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Introduction: There is an unmet need for therapeutics with a novel mechanism to
address Q9 symptoms associated with conditions where aberrant glutamatergic
neurotransmission is presumed pathogenic. One enzyme of potential relevance
is glutamate carboxypeptidase Il (GCPIl), a brain metallopeptidase with
significantly  upregulated activity  in nervous  tissues  following
neurodegeneration or injury. Current inhibitors are too polar and charged
leading to minimal brain penetration necessitating high systemic doses or
direct brain injection. Our efforts are focused on identifying new inhibitor
scaffolds with favorable brain penetration.

Methods: Herein, we wused a newly developed dual-stream liquid
chromatography mass spectrometry (LC/MS/MS) substrate cleavage assay to
screen two small molecule libraries. The two top confirmed hits were cefsulodin
(ICs0 = 2 + 0.1 uM) and amaranth (ICsg = 0.3 + 0.01 pM). The interactions of
Amaranth and cefsulodin with GCPIl were characterized with mode of inhibition
(MOI) studies, nano differential scanning fluorimetry (DSF) thermal shift assay, and
binding site was modeled with in-silico docking. As cefsulodin is an antibiotic
used clinically to treat bacterial meningitis, we tested the compound'’s brain
pharmacokinetics (PK) in mice using a sensitive LC/MS method we developed.
Moreover, following confirmation and characterization of cefsulodin and
amaranth as viable hits an SAR investigation was conducted with analogs of
both compounds.

Results: A first derivative analysis of the DSF data revealed a shift in melting
temperature of A 0.76 °C (+0.04) for amaranth at 25 uM and 80.41 °C (+0.05) for
cefsulodin at 250 pM, suggesting both compounds are acting as stabilizers for the
enzyme. Increasing concentrations of cefsulodin increased the Km of N-acetyl-
aspartyl-glutamate (NAAG) as a substrate with no change in Vmax, suggesting
active site competitive inhibition. In contrast, increasing concentrations of
amaranth led to reductions in Vmax while the Km remained constant,
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suggesting a non-competitive MOI. Results from in-silico docking studies
complemented this MOI data, suggesting cefsulodin likely binds in the active
site while amaranth likely binds in an allosteric site. Our PK study demonstrated
that administration of cefsulodin (100 mg/kg IP) led to a Cmax of 4 uM in the brain,
exceeding its GCPII ICsq value.

Discussion: Our new screening approaches identified novel inhibitors of GCPII that
could serve as molecular templates for further structural optimization.
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1 Introduction

One of the commonly shared features among a range of
disorders that impact the peripheral and central nervous systems
(PNS and CNS) is the dysregulation of glutamatergic signaling.
Excess glutamate leads to excitotoxicity and neuronal cell death in
conditions like epilepsy and stroke, and more subtle alterations to
glutamate signaling pathways are also theorized to impact memory
(Benveniste et al., 1984; Rothman and Olney, 1986; OLNEY et al.,
1986; GREEN et al,, 2021). One enzyme that has been linked to
modulation of glutamatergic signaling, that is also upregulated in
disease, is glutamate carboxypeptidase II (GCPII). GCPII is a
that
glutamate

metallopeptidase cleaves the abundant neuropeptide
N-acetylaspartyl (NAAG) N-acetylaspartate

(NAA) and glutamate. Upregulation of GCPII in disease means

into

further increasing the pool of excitotoxic glutamate and
consumption of the pool of NAAG which plays a role in signal
modulation by acting as an agonist at metabotropic glutamate
(mGluR3).
glutamatergic dysregulation, it is perhaps unsurprising that

