductions in diarrhea frequency and improvements in
oxidative stress markers. In silico molecular docking further
substantiated these findings by demonstrating that bioactive
phytochemicals such as β-sitosterol and orientin showed strong
binding to targets including toll-like receptor 4 (TLR4) and
inducible nitric oxide synthase (iNOS), with predicted binding
energies exceeding −9 kcal/mol. These computational insights not
only corroborated the in vivo effects but also elucidated probable
molecular mechanisms, thereby accelerating the transition from
empirical pharmacological observations to target-specific drug
development strategies.

FIGURE 3
Risk of bias assessment of the included quasi-experimental studies: This figure presents the risk of bias assessment of the included studies based on
the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Quasi-Experimental Studies. The color coding represents the level of bias: green denotes
low risk of bias, yellow indicates unclear risk, and red suggests high risk of bias.
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Beyond the discovery of therapeutic mechanisms, the
application of computational modeling in gastrointestinal and
hepatic research has increasingly shifted toward predictive
toxicology and pharmacokinetics. This paradigm is exemplified
by a study that utilized a support vector machine (SVM)-based
classifier trained on pharmacokinetic and toxicological datasets to
predict drug-induced liver injury (DILI) across a large panel of

compounds (Albrecht et al., 2019). The model achieved a balanced
accuracy of 81 percent and demonstrated the ability to classify DILI
risk categories in concordance with human clinical data. In a
complementary study, an ensemble machine learning (ML)
approach was applied by incorporating random forest (RF) and
deep learning (DL) models to predict hepatocellular hypertrophy
induced by chemical exposure (Ambe et al., 2018). By using over

FIGURE 4
Risk of bias assessment of the included diagnostic test accuracy studies: This figure presents the risk of bias assessment of the included studies based
on the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Diagnostic Test Accuracy Studies. The color coding represents the level of bias: green
denotes low risk of bias, yellow indicates unclear risk, red suggests high risk of bias, and blue represents information not available.

Frontiers in Pharmacology frontiersin.org07

Mittal et al. 10.3389/fphar.2025.1644907

mailto:Image of FPHAR_fphar-2025-1644907_wc_f4|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1644907


400 molecular descriptors and toxicogenomic data, the models
achieved sensitivity values exceeding 85 percent, indicating strong
predictive capability.

In the domain of intestinal pharmacokinetics, a study developed
a hybrid in vitro–in silico framework by integrating pH-dependent
Caco-2 permeability assays with Light Gradient Boosting Machine
(LightGBM) models to predict intestinal absorption of
219 structurally diverse compounds (Kamiya et al., 2021). Their
model achieved a coefficient of determination (R2) of 0.81 and a
mean absolute error (MAE) of 0.37 log units when predicting
human jejunal effective permeability (Peff), outperforming
traditional regression-based approaches. Importantly, the
inclusion of pH variability in both experimental and
computational models allowed for improved simulation of the
gastrointestinal environment, enhancing translational relevance.

Cardiovascular diseases

Cardiovascular diseases (CVDs) remain the leading cause of
morbidity and mortality worldwide, necessitating the continuous
development of effective, safe, and accessible therapeutic
interventions. Traditional drug discovery approaches in this
domain have been time-consuming, resource-intensive, and
heavily reliant on animal experimentation. However, the
integration of computational modeling into cardiovascular
research has revolutionized early-phase therapeutic screening and
mechanistic exploration. In silico approaches, particularly molecular
docking and simulation techniques, enable rapid identification of
promising drug candidates by modeling interactions between
bioactive compounds and disease-relevant targets, significantly
reducing the experimental burden. A study highlighted the
critical role of computer modeling in drug discovery by
demonstrating how molecular docking simulations can effectively
guide and streamline the identification of therapeutic candidates
(Alauddin et al., 2024). In this study, over 50 peptides derived from
enzymatically hydrolyzed soymilk proteins were screened in silico
against angiotensin-converting enzyme (ACE), a central regulator of
blood pressure. The tetrapeptide FFYY (Phe-Phe-Tyr-Tyr) showed
the strongest inhibitory potential, with a docking score of −10.2 kcal/
mol, indicating a high binding affinity. Structural analysis revealed
that FFYY formed key interactions with ACE residues His383,
Glu384, and Tyr523, suggesting a competitive inhibition
mechanism. This computational prediction informed the
selection of FFYY for in vivo testing, where oral administration
at 10 mg/kg/day over a 28-day period led to a 21 mm Hg reduction
in systolic blood pressure (SBP) in spontaneously hypertensive rats.
For comparison, a reference group treated with captopril, a clinically
approved first-generation ACE inhibitor known for its potent
vasodilatory and antihypertensive effects, exhibited a 23 mm Hg
reduction in SBP, demonstrating the comparable efficacy of FFYY.

In addition to lowering blood pressure, the FFYY-treated group
exhibited a 35 percent reduction in plasma angiotensin II levels, a
30 percent decrease in serum aldosterone, and enhanced oxidative
stress profiles, including a 28 percent increase in superoxide
dismutase (SOD) activity and a 25 percent decrease in
malondialdehyde (MDA) levels. These biochemical changes
suggest that FFYY exerts a multifaceted cardioprotective effect,

not only through Renin–Angiotensin–Aldosterone System
(RAAS) modulation but also by mitigating oxidative stress, which
is known to contribute to vascular damage and hypertension
progression.

Histological examination of cardiac and renal tissues provided
further evidence of therapeutic benefit and safety. Unlike untreated
hypertensive controls, which showed clear signs of vascular
congestion, myocardial hypertrophy, and glomerular distortion,
the FFYY-treated rats maintained normal tissue architecture with
no evidence of fibrosis, cellular necrosis, or inflammatory
infiltration. This indicates that FFYY not only reduces
hemodynamic stress but may also prevent structural damage to
target organs commonly affected by chronic hypertension. By
prioritizing bioactive compounds through in silico modeling, this
study minimized the need for broad-spectrum animal testing while
offering a mechanistically informed, ethically advantageous, and
cost-effective pipeline for antihypertensive drug discovery.

