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Background: Drug-induced neuralgia is a common and significant adverse
reaction. This study analyzed the United States food and drug administration
adverse event reporting system (FAERS) database (2004-2024) to identify
relevant drugs and potential mechanisms.

Methods: We conducted an association analysis between drugs and neuralgia
using the FAERS database. Disproportionality analysis methods, including the
reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian
confidence propagation neural network (BCPNN), and empirical Bayesian
geometric mean (EBGM), were applied. Data from 2004 to 2024 were
analyzed to identify drugs potentially associated with neuralgia.

Results: Among the 103,678 reports of neuralgia-related adverse events, 60.29%
involved female patients, and 30.40% were aged between 41 and 64 years. The
most common underlying medical conditions were plasma cell myeloma
(14.28%) and multiple sclerosis (10.65%). The analysis revealed significant
associations between neuralgia and several classes of drugs, including
chemotherapeutic agents, certain antibiotics, and immunosuppressants,
potentially attributable to neurotoxicity, immune-mediated mechanisms, or
metabolic disruptions. Notably, lenalidomide exhibited the strongest
association with neuralgia, followed by sodium citrate. These findings
underscore the importance of early recognition, safer prescribing strategies,
and further investigation to mitigate neurotoxic risks.

Conclusion: This study identifies key drugs, including chemotherapeutics,
antibiotics, and immunosuppressants, associated with drug-induced neuralgia
through FAERS data analysis, highlighting the need for early detection, safer
prescribing practices, and further research into mitigating neurotoxicity.

neuralgia, adverse drug event, FAERS database, neurotoxicity, signal detection
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1 Introduction

Neuralgia is a type of pain resulting from damage or disease in the
nervous system. The International Association for the Study of Pain
defines neuropathic pain as pain caused by a lesion or dysfunction of
the somatosensory system, which may involve the peripheral or
central nervous system (International Association for the Study of
Pain, 2025). Unlike nociceptive pain, which results from direct tissue
injury, neuropathic pain originates from abnormal nerve signaling,
often occurring in the absence of external stimuli (Bernetti et al.,
2021). This type of pain can be persistent or episodic and may severely
compromise the patient’s quality of life and psychological wellbeing.

Preventing neuralgia requires addressing underlying conditions,
minimizing nerve injury, and ensuring rational drug use (Bannister
et al., 2020). Although drug-induced neuralgia is relatively rare, it
presents unique challenges owing to its often delayed onset and
nonspecific symptoms (Yao et al, 2025; Merheb et al., 2022).
Typically characterized by sharp, burning, or shooting pain, it
may be misdiagnosed in its early stages, complicating timely
intervention (Li and Liu, 2025). Among the various etiologies of
neuropathic pain, chemotherapeutic agents are prominent
contributors due to their neurotoxic effects (Etminan et al,
2014). Other recognized causes include certain antiviral agents
and antibiotics (Han et al., 2023). Although treatments such as
antidepressants, gabapentinoids, sodium channel blockers,
TRPV1 agonists, and opioids are available, managing neuropathic
pain remains challenging, due to interindividual variability in
treatment response and an incomplete understanding of the
underlying pathophysiological mechanisms (Baranidharan et al.,
2023). Therefore, its pathophysiology underscores the critical
need for further investigation (Jensen et al., 2011).

We conducted a pharmacovigilance study using data from the
FAERS. FAERS serves as a vital resource in pharmacovigilance,
facilitating the identification of potential drug-related adverse drug
events (ADEs) through post-marketing surveillance. The database
submitted  reports

professionals and consumers, offering valuable information on

contains  voluntarily from healthcare
demographic characteristics, drug exposure, clinical outcomes,
and more (Bousquet et al., 2005). Through systematic analysis of
this database, we can identify disproportionality signals, which are
statistical indicators suggesting a higher-than-expected frequency of
a specific ADE associated with a particular drug (Fusaroli et al., 2024;
Almenoff et al., 2007).

The objective of this study was to identify pharmacological
agents potentially associated with drug-induced neuralgia by
performing disproportionality analysis of the FAERS database.
The findings aim to support clinicians in recognizing high-risk
medications, inform future research directions, and ultimately
enhance the management of neuralgia in patients receiving
pharmacotherapy.