receptor 3 Due to the ubiquitous nature of
inhibitors of GCPII have shown efficacy in a wide range of
preclinical models. In multiple models, GCPII inhibitors have
demonstrated neuroprotection by reducing inflammation, cell
death, and injury (Feng et al., 2012; Feng et al, 2011; Zhong
et al, 2005; Zhong et al., 2006; Williams et al,, 2001; Bacich
et al, 2005; Slusher et al., 1999; Arteaga Cabeza et al, 2021;
Harada et al., 2000; Long et al., 2005), pain attenuation (Jackson
et al., 2001; Majer et al., 2003; Vornov et al., 2013; Wozniak et al.,
2012; Chen et al., 2002; Yamamoto et al., 2004; ADEDOYIN et al,,
2010; Nonaka et al., 2017; Yamada et al., 2012; Yamamoto et al.,
2008; Yamamoto et al., 2001a; Yamamoto et al., 2007; Kozikowski
et al., 2004; Carpenter et al., 2003; YAMAMOTO et al,, 2001a), and
alleviation of cognitive deficits related to learning and memory
(Feng et al,, 2011; Gurkoff et al., 2013; Gao et al., 2015; Ji et al,,
2023; Rahn et al., 2012; Hollinger et al., 2016; Hollinger et al., 2022;
Janczura et al., 2013; Olszewski et al., 2012; Takatsu et al., 2011;
Olszewski et al., 2017; Datta et al., 2021; Bathla et al., 2023; Yang
et al, 2022). The use of GCPII inhibitors has been previously
reviewed (Vornov et al., 2016; Wiseman et al., 2025; Vornov
et al., 2020).

Our lab has been particularly interested in the application of
GCPII inhibitors as a treatment for pain and cognitive deficits.
GCPII inhibitors have shown potential to be efficacious in
preclinical models of inflammatory and neuropathic pain
(Harada et al, 2000; Long et al, 2005; Chen et al, 2002;
Yamamoto et al., 2004; ADEDOYIN et al.,, 2010; Nonaka et al,,
2017; Yamada et al., 2012; Yamamoto et al., 2008; Yamamoto et al.,
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2001b; Yamamoto et al., 2007; Kozikowski et al., 2004; Sah et al.,
2023; Zhang et al., 2023), and diabetic and chemotherapy induced
neuropathy (Zhang et al., 2006; Zhang et al., 2002; Carozzi et al.,
2010; Wozniak et al., 2012; Tang et al., 2006). Treatment with GCPII
inhibitors also reduces the reinstatement of drug seeking behavior
and conditioned place preference in mouse models of substance use
disorder (Kozela et al., 2005; Popik et al., 2003; SHIPPENBERG
et al,, 2000; Witkin et al., 2002; Peng et al., 2010; Xi et al., 2010a; Xi
etal,, 2010b). Clinically, a novel agent to ameliorate pain without the
side effects and abuse potential of current medications would
be valuable.

Recent data also links inhibition of GCPII to improvement of
cognitive deficits in models of traumatic brain injury (Feng et al.,
2011; Gurkoff et al., 2013; Gao et al., 2015; Ji et al., 2023), multiple
sclerosis (Rahn et al., 2012; Hollinger et al., 2016; Hollinger et al.,
2022), schizophrenia (Janczura et al., 2013; Olszewski et al., 2012;
Takatsu et al., 2011), and aging (Olszewski et al., 2017; Datta et al.,
2021; Bathla et al., 2023; Yang et al., 2022). One of the potential
underlying mechanisms for cognitive impairment in humans is
disruption of normal glutamatergic signaling (Findley et al., 2019;
CHOUDHURY et al., 2012; Polli et al., 2020; DAUVERMANN et al.,
2017; Amalric, 2015). Layer IIT of the primate dorsolateral prefrontal
cortex (dIPFC) contains a tightly regulated network of glutamatergic
neurons which closely communicate with a persistent firing pattern,
providing a physiological basis for high-level cognitive functions
such as working memory and abstract thought (AMY et al., 2020).
The delay-firing of these neurons is strengthened by the same
inhibitory G protein-coupled receptor (GPCR), at which NAAG
is an endogenous agonist, mGluR3. The mGlu3 receptor is encoded
by the GRM3 gene (AMY et al,, 2020). GRM3 has been strongly
validated by multiple groups as a GWAS risk gene for schizophrenia,
and a reduction in GRM3-expressing dendritic spines has been
observed in Alzheimer’s disease and aging (Saini et al, 2017;
Morrison and Baxter, 2012; Sartorius et al., 2008; Harrison et al.,
2008; Egan et al, 2004). Additionally, downregulation of
glutamatergic signaling through activation of mGluR3’s has also
been shown to improve chronic pain (Mazzitelli et al., 2018).