Diabetes and related disorders

In the category of diabetes and related metabolic disorders,
recent research has increasingly relied on computational tools,
particularly molecular docking, to complement in vivo and
in vitro methods in the evaluation of novel therapeutic
candidates. Across multiple studies, plant-derived compounds
have emerged as particularly promising candidates for diabetes
management, often demonstrating hypoglycemic, insulin-
sensitizing, and antioxidant effects in animal models. For
example, a comprehensive study explored extracts from small
cardamom and yellow mustard seeds (Paul et al., 2021). These
extracts were found to significantly reduce fasting blood glucose
levels in streptozotocin-induced diabetic rats. In silico docking
analyses further revealed that key bioactive components such as
1,8-cineole and allyl isothiocyanate exhibited strong binding
affinities to targets like alpha-amylase and alpha-glucosidase, with
binding energies of −8.5 kcal/mol and −9.1 kcal/mol, respectively.
These enzymes are involved in the breakdown of complex
carbohydrates into glucose, and their inhibition is a well-
validated therapeutic strategy to reduce postprandial blood
glucose spikes.

Similarly, the antidiabetic potential of Azanza garckeana was
investigated in streptozotocin-induced glycemic-impaired rats
(Lawal et al., 2022). The administration of the plant extract led
to a marked improvement in glycemic control, insulin sensitivity,
and pancreatic histoarchitecture. Docking studies revealed high
binding affinities of the major phytoconstituents to dipeptidyl
peptidase-IV (DPP-IV), an enzyme responsible for the
degradation of incretin hormones such as GLP-1, which play a
critical role in insulin secretion. The inhibition of DPP-IV by these
compounds was consistent with observed in vivo enhancements in
circulating insulin levels and beta-cell regeneration.

The pharmacological effects of Gynura procumbens, a plant
traditionally used in Southeast Asian medicine, were explored in a
different study (Tahsin et al., 2022). That study employed a
combination of animal models and molecular docking to evaluate
antidiabetic efficacy. Treatment with Gynura extracts resulted in
significant reductions in fasting blood glucose, total cholesterol, and
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triglycerides. Docking simulations showed strong interactions
between the plant’s flavonoids and several key metabolic
proteins, including glucokinase and peroxisome proliferator-
activated receptor gamma (PPARγ), that are involved in glucose
utilization and lipid metabolism. Binding energy values for these
interactions were reported between −7.2 and −9.8 kcal/mol,
indicating high affinity and potential for pharmacological action.

Another study examined the cardioprotective and antidiabetic
properties of Terminalia arjuna in diabetic rats (Mohanty et al.,
2019). Their investigation combined in vitro enzyme assays, in vivo
efficacy tests, and molecular docking of its triterpenoids and
flavonoids. The study identified potent inhibition of DPP-IV,
with one compound, arjunolic acid, displaying a docking score
of −10.4 kcal/mol. This interaction correlated with observed
improvements in cardiac function and glycemic control in the
experimental animals, highlighting the systemic benefits of the
compound beyond glucose regulation alone.

In contrast to the traditional ligand–enzyme docking
approaches, a fundamentally different paradigm was introduced
by applying protein language modeling to the field of computational
immunology, specifically focusing on MHC class II peptide
presentation, a critical aspect of immune recognition and
autoimmunity in diabetes (Hartout et al., 2023). Their model,
AEGIS, utilizes a transformer-based DL architecture trained on
large-scale mass spectrometry-derived immunopeptidomic
datasets, enabling the identification of peptide–MHC binding
preferences with unprecedented accuracy. The model achieved an
area under the curve (AUC) greater than 0.95 for human HLA class
II alleles and 0.88 for non-obese diabetic (NOD) mice, significantly
outperforming established models such as NetMHCIIpan and
MARIA. Importantly, AEGIS demonstrated high predictive
fidelity for disease-relevant epitopes, including those derived
from insulin and glutamic acid decarboxylase, which are central
to the pathogenesis of type 1 diabetes. Unlike conventional docking,
which is limited by structural data availability and conformational
sampling constraints, AEGIS captures long-range sequence
dependencies and contextual motifs using self-attention
mechanisms; this allows it to generalize across alleles and species.
This approach enables rapid and scalable prioritization of candidate
autoantigens and supports the rational design of tolerogenic peptide
therapies, reducing reliance on in vitro binding assays and
preclinical animal models. By exemplifying the shift toward high-
dimensional, data-driven modeling in immunology, AEGIS
highlights the transformative potential of artificial intelligence to
accelerate therapeutic discovery in autoimmune diabetes while
enhancing biological relevance and ethical viability.

General toxicity and pharmacokinetic
prediction

The field of toxicology and pharmacokinetic prediction has
undergone transformative growth with the increasing integration
of artificial intelligence (AI) and computational modeling, driven by
the exponential availability of high-quality chemical, biological, and
toxicological datasets. These advancements have enabled the
development of sophisticated in silico platforms capable of
predicting complex toxicity endpoints and drug disposition

characteristics with unprecedented accuracy and efficiency.
Central to this progress is the shift toward ML- and DL-based
models, which are now routinely used to predict toxicological
outcomes directly from molecular structure, offering cost-
effective, scalable, and ethically favorable alternatives to
traditional animal testing.

A prominent example of this paradigm is VenomPred 2.0, a
multi-endpoint toxicity prediction platform that applies ensemble
machine learning algorithms integrated with explainable AI
methods such as SHAP (SHapley Additive exPlanations)
(Figure 5) (Di Stefano et al., 2024). This model has successfully
identified structural features associated with adverse effects,
including hepatotoxicity and androgenicity, achieving high
predictive performance with a Matthews correlation coefficient
(MCC) of up to 0.94. Similarly, an ensemble ML model was
developed that used molecular fingerprints to predict
reproductive toxicity, achieving an AUC of 0.920 (Feng et al.,
2021). That model provided transparent feature importance
rankings, enabling mechanistic interpretations of toxicity
pathways and enhancing model trustworthiness. Building on
these advancements, a multi-task deep neural network has been
designed to predict a wide range of clinical toxicities across
pharmacological classes (Sharma et al., 2023). This model not
only achieved an exceptional AUC-ROC of 0.99 but also
incorporated contrastive explanation methods to identify
substructural features contributing to toxicity, pushing the
boundaries of interpretability in deep learning applications.