2 Materials and methods
2.1 Data source

This retrospective pharmacovigilance study was conducted
using the FAERS database (https://fis.fda.gov/extensions/FPD-
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QDE-FAERS/FPD-QDE-FAERS.html). The FDA electronically
processes adverse event reports and releases them quarterly in
ASCII and XML formats, both of which are available for free
download. We collected data from Q1 2004 to Q4 2024, as
standardized FAERS quarterly datasets have been publicly
available since 2004, and Q4 2024 represents the latest release at
the time of our analysis. The extracted data covered seven
components: DEMO (patient demographics and administrative
information), DRUG (drug/biologic information), REAC
(MedDRA terms for adverse events), OUTC (patient outcomes),
RPSR (report sources), THER (drug therapy start/end dates), and
INDI (MedDRA terms for diagnoses/indications).

2.2 Definition of ADEs and drugs

We included FAERS reports from QI 2004 to Q4 2024 that
involved human subjects, contained drug information in the DRUG
file, adverse event terms in the REAC file, and basic demographic
data in the DEMO file. To avoid redundancy, we applied the FDA-
recommended deduplication strategy by retaining only the most
recent version of each unique “CASEID” based on the “FDA_DT”
field. We also excluded incomplete reports lacking drug identifiers,
adverse event terms, or containing implausible dates (e.g., event
onset before drug administration). We standardized all ADEs using
preferred terms (PTs) from the Medical Dictionary for Regulatory
Activities (MedDRA, version 26.1). To identify cases of neuralgia,
we searched for the PT “neuralgia” (MedDRA code: 10029223) in
the REAC table. Specific PTs are listed in Supplementary Table S1.

For drug identification, the generic name of each medication was
used as a unique identifier. Since many reports included brand
names, these were translated to generic names via the DrugBank
database (https://go.drugbank.com/drugs). Reports containing drug
names unavailable in DrugBank were deemed invalid and manually
excluded from the analysis. Details of the data cleaning process are
provided in Supplementary Figure SI.

Furthermore, we analyzed the time-to-onset (TTO) of adverse
events for drugs with valid signals, defined as the interval between
EVENT_DT and START_DT. Reports with date errors (e.g.,
EVENT_DT before START_DT), missing, or invalid values were
excluded. TTO was assessed using medians, interquartile ranges,
and the Weibull shape parameter.

2.3 Statistical analysis

Descriptive analyses were performed to summarize the clinical
characteristics of patients with drug-induced neuralgia, including
age, sex, indication, outcome, and reporting country. The top
30 drugs associated with neuralgia, based on report dates, are
presented in Supplementary Table S2.

To explore potential associations between drugs and neuralgia,
we conducted disproportionality analyses. This method compares
the observed and expected frequencies of drug-AE pairs to detect
significant imbalances. We applied four widely accepted algorithms:
reporting odds ratio (ROR), proportional reporting ratio (PRR),
Bayesian confidence propagation neural network (BCPNN), and
empirical Bayesian geometric mean (EBGM) (van Puijenbroek et al.,
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TABLE 1 The 2 x 2 cross-table of ROR.

10.3389/fphar.2025.1645114

Counts of reports Drug(s) of interest All other drugs Total

Adverse event(s) of interest a b a+b

All other adverse events c d c+d
Total a+c b+d a+b+c+d

TABLE 2 Summary of algorithms used for signal detection.

Method Formula Threshold
ROR ROR = 44 a>3
ROR >3
SE (InROR) = 4 i+ %+ % +% 95%Cl (lower limit) > 1
95%CI = eln (ROR)+1.96-se
/(atb
PRR PRR = ?/((::d; a>3
PRR > 2
95%Cl (lower limit) > 1
SE(InPRR) = [} - L+ 1L oCl ( )
950 C1 = ln (PRR)+1.96:s¢
— (ny)  _ (atbtctd
BCPNN IC = log, 242 = log,dasbicrd) 1C025 > 0
_ (a+y11) (atb+ctd+a) (atbrctd+p)
E(IC) = log, (atbretdry) (atbal) (a+ctpl)
_ 1 (a+b+c+d)-a+y-yl1 (a+b+c+d)— (a+b)+a—al _ (a+b+c+d+a) (a+btc+d+p)
V(IC) = n2? [(a+y11)(1+a+b+c+d+y) (;;:;;)(H::b-v—::dfa)y =y (a+b+al) (a+ctpl) ]
IC - 25D = E(IC) - 2\/V (IC)
EBGM EBGM = 4(atbictd) EBGMO5 > 2

(a+b) (a+c)

SE(InEBGM) = m

95%C] = ¢l (EBGM)+1.96:s¢

2002; Huang et al., 2014). The equations and signal detection criteria
for each method are detailed in Tables 1, 2.