The design of specific mGlu3 receptor agonists has proven
difficult due to the receptor’s significant structural homology
with mGlu2 receptors. The two receptors, despite sharing a
similar structure, have different localization and function within
the brain (Jin et al., 2017). A mGlu2/3 dual agonist entered Phase
3 clinical trials in patients with schizophrenia and failed to show
clinical utility (Stauffer et al., 2013; Adams et al., 2014). However, a
post hoc analysis showed the lower dose did significantly improve
symptom scores compared to placebo in a subset of patients (Kinon
et al., 2015). Preclinical data has supported the idea that there is an
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inverted U in responsiveness to dual agonist drugs, and the working
hypothesis is that this is caused by overactivation of presynaptic
mGluR2’s at higher concentrations, offsetting the beneficial effects
of postsynaptic mGluR3 activation (Jin et al., 2017). A new strategy
is needed to selectively activate mGlu3 receptors (Stauffer et al.,
2013). As NAAG, the substrate of GCPIL, is a selective, endogenous
agonist of mGluR3’s, inhibition of GCPII provides a novel
mechanism to selectively activate mGIuR3 without needing to
design a selective agonist. While potent (pM to nM) and selective
inhibitors of GCPII have been developed, they are all polar and
negatively charged at physiological pH, limiting their bioavailability
and blood-brain barrier penetration. Achieving efficacy has required
high systemic doses or direct brain injection, so more favorable
chemical scaffolds with desired CNS exposure are required for
clinical development.

Recently, a novel, reproducible liquid chromatography-tandem
mass spectrometry method was developed to assist with high-
throughput screening (HTS) of compounds for inhibitory activity
against GCPII (Hoxie et al., 2024). The assay is more sensitive than
previously developed HTS assays, only requiring 1.25 nM enzyme,
1 UM NAAG, and an incubation time of 30 min. The assay produces
IC5 values that align well with an orthogonal, well-established and
highly sensitive radioactivity assay (Rojas et al, 2002), so
consequently, the two methods can be paired to identify and
validate hits.

Herein, we report the results of our screening efforts with this
novel LC-MS assay. To explore drug repurposing candidates and
evaluate the performance of the assay, we screened the NCATS
Pharmaceutical Collection (NPC; https://pubmed.ncbi.nlm.nih.gov/
21525397/), an annotated collection of approved drugs and
investigational drug candidates and the recently created HEAL
(Help End Addiction Longterm) library (https://pubmed.ncbi.
nlm.nih.gov/39144561/), a comprehensive library of annotated
small molecules including drugs, probes, and tool compounds
that act on published pain- and addiction-relevant targets.

The two top confirmed hits were cefsulodin (ICs = 2 + 0.1 pM)
and amaranth (ICs = 0.3 £ 0.01 uM). We further characterized both
hits with a nano DSF thermal stability assay, mode of inhibition
analysis, and in silico docking studies to determine the potential
binding site of both inhibitors. As cefsulodin is an antibiotic which
has been used clinically to treat central nervous system infections, we
conducted a pharmacokinetic study to evaluate blood-brain barrier
penetrability in mice. As a final step, we also conducted structure-
activity relationship studies by screening a set of available analogs of
cefsulodin and amaranth.

2 Materials and methods
2.1 Reagents

LC/MS-grade acetonitrile, water, methanol and formic acid were
purchased from ThermoFisher (Waltham, MA, United States). D3-
glutamate,’C5'°*N-acetylaspartylglutamate,’C5'°N-glutamate,
N-acetylaspartic acid, NAAG, and Glu, and diclofenac (internal
standard) were purchased from Sigma-Aldrich (MO, United States).
GCPII was purchased from Sino Biological (PA, United States).
Clear, polypropylene, flat-bottom 384-well plates were purchased
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from Greiner Bio-One (NC, United States). NAAG and NAA [3H]|G
were obtained from Bachem AG (Bubendorf, Switzerland) and
Perkin-Elmer (Boston, MA).

Compounds were obtained from multiple vendors. Cefsulodin
sodium salt was purchased from Glixx (MA, United States);
ceforanide was purchased from Prestwick Chemical (CA,
United States) and MedChem Express (NJ, United States);
cefotetan was purchased from Microsource (CT, United States)
and ThermoFisher (MA, United States); cefonicid sodium was
purchased form Microsource (CT, United States), Sigma Aldrich
(MO, United States), and MedChem Express (NJ, United States);
amaranth, trypan blue, and indocyanine green were purchased from
Sigma Aldrich (MO, United States); sulfobromophthalein was
purchased from Labotest (Germany).