Beyond standalone predictive performance, there is a growing
emphasis on benchmarking and validating these models in
regulatory contexts. A study evaluated the fitness-for-purpose of
acute oral toxicity QSAR models and demonstrated that such
models correctly or conservatively predicted Globally
Harmonized System (GHS) toxicity categories for approximately
95 percent of tested compounds (Bercu et al., 2021). Balanced
accuracy across all hazard categories reached 80 percent,
highlighting the readiness of these models for implementation in
safety decision-making pipelines.

Complementary to these structure-based approaches, integrated
in vitro–in silico frameworks have gained traction for systemic
toxicity and pharmacokinetic prediction, particularly in human-
relevant exposure modeling. A bottom-up physiologically based
biokinetic (PBK) model from in vitro assay data was constructed,
and this model was shown to predict plasma concentrations and
clearance values within a two-fold deviation from observed human
pharmacokinetics (Chan et al., 2019). This level of precision
supports its use in early human exposure assessments, replacing
or supplementing animal pharmacokinetic studies. This was further
exemplified by combining PBK modeling with quantitative in vitro-
to-in vivo extrapolation (QIVIVE) to perform anti-androgenic risk
assessments using the Dietary Comparator Ratio (DCR) framework
(Van Tongeren et al., 2021). That method enabled accurate
translation of in vitro effects into human-relevant exposure
limits, addressing key regulatory challenges in endocrine disruption.

Moreover, transcriptomics-guided models have added another
dimension to predictive toxicology. Gaussian process regression was
utilized to develop a model predicting renal toxicity in rats based
solely on human in vitro gene expression and molecular descriptors
(Gardiner et al., 2020). With a reported R2 of 0.661, this model
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underscored the potential of human-based omics data to predict
systemic outcomes traditionally assessed through animal
experimentation. Mechanistic modeling has also been employed
to simulate receptor-mediated and off-target toxicities. For instance,
the integration of PBPK modeling, metabolic control analysis, and
Petri net-based signaling frameworks was used to characterize
complex tissue-specific responses across multiple administration
routes (Leedale et al., 2018). This approach enabled simulation of
dynamic feedback loops and emergent toxic effects in a systems
biology context, moving beyond black-box predictions.

Computational fluid dynamics (CFD) has further enhanced
prediction of drug behavior at the tissue level. A hybrid model
integrated CFD with in vitro nanomaterial transport assays to
simulate intracellular drug diffusion within live tissues (Price and
Gesquiere, 2020). The results exhibited a high correlation (r = 0.861)
between predicted and experimentally observed spatial drug
distributions, validating the model’s applicability to real-time
tissue pharmacokinetics.

Most notably, recent innovations in generative modeling have
opened new frontiers in non-animal-based toxicology. First was the
introduction of AnimalGAN, a generative adversarial network
trained on historical animal study data to predict clinical
pathology parameters such as liver enzymes and hematological
markers (Figure 6) (Chen et al., 2023). The model achieved
82.85 percent consistency with external DrugMatrix validation
data and outperformed traditional QSAR models in predictive
accuracy for key endpoints. In a complementary effort,
TransOrGAN is a CycleGAN-based model capable of mapping
transcriptomic data across biological contexts such as organ type,
age, and sex in rats (Li et al., 2023). With cosine similarity scores
exceeding 0.98 between synthetic and real gene expression profiles,

TransOrGAN has demonstrated the feasibility of modeling complex
biological variability in silico, thus supporting personalized
toxicological predictions without the need for stratified animal
studies (Figure 7).

Infectious diseases

Computational modeling has emerged as a central component of
infectious disease research, offering powerful tools to accelerate
therapeutic discovery, elucidate host-pathogen interactions, and
address the growing threat of antimicrobial resistance. The
application of artificial intelligence (AI), machine learning (ML),
and simulation-based platforms allows for the efficient analysis of
large-scale biological datasets, modeling of complex systems, and
prediction of drug-target interactions. These in silico approaches
provide high-throughput capabilities for compound screening,
mechanistic exploration, and simulation of infectious processes at
both molecular and systems levels. Importantly, they also offer a
more time-efficient, cost-effective, and ethically responsible
alternative to traditional experimental methods, reducing reliance
on animal testing and extensive laboratory-based assays.

Several recent studies have demonstrated the effectiveness of
combining computational tools with experimental validation in the
discovery of anti-infective agents. Biostimulated sesame sprout
extracts were explored for their activity against Leishmania
mexicana (Garduno-Felix et al., 2023). In vitro studies and
infected macrophage models confirmed significant
antileishmanial activity, while molecular docking revealed strong
binding affinities, ranging from −8.4 to −9.6 kcal/mol, to essential
parasite enzymes such as trypanothione reductase and pteridine

FIGURE 5
SHAPmethodworkflow: (I) Toxicity prediction; (II) Assessing features importance obtained from themodels of the best consensus combination; (III)
Retro-mapping of feature impact to highlight the moieties that strongly influence the toxicity prediction. Taken from Di Stefano et al. (2024) under the
Creative Commons License (CC-BY 4.0).
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reductase 1. Similarly, another study investigated a
mastoparan–chitosan nanoconstruct that targets multidrug-
resistant Acinetobacter baumannii and demonstrated therapeutic
efficacy in a murine sepsis model (Hassan et al., 2021). Molecular
dynamics simulations and docking analyses supported these
findings by confirming the nanoconstruct’s membrane-targeting
mechanism and structural stability during host-pathogen
interaction.