To increase the specificity of signal detection, a signal was
defined as positive only when the drug met the predefined
threshold criteria across all four algorithms, indicating a robust
association with neuralgia (Hosomi et al., 2018).

3 Results

3.1 Basic characteristics of adverse events
related to neuralgia

Reporting trends of drug-induced neuralgia cases from 2004 to
2024 were analyzed. As shown in Figure 1, the results revealed a
general upward trajectory in the number of reports until
approximately 2016, followed by fluctuating patterns in
subsequent years. Notably, the number of reports peaked in
2022, representing the highest annual count observed during the
entire study period.

The characteristics of 103,678 reported cases were summarized
in Table 3, stratified by sex, age group, medical indication, clinical
outcome, and reporting country. Among these cases, 60.29% were
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female, 31.42% were male, and 8.28% had unspecified sex
information. Regarding age distribution, 36.55% of cases lacked
age data. Among cases with available age information, individuals
aged 41-64 years accounted for the largest proportion (30.40%),
followed by those aged >65 years (17.18%), 19-40 years (14.04%),
and <18 years (1.83%). Plasma cell myeloma was the most
frequently  reported 14.28%
(14,802 cases), followed by multiple at  10.65%
(11,044 cases). Other commonly reported indications included
depression (3.25%), urinary tract infection (1.74%), and breast

indication,  representing

sclerosis

cancer (1.49%). Plasma cell myeloma and multiple sclerosis were
the most prominent underlying conditions in the dataset. In terms of
clinical outcomes, hospitalization was the most frequently reported
severe event (12.81%), followed by disability (5.09%), death (2.15%),
and life-threatening conditions (1.84%). Geographically, the
majority of reports originated from the United States (73.92%),
followed by the United Kingdom (4.81%), Canada (2.37%), France
(2.04%), and Germany (1.97%).

Despite substantial missing data, analysis of the FAERS database
revealed three key trends. Females were predominantly represented
in the demographic profile, the largest age subgroup to be
41-64 years and identified strong geographic clustering in the
United ~ States. the reported adverse

Among outcomes,
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TABLE 3 Clinical characteristics of reports with neuralgia.

Characteristics

Reports, n (%)

Sex N = 103,678
Female 62,508 (60.29)
Male 32,592 (31.42)
Unknown 8,578 (8.28)
Age

<18 1,892 (1.83)
19-40 14,564 (14.04)
41-64 31,526 (30.40)
>65 17,809 (17.18)
Unknown 37,886 (36.55)
Indications

Plasma Cell Myeloma 14,802 (14.28)

Multiple Sclerosis 11,044 (10.65)

Depression 3,373 (3.25)
Urinary tract infection 1800 (1.74)
Breast cancer 1,544 (1.49)
Outcomes

Death 2,229 (2.15)
Disability 5,282 (5.09)
Life-threatening 1,910 (1.84)

Hospitalization 13,276 (12.81)
Reported countries

United States 76,613 (73.92)

United Kingdom 4,984 (4.81)
Canada 2,460 (2.37)
France 2,115 (2.04)
Germany 2,045 (1.97)

hospitalization and disability emerged as the most frequently
documented events. Clinically, plasma cell myeloma and multiple
sclerosis were the top-reported therapeutic indications in
the dataset.

Drugs associated with the ADEs of neuralgia were ranked by the
number of reported cases and are summarized in Figure 2. Figure 2A
shows that lenalidomide was the most frequently reported agent,
with 12,281 patients, followed by sodium citrate (5,557 patients),
ciprofloxacin (4,809), nicotinic acid (4,707), levofloxacin (3,701),
and teriflunomide (3,457). As shown in Figure 2B, antineoplastic
and immunomodulatory agents accounted for the largest proportion
of neurotoxicity-related reports, with lenalidomide contributing
17.37%. Other frequently implicated drugs in this category
(4.89%), (4.71%), and
bortezomib (4.21%). Anti-infectives such as ciprofloxacin (6.80%)

included teriflunomide fingolimod
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and levofloxacin (5.23%) also exhibited high reporting rates. In
addition, agents from other classes—including sodium citrate
(7.86%), nicotinic acid (6.66%), and fumaric acid (5.94%)—were
substantially represented. These findings indicate that neurotoxicity
signals are particularly concentrated in antineoplastic agents,
although a wide range of drug classes are involved. An analysis
of Preferred Terms (PTs) related to specific types of neuralgia and
the corresponding number of drug-related cases is provided in the
Supplementary Figure S2.