In addition to studies that integrate experimental data, fully
computational approaches have advanced early-stage therapeutic
screening and host-pathogen interaction modeling. For example,
there was the introduction of DeepLysin, a deep learning pipeline
designed to mine bacteriophage genomes for antibacterial lysins
(Zhang et al., 2024). Trained on curated lysin datasets, the model
achieved precision and recall rates above 92 percent and enabled the
identification of numerous previously uncharacterized lysin

FIGURE 6
Overview of AnimalGAN model and workflow. (a) Schematic of model development using 80% of TG-GATEs data with compound- and dose-
specific inputs. (b)Model evaluation on the remaining 20% of data. (c,d) Boxplots showing RMSE and cosine similarity between synthetic and real data. (e)
t-SNE visualization comparing distributions of real and generated data. Taken from Chen et al. (2023) under a Creative Commons Attribution
4.0 International License.

Frontiers in Pharmacology frontiersin.org11

Mittal et al. 10.3389/fphar.2025.1644907

mailto:Image of FPHAR_fphar-2025-1644907_wc_f6|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1644907


candidates. Next, ML algorithms were applied to predict phage-host
interactions using protein domain composition data, attaining F1-
scores above 90 percent (Leite et al., 2018). This model offers a
scalable solution for identifying suitable phage therapy candidates,
particularly in the context of antibiotic-resistant infections.

In another novel application of computational modeling, the
area under the effect curve (AUEC) was introduced as a simulation-
based index for evaluating anti-infective efficacy (Chen et al., 2022).
Unlike conventional pharmacokinetic or pharmacodynamic
metrics, AUEC incorporates both concentration and duration of
drug exposure to better reflect pharmacological activity over time.
Simulation studies showed that AUEC provided superior predictive
performance for dose-response outcomes across species and
infection models, enhancing the accuracy of cross-species dose
extrapolation and supporting its use in translational modeling.

Neurological disorders

In the field of neurological disorders, computational modeling
has become an essential tool for accelerating therapeutic discovery,
optimizing drug design, and reducing dependence on traditional
animal-based research. The integration of molecular docking, ML,
and microphysiological simulation platforms has enabled precise
identification of bioactive compounds, prediction of
pharmacokinetic behavior, and modeling of complex biological
barriers such as the blood-brain barrier (BBB). These approaches

are especially valuable in neurology, where drug delivery to the
central nervous system and mechanistic validation of
neuroprotective agents present considerable challenges.

One study employed molecular docking to identify
phytoconstituents in the Ficus racemosa plant with strong
binding affinity to AChE, β-secretase, and γ-secretase, targets
implicated in the pathogenesis of Alzheimer’s disease (Rani et al.,
2024). Docking scores for key compounds such as lupeol, racemosic
acid, and quercetin ranged between −9.2 and −10.4 kcal/mol, with
hydrogen bonding and hydrophobic interactions observed at the
active sites of these enzymes. In vivo experiments in rats validated
that these plant extracts exhibited neuroprotective effects, as
evidenced by a 32 percent increase in SOD activity and a
27 percent increase in GSH levels relative to untreated controls.
Histopathological evaluations of brain, liver, and kidney tissues
revealed preserved cellular morphology, with no observable
toxicity, supporting the compound’s safety profile. These results
indicate that computational modeling was instrumental in guiding
both compound selection and mechanistic interpretation.

Similarly, a ML scoring function to identify nonbioavailable
substructures was developed with the goal of designing improved
selective serotonin reuptake inhibitors (SSRIs) (Wang et al., 2023).
Their model, trained on physicochemical descriptors and absorption
data from over 150 serotonergic compounds, identified a specific
substructure in vilazodone associated with low gastrointestinal
permeability. After redesigning the molecule to replace the
identified moiety, the modified compound demonstrated a

FIGURE 7
Overview of TransOrGANmodel. The input transcriptomic profile is encoded and combinedwith source and target organ conditions plus noise. The
generator produces a new profile compared to the target via a discriminator. The decoder reconstructs the full gene expression profile. Taken from
(Li et al., 2023) under the Creative Commons License (CC-BY-NC-ND 4.0).
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45 percent increase in oral bioavailability and a 1.8-fold increase in
systemic plasma exposure in in vivo pharmacokinetic studies. This
application of ML not only enhanced the drug’s performance but
also eliminated the need for multiple rounds of trial-and-
error synthesis.

Computation has also pioneered the advent of simulations to
predict BBB interactions and optimize CNS drug permeability. A
manufactured form of a microengineered physiological
system–tissue barrier chip that successfully replicated key
physiological features of the BBB was developed and validated
(Kim et al., 2023). The chip incorporated human-derived
endothelial cells, pericytes, and astrocytes within a dynamic
microfluidic platform, achieving trans-endothelial electrical
resistance (TEER) values above 200 Ω·cm2, consistent with
human BBB in vivo. The model was tested with multiple CNS-
penetrant and non-penetrant drugs, including caffeine, atenolol, and
diazepam, and demonstrated a Pearson correlation coefficient (r =
0.91) between predicted and reported in vivo permeability values.
Furthermore, the chip reproduced immune exclusion characteristics
of the BBB, enabling its use in studies of neuroinflammation and
immune cell trafficking in a human-relevant system.

Ocular toxicity

Computational modeling has become an increasingly important
tool in the field of ocular toxicology, offering reliable, scalable, and
ethically responsible alternatives to traditional in vivo assays such as
the Draize eye irritation test. Advances in ML, DL, and consensus
modeling have enabled the development of predictive models that
assess eye irritation and corrosion potential with a high degree of
accuracy and mechanistic interpretability. These tools are
particularly valuable in early-stage compound screening and
regulatory decision-making, research stages where rapid and
animal-free methods are urgently needed.