3.2 Signal detection of adverse events
related to neuralgia

The top 30 drugs associated with drug-induced neuralgia,
listed in Table 4, were identified through disproportionality
analysis using four signal detection algorithms: ROR, PRR,
EBGMO5, and IC025. In addition, time-to-onset analysis was
conducted to evaluate the temporal pattern of neuralgia
occurrence following drug exposure.

Sodium citrate (Rank #1) exhibited very high disproportionality
values (ROR 300.86) with a short median TTO of 2 days, indicating
rapid onset of neuralgia. Drugs with few reports, such as clobetasone
butyrate (ROR 23.33, n = 4) and gadofosveset (ROR 18.23, n = 10),
showed prolonged TTOs, suggesting delayed effects that warrant
further investigation. Retapamulin (ROR 16.05, n = 143) had a
median TTO of 2 days. More commonly reported drugs like
nicotinic acid and ciprofloxacin demonstrated moderate
disproportionality and relatively short TTOs of 9 and 4 days,
respectively, indicating consistent and timely reporting.

Oncology agents, including nelarabine, bortezomib, and
oxaliplatin, showed significant signals with median TTOs ranging
from approximately one to one and a half months, underscoring the
need for careful monitoring. Drugs with strong signals but limited
cases, such as lazertinib and sertaconazole, exhibited short TTOs,
highlighting the necessity for further validation.
analysis
disproportionality signals, ranging from extreme values observed

Collectively, our revealed a spectrum  of
with sodium citrate to potential early warning signs associated with
less frequently reported agents such as clobetasone butyrate and
gadofosveset. Notably, oncology and anti-infective drugs emerged as
key therapeutic categories requiring continued pharmacovigilance.
Drugs exhibiting strong signals but limited case counts should be

prioritized for further investigation to substantiate.

4 Discussion

Neuropathic pain arises from various causes, including nerve
trauma, compression, vascular and neurological diseases, infections,
metabolic disorders, medications, and hereditary conditions (Jones
etal, 2020). It is a complex condition resulting from nervous system
damage or dysfunction and is commonly associated with diabetes
mellitus, infections, and nerve trauma (Besi et al.,, 2015). However,
certain medications can also induce neuropathic pain through
such as direct

mechanisms neurotoxicity, mitochondrial

dysfunction, immune-mediated responses, and metabolic

imbalances that impair nerve function (Zhuo et al., 2011). The
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TABLE 4 Top 30 drugs for signal strength of drug-induced neuralgia.