A comprehensive suite of ML and DL algorithms was applied to
the largest binary-labeled ocular toxicity dataset compiled to date
(Zhou et al., 2024). The approach included RF, XGBoost, and
LightGBM models, as well as graph-based architectures such as
Graph Convolutional Networks (GCNs) and Attentive Fingerprint
(Attentive FP) networks. These graph-based models captured
molecular structure–activity relationships more effectively than
traditional fingerprint descriptors. The highest-performing model,
Attentive FP, achieved an area under the ROC curve (AUC) of 0.915,
indicating strong discriminatory power in classifying ocular
toxicants. The study highlighted the capacity of deep learning
frameworks to capture subtle topological features of molecules
relevant to eye irritation, making them particularly well-suited
for early-stage filtering of chemical libraries.

In a parallel effort, a series of ML models including random
forest, gradient boosting, and consensus approaches was developed
and augmented with an active learning protocol that dynamically
prioritized data points for labeling based on model uncertainty (Di
et al., 2022). This strategy led to the construction of a high-
confidence training set and significantly improved predictive
performance. Their model for serious eye damage achieved an
accuracy of 0.972 and demonstrated excellent class separation,
making it an effective tool for structure optimization and risk

mitigation during compound design. The integration of active
learning not only enhanced model efficiency but also minimized
the number of experimental tests required for model refinement.

Further expanding the scope of ocular toxicity prediction,
investigators compiled the largest expertly curated multiclass
dataset for eye irritation and corrosion, encompassing multiple
severity categories aligned with regulatory guidelines (Silva et al.,
2021). They employed MuDRA-based quantitative
structure–activity relationship (QSAR) modeling to develop
classifiers capable of distinguishing among non-irritants and
mild, moderate, and severe irritants. The irritation model
achieved a balanced accuracy of 0.88, while the corrosion model
reached 0.85, with both models maintaining high sensitivity and
specificity. These models have strong potential for regulatory
acceptance, particularly in screening programs and safety
assessments under frameworks such as REACH and OECD
guidelines.

Oncology studies

Computational modeling has become a critical pillar in oncology
research, offering robust tools to predict drug efficacy, toxicity, and
resistance mechanisms with high precision while significantly
reducing reliance on animal models and early-phase clinical
trials. As cancer treatment moves increasingly toward
personalized and mechanism-based strategies, in silico approaches
are reshaping the landscape of translational oncology by facilitating
rational drug design, virtual clinical trial simulations, and systems-
level analysis of tumor behavior. These models harness structural,
pharmacokinetic, pharmacodynamic, and systems biology data to
guide therapeutic development and optimization across diverse
cancer types.

One notable application of structure-guided drug design is
demonstrated by the development of a proteolysis-targeting
chimera (PROTAC) aimed at degrading the oncogenic
transcription factor FOXM1, which is overexpressed in multiple
malignancies and associated with poor prognosis (Luo et al., 2021).
Using molecular docking and structural modeling, the authors
designed and prioritized candidate PROTACs based on their
predicted interaction with both the FOXM1 target and E3 ligase
components. The lead compound, 17 days, exhibited a degradation
concentration (DC50) of 1.96 μM in vitro and led to a 78.2 percent
reduction in tumor growth in xenograft-bearing mice.
Transcriptomic and protein-level analyses confirmed suppression
of EMT-related markers such as N-cadherin and vimentin,
validating the therapeutic mechanism. The computational design
phase significantly reduced the experimental workload by narrowing
the pool of viable candidates for in vivo validation, illustrating how
docking and modeling can streamline the PROTAC
development pipeline.

Complementing drug discovery efforts, a quantitative systems
pharmacology (QSP) model was utilized to simulate hematological
toxicity profiles of avadomide in patients with diffuse large B-cell
lymphoma (DLBCL) (Abbiati et al., 2021). The model integrated
pharmacokinetic and pharmacodynamic parameters with a detailed
mathematical representation of the neutrophil life cycle using a
system of ordinary differential equations. By generating virtual
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patient populations, the QSP framework predicted the frequency,
severity, and recovery trajectories of grade 3–4 neutropenia under
different dosing regimens. Simulations accurately mirrored clinical
observations, enabling the identification of dose schedules that
maintained efficacy while reducing hematologic adverse events.
This approach underscores how in silico toxicity modeling can be
employed in virtual dose-finding studies to optimize therapeutic
windows, inform trial design, and mitigate risk before first-in-
human testing.

Addressing tumor resistance mechanisms, patient-derived 3D
tumor spheroid models were integrated with a Boolean-based in
silico signaling network to study therapeutic resistance in KRAS-
mutant non-small cell lung cancer (NSCLC) (Peindl et al., 2022).
The computational model incorporated mutational profiles,
signaling topology, and phenotypic states such as epithelial-to-
mesenchymal transition (EMT) to simulate cellular responses to
monotherapy and combination regimens. Simulations revealed
variable sensitivity to KRASG12C inhibitors depending on EMT
status and predicted that co-targeting aurora kinase A (AURKA)
could overcome resistance in mesenchymal-like tumor subtypes.
These predictions were subsequently validated using 3D organoid
assays, confirming the synergy between KRAS and AURKA
inhibition. This hybrid modeling strategy exemplifies how
computational networks can contextualize drug response within
tumor heterogeneity, guiding precision combination therapies in
resistant cancers.

Pregnancy-related drug kinetics

Understanding drug disposition during pregnancy remains a
significant challenge due to the complex and dynamic physiological
changes in the maternal–fetal environment, as well as the ethical
constraints and logistical difficulties inherent in studying pregnant
populations. Computational modeling is increasingly recognized as
a critical tool to bridge these gaps by enabling the simulation of
maternal–fetal pharmacokinetics (PK) and the prediction of
placental drug transfer without reliance on invasive in vivo
testing. Through the integration of machine learning (ML),
quantitative structure–property relationships (QSPR), and
physiologically-based pharmacokinetic (PBPK) modeling,
researchers are now able to generate mechanistic insights and
make data-driven predictions about fetal drug exposure and
safety risks.