10.3389/fphar.2025.1645114

Ranking Medication ROR PRR  EBGMO5 IC Package insert suggestsrisk for  TTO (days)
(95%Cl) () 025 hypoglycemia
1 sodium citrate 5,557 300.86 50.44 46.93 5.58 N 2 (1-4.75)
2 clobetasone butyrate 4 23.33 16.95 6.42 2.59 N 1708.5
(397-3,020)
3 gadofosveset 10 18.23 14.13 7.80 2.85 N -
4 retapamulin 143 16.05 12.80 10.96 3.41 N 2 (1-16.5)
5 pyridoxine 19 14.03 11.50 7.56 2.82 Y -
6 diclofenamide 284 13.49 11.14 10.00 3.29 N 13 (3-58.75)
7 lazertinib 4 12.28 10.32 4.19 1.95 Y 4.5 (2-22.75)
8 sertaconazole 5 11.22 9.57 4.30 1.97 N -
9 azelaic acid 164 10.37 8.95 7.79 2.92 Y 5 (1.75-12.0)
10 nelarabine 80 10.37 8.96 7.34 2.82 Y 32 (10-59.75)
11 futibatinib 13 9.98 8.67 5.30 2.29 N 45.5
(14.0-56.75)
12 nicotinic acid 4,707 9.69 8.46 8.14 3.02 Y 9 (2-55)
13 crisaborole 1,000 9.10 8.01 7.55 2.90 N 4 (1-17.5)
14 ciprofloxacin 4,809 8.73 7.73 7.44 2.89 Y 4 (2-15)
15 tinidazole 8 8.48 7.53 4.05 1.89 Y 4 (1-11.5)
16 olsalazine 4 833 742 3.09 1.51 Y -
17 amifampridine 210 8.18 7.29 6.46 2.66 Y 67 (4.25-395)
18 pyrithione 8 7.41 6.68 3.61 1.72 N -
19 gadoversetamide 40 7.03 6.38 4.85 2.20 Y 57
(17.75-126.75)
20 enfortumab vedotin 305 7.02 6.38 5.77 2.50 Y 14 (7.5-53.5)
21 capreomycin 4 6.67 6.08 2.56 1.24 N -
22 levofloxacin 3,701 6.62 6.05 5.82 2.53 Y 4 (2-12)
23 vinblastine 20 6.55 5.99 4.07 1.92 Y -
24 repotrectinib 6 6.36 5.84 2.88 1.39 Y -
25 monomethyl 73 6.16 5.67 4.63 2.15 N 70.5 (1-651.25)
fumarate
26 bortezomib 2,978 6.14 5.65 543 243 Y 47.5 (14-98.75)
27 cerivastatin 3 6.03 5.56 2.06 0.95 Y -
28 hexaminolevulinate 4 5.98 5.52 2.33 1.10 N -
29 oxaliplatin 2,813 5.90 5.45 5.24 2.38 Y 42 (14-105)
30 teriflunomide 3,457 5.75 532 512 2.35 Y 119
(24.75-390.25)

severity and persistence of symptoms depend on multiple factors,
including drug type, dosage, treatment duration, and patient
susceptibility (Guo et al, 2024). Notably, a study in Taiwan
identified renal disease as a predisposing factor for ethambutol-
induced optic neuropathy, underscoring the role of underlying
conditions in drug-induced neurotoxicity (Chen et al, 2012).
Given its significant clinical impact, drug-induced neuropathic
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pain necessitates early recognition and intervention to minimize
patient burden. A thorough understanding of the mechanisms and
risk factors associated with neurotoxic medications enables
clinicians to optimize treatment strategies while mitigating
adverse effects. Future research should prioritize the development
of neuroprotective approaches to prevent or reduce the risk of drug-
induced neuropathy.
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FIGURE 1
The number of reported cases of neuralgia from 2004 to 2024.

The results of this study indicate a continuous annual increase in
adverse event reports related to drug-induced neuralgia, peaking in
2022. This trend may be attributed to multiple factors, including the
growing use of medications, heightened public awareness of adverse
reactions, regulatory and policy changes, advancements in medical
technology, and improved data sharing and transparency (Baah,
2020). These factors collectively contribute to the rising number of
reported cases. Furthermore, the findings suggest that the incidence
of drug-induced neuropathic pain is significantly higher in females
than in males. Although clinical observations do not indicate
substantial sex-based differences in responses to analgesic
medications, research on sex differences in neuropathic pain
remains limited (Salis et al, 2024). Notably, variations in
neuropathic pain intensity have been documented in diabetic
patients, with females generally reporting higher pain sensitivity
and intensity than males (Abraham et al, 2018). Moreover, sex-
related differences may influence responses to certain analgesics,

alternative
2024).
fluctuations in females may further affect pain perception and

often necessitating dose adjustments or pain

management strategies (Marciano et al, Hormonal
treatment efficacy, highlighting the need for more targeted
research in this area.

Lenalidomide, used to treat multiple myeloma and lymphoma,
can cause peripheral neuropathy, though less frequently than
thalidomide. Symptoms include numbness, tingling, and pain in
the extremities (Cao et al., 2022). Its neurotoxicity may stem from
mitochondrial dysfunction, oxidative stress, or immune-related
mechanisms (Deng et al, 2021; Stino et al, 2024). Regular
monitoring is essential, and dose adjustments or supportive
treatments like vitamin B supplementation may help manage
symptoms (Dalla Torre et al, 2016). Early detection and
intervention can improve patient outcomes. Sodium citrate serves
as an anticoagulant, preservative, and pH regulator, with widespread
applications in both the food industry and medical field (Shvetsova
et al., 2024). Studies have demonstrated that in sustained low-
efficiency dialysis, sodium citrate provides effective regional
anticoagulation without affecting systemic coagulation function,
offering a viable alternative for clinicians (Zhang et al, 2013).
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Additionally, research indicates that using a 4% sodium citrate
solution as a locking agent for central venous catheters in ICU
patients is safer than heparin, as it reduces the risk of bleeding and
catheter occlusion without increasing the incidence of hypocalcemia
or infections (Deng et al., 2023). Furthermore, sodium citrate has
been shown to inhibit cancer cell metabolism, suppressing
proliferation and enhancing chemotherapy efficacy (Icard et al,
2024; Yin et al,, 2025). It also improves immune cell function by
increasing glucose availability, thereby promoting an antitumor
immune response, suggesting its potential role as an adjuvant in
immunotherapy (Wu et al., 2024).

Drug-induced neuralgia, a type of neuropathic pain resulting
from medication-related nerve damage, is a critical concern in
clinical practice (Si et al, 2018). Among the most commonly
implicated drug classes are chemotherapeutic agents, antibiotics,
and immunosuppressants, each of which causes nerve injury
through distinct biological mechanisms (van Velzen et al,
2020).
developing effective preventive and therapeutic

Understanding these mechanisms is essential for
strategies.
Chemotherapeutic agents, particularly platinum-based drugs
such as cisplatin and oxaliplatin, taxanes such as paclitaxel and
docetaxel (Tian et al., 2025), and vinca alkaloids such as
vincristine, are known to cause peripheral neuropathy (Ye and
Abdi, 2025). These drugs induce nerve damage through
mitochondrial dysfunction, oxidative stress, and microtubule
disruption, leading to impaired neuronal function and
persistent pain (Sisignano et al, 2014). Similarly, certain
antibiotics, including aminoglycosides such as gentamicin and
polymyxins,
ciprofloxacin, have been associated with neurotoxicity (Kuehn,

amikacin, and fluoroquinolones such as
2013). These antibiotics can disrupt neuronal membranes,
interfere with ion channel function, and hinder neuronal repair,
with the severity of neuralgia often correlating with the dosage and
duration of treatment (Rezaei et al., 2018). Furthermore,

immunosuppressants, particularly biologic agents targeting
tumor necrosis factor-alpha, may contribute to neuropathic
pain by triggering

neuroinflammation. Prolonged use can further impair nerve

altering immune responses and
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= ALIMENTARY TRACT AND METABOLISM

ANTIIINFECTIVE FOR SYSTEMIC USE
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MUSCULO-SKELETAL SYSTEM
NERVOUS SYSTEM

Top 30 medications with the most number of reported neuralgia cases. (A) The number of cases of the top 30 drugs. (B) The drug categories of the
top 30 drugs and the percentage of total neuralgia events associated with each drug.

repair mechanisms and exacerbate neural damage, increasing the
risk of persistent pain (Lallana and Fadul, 2011).

Overall, drug-induced neuralgia is a multifactorial condition
and metabolic

driven by neurotoxic, immune-mediated,

disturbances. Recognizing the mechanisms by which different
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drug classes contribute to neuropathic pain is essential for
minimizing risks, guiding clinical decisions, and improving
patient outcomes.

The FAERS database plays a crucial role in drug safety
research but has notable limitations. It relies on voluntary

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1645114

An et al.

reporting, leading to reporting bias and underreporting of
certain adverse events. The lack of exposure data prevents
accurate risk estimation, and data quality issues, including
further
analysis. FAERS cannot establish causal relationships due to

missing or inconsistent information, complicate
potential confounding factors, and media influence may amplify
reporting. Duplicate reports, delayed data updates, and
affect

reliability. Additionally, most data come from the U.S. and

limitations in adverse event classification also

other high-income countries, reflecting differences in
healthcare systems and reporting habits. This may limit how
well our findings apply to low- and middle-income countries and
may not reflect the global burden of drug-induced neuralgia. We
recommend future pharmacovigilance efforts include more

diverse international data to improve fairness and accuracy.

5 Conclusion

This study analyzed the FAERS database to identify drugs

associated with neuralgia. Chemotherapy drugs, certain
antibiotics, and immunosuppressants were major triggers,
likely causing nerve damage through neurotoxicity, immune
responses, or metabolic disturbances. The findings indicate a
higher prevalence in women. In terms of indications, multiple
myeloma and multiple sclerosis were the most frequently
reported. The study highlights the importance of early
monitoring and rational drug use. These insights provide

guidance for future research and clinical practice.
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