One example of such innovation is presented by the
development of a chirality-sensitive QSPR framework specifically
designed to predict the transfer of xenobiotics across the human
placental barrier (Gomatam and Coutinho, 2024). Traditional
QSAR models often lack stereochemical resolution, which limits
their utility in modeling enantioselective drug transport. To address
this, the authors applied the EVANS (EigenValue ANalySis)
methodology to encode molecular stereochemistry into
multidimensional descriptors, capturing both topological and 3D
conformational features of chiral compounds. These descriptors
were input into a suite of ML classifiers, including Naive Bayes,
k-nearest neighbors (KNN), RF, LR, and SVM. The best-performing
model, an SVM classifier, achieved a coefficient of determination
(R2) of 0.75 for regression tasks, while the LR model classified

compounds with 88 percent accuracy. This platform not only
allowed for early-stage screening of environmental and
pharmaceutical compounds but also provided interpretability by
identifying key structural features associated with higher
transplacental permeability, thereby improving risk stratification
during drug development.

In a complementary approach, in vitro microfluidic
experimentation was integrated with in silico PBPK modeling to
develop a hybrid maternal–fetal drug disposition platform
(Kammala et al., 2023). Their system, termed FMi-PLA-OOC
(Fetal Membrane–Placental Organ-on-Chip), mimicked the
structure and function of the human maternal-fetal interface
using a microengineered co-culture of trophoblast, endothelial,
and amniotic epithelial cells (Figure 8). The chip was used to
measure real-time transfer of several test compounds across the
placental barrier, and these empirical results were then incorporated
into a PBPK framework that simulated maternal and fetal plasma
concentration profiles. The in silico predictions from this model
demonstrated strong concordance with ex vivo human placental
perfusion data (R2 > 0.85) and significantly outperformed murine
models that failed to replicate human transfer kinetics in over
30 percent of test cases. The integration of microphysiological
systems with computational simulation allowed for precise
control over experimental variables such as flow rate, hormone
levels, and barrier integrity, which are often difficult to standardize
in animal studies.

Renal and urological disorders

The application of computational modeling in renal and
urological research has gained increasing traction as an efficient
and mechanistically grounded approach to accelerate drug discovery
and reduce reliance on traditional trial-and-error methodologies. By
integrating in silico predictions with in vivo validation, researchers
are leveraging advanced computational techniques to improve the
drug discovery process. Methods such as molecular docking,
molecular dynamics simulations, and pharmacokinetic modeling
are being used to identify, prioritize, and mechanistically assess
novel therapeutic agents for conditions such as benign prostatic
hypertrophy (BPH) and urolithiasis. These strategies not only
improve the precision of early-stage compound selection but also
enhance the translational relevance of preclinical findings.

In one study, sesamol, a phenolic compound derived from
sesame oil, was evaluated for its potential use in treating BPH
(Shah et al., 2021). The investigation began with molecular
docking simulations targeting the androgen receptor (AR), a
critical mediator in prostatic hyperplasia. Sesamol exhibited
strong binding affinity (−8.4 kcal/mol) to the ligand-binding
domain of AR, suggesting it could act as a functional modulator.
Further computational analysis using ADME (absorption,
distribution, metabolism, and excretion) profiling showed that
sesamol possessed favorable drug-likeness properties and high
gastrointestinal absorption potential. Molecular dynamics
simulations confirmed the stability of the sesamol–AR complex
over a 100-nanosecond trajectory, supporting the structural
robustness of the interaction. These in silico results guided
subsequent in vivo validation in testosterone-induced BPH rat
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models, where sesamol treatment significantly reduced prostate
weight and prostatic index by over 30 percent while
simultaneously restoring antioxidant enzyme levels, including
catalase and superoxide dismutase, and reducing lipid
peroxidation. This combination of predictive modeling and
biological verification illustrates how computational tools can
accelerate mechanistic screening and preclinical development.

Similarly, a high throughput docking pipeline to identify
bioactive phytochemicals with potential anti-urolithiatic effects
was utilized (Kale et al., 2024). A total of 38 plant-derived
compounds were screened against 11 protein targets associated
with urolithiasis, including calcium oxalate crystallization
modulators, antioxidant enzymes, and renal epithelial damage
mediators. Hesperidin, a citrus-derived flavonoid, emerged as the
lead candidate, showing high binding affinities to key proteins such
as Tamm–Horsfall protein, superoxide dismutase, and osteopontin,
with docking scores ranging from −9.0 to −10.3 kcal/mol.
Subsequent ADME-Tox modeling predicted low toxicity,
high oral bioavailability, and minimal blood–brain barrier
penetration, making hesperidin a suitable renal therapeutic
candidate. This compound was then tested in both Drosophila
melanogaster and murine models of sodium oxalate-induced
urolithiasis. In vivo results showed a 46 percent reduction in
renal crystal deposition, significant restoration of serum
creatinine and urea levels, and histological evidence of reduced
tubular injury. The inclusion of a non-mammalian model further

demonstrated the compound’s conserved efficacy across species,
enhancing its translational appeal.

Skin sensitization

The prediction of skin sensitization has significantly advanced
through the application of computational modeling, which now
offers scientifically rigorous and ethically preferable alternatives to
traditional in vivo assays such as the Local Lymph Node Assay
(LLNA) and Guinea Pig Maximization Test (GPMT). In silico
approaches have been particularly effective in early-stage hazard
identification, compound screening, and regulatory decision-
making. These models encompass a broad spectrum of
methodologies, from data-driven ML and QSAR modeling to
mechanistic immune simulations. Together, they represent a
comprehensive strategy for capturing the complexity of skin
sensitization pathways, including molecular initiation, immune
activation, and T-cell response.

Recent studies have focused on refining ML-based and QSAR-
integrated models to improve prediction accuracy, reduce data input
complexity, and facilitate broad adoption. For example,
HskinSensDS was developed as a decision-support system that
combines multiple independent QSAR models through
Dempster–Shafer theory, a mathematical framework for evidence
synthesis (Wang et al., 2024). This ensemble model achieved

FIGURE 8
Development of the multi-organ Fetal Membrane-Placenta feto-maternal interface Organ-On-Chip (FMi-PLA-OOC) platform Development of the
FMi-PLA-OOC platform. (A) Schematic of feto-maternal interface architecture. (B) Design of the microfluidic platform with layered cell chambers. (C)
Device visualization with dye-filled chambers. (D) Validation of cellular identity and function using imaging and marker expression. Taken from Kammala
et al. (2023) under the terms of the Creative Commons Attribution License (CC BY).
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classification accuracies of up to 88 percent and showed superior
robustness across different chemical classes. The fusion of evidence
from diverse QSAR predictors has allowed for greater certainty in
decision-making, particularly when dealing with ambiguous or
borderline compounds. Similarly, it was demonstrated that RF
models trained exclusively on simple physicochemical descriptors
such as logP, molecular weight, and hydrogen bond acceptors could
reach F1-scores as high as 96 percent, making it possible to perform
accurate skin sensitization screening using readily available
molecular information (Im et al., 2023). These findings highlight
the growing capability of lightweight, interpretable models in
delivering high predictive performance with minimal data
requirements.

Addressing domain-specific needs, PreS/MD was introduced as
a deep learning model tailored for chemicals released from medical
devices (Alves et al., 2022). Trained on historical GPMT data, the
model achieved a balanced accuracy of 72 percent and a high
negative predictive value (NPV = 0.82), indicating strong
reliability in identifying non-sensitizers—a critical factor in
regulatory screening where false positives can unnecessarily halt
product development. The model was specifically designed to
support ISO 10993-10 compliance, aligning with regulatory
requirements for biocompatibility assessment. In a broader
context, a standardized in silico framework for skin sensitization
hazard identification was proposed, integrating expert-curated
QSAR models with clear documentation for transparency and
reproducibility (Johnson et al., 2020). The protocol emphasized
mechanistic relevance, including model domains of applicability,
decision thresholds, and validation parameters, thereby offering a
blueprint for regulatory-aligned computational toxicology.

Beyond purely statistical models, efforts have been made to
develop mechanistic simulations that mimic the biological processes
underlying skin sensitization. An advanced computational pipeline
was presented that combines molecular docking, T-cell epitope
prediction, and agent-based modeling using the UISS-TOX
immune simulation platform (Russo et al., 2024). This system
modeled antigen processing, dendritic cell activation, and
T-helper cell polarization to distinguish between Th1- and Th2-
mediated responses, effectively simulating allergic phenotypes
induced by different sensitizers. The model correctly classified a
range of well-characterized sensitizers and non-sensitizers,
demonstrating not only high predictive accuracy but also
biological plausibility, which is critical for mechanistic
understanding and regulatory acceptance.

Discussion

This systematic review highlights the increasing utility of
simulation models across therapeutic domains as scientifically
robust alternatives to animal testing. The body of evidence
synthesized from 45 studies illustrates that These models have
demonstrated high predictive accuracy, improved translational
fidelity, and ethical superiority in domains ranging from
cardiovascular disease to toxicology.

Simulation models offer several distinct advantages over
traditional animal models. Computational models, in particular,
allow for high-throughput, scalable screening, while organ-on-chip

systems replicate human tissue responses with greater fidelity than
animal models. These tools reduce the translation gap that often
leads to clinical trial failures, lack of reproducibility, and enable a
move toward personalized medicine.

Numerous studies across therapeutic domains, including
cardiovascular disease (Alauddin et al., 2024), diabetes (Paul
et al., 2021; Lawal et al., 2022), oncology (Luo et al., 2021;
Abbiati et al., 2021), and infectious diseases (Garduno-Felix et al.,
2023; Zhang et al., 2024), have demonstrated that simulation models
can reliably replicate pharmacodynamic and toxicological outcomes
traditionally evaluated in animals. These models have enabled the
identification of high-affinity drug-target interactions, forecasted
adverse effects, and guided compound prioritization for
experimental validation, often reducing the scope and necessity
of animal-based studies.

The integration of artificial intelligence, machine learning, and
deep learning techniques has been pivotal to this transformation.
Predictive models such as VenomPred 2.0 (Di Stefano et al., 2024)
and AnimalGAN (Chen et al., 2023) have achieved high accuracy in
classifying toxicological endpoints, while models like AEGIS
(Hartout et al., 2023) and TransOrGAN (Li et al., 2023) have
expanded the capabilities of simulation into immunological
modeling and transcriptomics translation, respectively. These
findings support a paradigm shift toward data-driven drug
discovery and toxicology.

Furthermore, the scalability and adaptability of these models
enable them to simulate complex biological phenomena, including
dynamic drug absorption and distribution, as illustrated by
physiologically-based pharmacokinetic models (Chan et al., 2019;
Van Tongeren et al., 2021) and computational fluid dynamics in
tissue-level pharmacokinetics (Price and Gesquiere, 2020). These
techniques offer advantages in reproducibility and control that are
difficult to achieve in animal studies.

Nonetheless, significant barriers to the full integration of
simulation models into regulatory and translational workflows
remain. The key challenges among these are the standardization
of modeling frameworks, validation against clinical or experimental
benchmarks, and the need for transparent reporting practices
(Sharma et al., 2023; Bercu et al., 2021). While several studies
have achieved high performance metrics, such as area under the
curve (AUC) values exceeding 0.90 (Feng et al., 2021; Zhou et al.,
2024), the lack of uniform validation protocols complicates cross-
study comparisons and regulatory acceptance.

Encouragingly, recent regulatory movements have begun to
support non-animal methodologies. The U.S. Food and Drug
Administration’s Predictive Toxicology Roadmap and the
ISTAND initiative emphasize the inclusion of advanced
simulation tools for regulatory submissions (FDA, 2024), while
the FDA Modernization Act 2.0 explicitly permits alternatives
such as organ-on-chip systems and in silico models (Kaplan
et al., 2024). These developments signal a growing institutional
commitment to non-animal research innovation.

The reviewed literature also underscores the promise of hybrid
systems, such as the integration of microengineered organ-on-chip
platforms with simulation models in maternal–fetal
pharmacokinetics (Kammala et al., 2023) and neurotoxicity (Kim
et al., 2023). These systems, capable of replicating human barrier
functions and immune interactions, add physiological relevance that
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bridges the gap between purely computational models and in vivo
complexity.

In conclusion, simulation models offer a viable and scientifically
robust alternative to animal testing, with applications spanning
early-stage compound screening to complex systems-level
analyses. While regulatory validation and methodological
harmonization are ongoing challenges, the convergence of
computational, experimental, and engineering disciplines
positions simulation models to play a central role in the future of
ethical, personalized, and efficient biomedical research.

Challenges with the simulation model

Despite the valuable insights provided by the simulation model,
several limitations must be acknowledged. Primarily, the model
operates under idealized conditions and does not incorporate real-
world variables such as environmental fluctuations, batch-to-batch
variability in biological systems, or human error during
experimental procedures. These omissions may affect the external
validity of the predictions. Additionally, the model’s predictive
accuracy may diminish over extended time periods due to the
increasing complexity and nonlinearity of biological and
pharmacological interactions. Furthermore, the model relies
heavily on input data quality and assumptions embedded in its
architecture, which may not fully capture the nuances of in vivo
physiology. These limitations highlight the need for continued
validation and refinement using diverse datasets and
experimental corroboration to enhance model robustness and
translational relevance.

Limitations

While this systematic review provides a broad and in-depth
synthesis of current simulation model applications in drug
development and biomedical research, several limitations should
be acknowledged.

A major challenge encountered was the heterogeneity across
studies in terms of simulation design, input data sources, validation
protocols, and outcome metrics. Such variability limited this
review’s ability to perform direct comparisons or derive
standardized benchmarks of model performance. Differences in
endpoints, ranging from toxicity classification to pharmacokinetic
modeling, along with inconsistent use of external validation,
constrain the generalizability of findings and underscore the need
for harmonized evaluation frameworks.

While many studies reported strong internal validation metrics,
relatively few demonstrated performance across independent
datasets or real-world clinical scenarios. This lack of external
benchmarking raises concerns about potential model overfitting
and limits confidence in broader translational applicability. In
particular, models trained on narrowly scoped or proprietary
datasets may perform well in silico but fail to generalize across
different biological systems, populations, or experimental
conditions.

Reproducibility remains another critical concern. In several
cases, access to simulation code, training data, or modeling

assumptions was limited, making independent replication
difficult. As computational modeling becomes more integrated
into regulatory science and preclinical workflows, transparent
reporting and open-source dissemination will be essential to
ensure credibility and facilitate collaborative refinement.

Although the review focused on simulation models as potential
alternatives to animal experimentation, it is important to
acknowledge that full replacement remains context-dependent. In
complex domains—such as immunotoxicology, developmental
biology, and systems-level physiology—simulation models often
complement rather than replace animal testing, providing
mechanistic insights or screening capacity that inform but do not
yet substitute for in vivo studies.

Finally, the potential for publication bias should be considered.
Studies with favorable or innovative outcomes are more likely to
appear in the published literature, possibly overestimating the
maturity and general readiness of simulation tools. This
highlights the need for balanced reporting that also reflects null
or underperforming findings, which are critical for identifying
limitations and advancing model refinement.

Despite these constraints, the collective evidence supports the
growing utility of simulation models in accelerating therapeutic
discovery, reducing reliance on animal models, and improving the
mechanistic interpretability of preclinical data. Future efforts
focused on standardization, cross-validation, and open science
practices will be key to addressing these limitations and realizing
the full potential of computational approaches in
biomedical research.

Conclusion and future perspectives

The accelerating development of simulation models in
biomedical research marks a pivotal shift in the methodological
landscape of drug discovery and safety assessment. These
technologies, spanning in silico prediction, mechanistic modeling,
and hybrid organ-on-chip integration, are not merely supplements
to existing paradigms but are emerging as foundational components
of a new computational preclinical ecosystem. This transition is
underpinned by advances in algorithmic design, data integration,
and computational power, which together enable nuanced
representations of human biology previously inaccessible to
traditional experimental frameworks.

Importantly, the value of simulation models extends beyond
reproducing established biological processes. Their true potential
lies in the ability to uncover causal mechanisms and generate
predictive insights that reach beyond the limitations of empirical
data alone. The ability to simulate virtual populations, explore
parameter uncertainty, and test mechanistic hypotheses at scale
opens a new frontier in hypothesis-driven modeling that is both
ethically aligned and scientifically ambitious. As these systems
continue to mature, they offer a pathway toward modeling
emergent phenomena such as inter-individual variability, off-
target effects, and longitudinal treatment responses in ways that
animal models and conventional assays cannot capture.

Future progress will depend on targeted investment in three key
domains. First, the development of standardized validation
frameworks capable of benchmarking model performance across
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datasets, disease contexts, and regulatory endpoints will be critical
for translational credibility. Second, sustained emphasis on
interoperability and data transparency—including open-access
codebases, modular architectures, and community-curated
training datasets—will be necessary to facilitate replication and
innovation. Third, greater interdisciplinary collaboration between
computational scientists, experimental biologists, and regulatory
stakeholders will be essential to ensure that emerging models are
not only technically robust, but also aligned with evolving ethical,
clinical, and regulatory priorities.

Ultimately, the adoption of simulation models should not be
viewed as a replacement for current methodologies but as a
redefinition of what constitutes preclinical evidence. By
reimagining the early phases of biomedical research through the
lens of computational modeling, the field stands poised to accelerate
therapeutic innovation, enhance reproducibility, and transition
toward a more human-relevant, data-driven framework for drug
development.
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