2.2 Screening libraries

The NCATS Pharmaceutical Collection (NPC) contains
2,678 compounds approved for use by the U.S. Food and Drug
Administration as of December 2022, along with a number of
approved molecules from related agencies in foreign countries.

The HEAL library contains 2,816 compounds reported to
modulate a variety of targets related to pain perception and was
designed to exclude controlled substances to prevent opioid-
dominated screening results.

2.3 GCPII inhibition determinations using a
dual-stream liquid
chromatography—tandem mass
spectrometry-based method

The
chromatography-tandem mass spectrometry method used to

novel high-throughput dual-stream liquid
screen for this study was recently published (Hoxie et al., 2024).
Briefly, a 5 uL solution containing recombinant GCPII (SinoBio) in
Tris-HCl (pH 7.4) with 1 mM CoClI2 was dispensed using a
BioRAPTR 2.0 Flying Reagent Dispenser (Let’s Go Robotics) into
384-well assay plates (Greiner 784,201) pre-spotted with 100 nL of
compound in DMSO using an Echo 655 Acoustic Liquid Handler
(Beckman). Enzyme and compound were incubated for 15 min prior
to the addition of 5 uL of *Cs'°N-acetylaspartylglutamate (Aldrich).
After 30 min s at room temperature, reactions were quenched using
0.2 pM D3-glutamate in LC/MS-grade acetonitrile and 0.1% formic
acid. A 2-min liquid chromatography method utilizing a 2.1 x
30 mm BEH Amide HILIC column (Waters) was used to resolve
glutamate from NAA and NAAG. A Sciex 6,500+ Q-Trap mass
spectrometer was utilized for MS/MS quantification of released
glutamate in the presence of compound. The integrated peak
areas were normalized against the d3-glutamate internal
standard, and then degree of inhibition was calculated using
replicates containing no enzyme and enzyme with equivalent
volumes of DMSO. Compounds were initially screened in a
10 pL reaction volume with 10 pM (final) compound dissolved
in DMSO. Library compounds demonstrating > 50% inhibition of
glutamate release relative to DMSO controls were then re-plated in

seven-point dose response to confirm activity and determine
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IC50 values. To further increase throughput and the efficiency of
screening, LC/MS analysis of libraries was conducted in dual-stream
mode on an LS-1 autosampler (Sound Analytics).

2.4 GCPIl inhibition determinations using an
orthogonal radioenzymatic-based assay

Radioenzymatic assay using *H-NAAG was performed as
previously described (Barinka et al, 2002). Briefly, a 50 pL
reaction mixture containing NAA [’H]G (30 nM, 49 uCi/nmol)
and GCPII (40 pM), in Tris-HCI (pH 7.4, 40 mM) with 1 mM CoCl,
was incubated at 37 °C for 25 min and stopped with 50 pL ice-cold
sodium phosphate buffer (pH 7.5, 0.1 M). AG1X8 ion-exchange
resin was used to separate cleaved [*H]glutamate, and the
flowthrough was transferred to solid scintillator-coated 96-well
plates (Packard) and allowed to dry. Radioactivity was measured
by a Topcount NXT from Packard. Each compound was run in
duplicate, and 6-8-point dose-response curves were generated.

2.5 Mode of inhibition studies

The mode of inhibition was also determined as previously described
following the same procedure as the radioenzymatic-based ICs, assay
but with modification of the concentrations of NAA [*H]G. (Barinka
et al, 2002). Eight concentrations of radiolabeled NAA [*H]G
(0.03125-4 pM, 1:2 dilution) were incubated with 40 pM GCPII
and a range of inhibitor concentrations that surrounded their
predetermined ICs, values, with the lowest values being close to the
compound’s IC5, (Cefsulodin: 1.6-25 pM; Amaranth 0.3-2.4 uM). A
Michaelis-Menten kinetics analysis was done to determine the K, and
Vimax at each inhibitor concentration. A double reciprocal Lineweaver-
Burke plot was created to visualize inhibition type (e.g., competitive,
noncompetitive, etc.), and a secondary plot of Ky, app/Vimax Was used to
determine the K; values of cefsulodin and amaranth.

2.6 Modeling and docking of GCPIl inhibitors

The crystal structures of GCPII in complex with a folyldi-
gamma-L-glutamic acid (PDB code 4MCQ) (Navratil et al,
2014), with a transition state analog of methotrexate-Glu (PDB
code 3BI1), and with an inhibitor PSMA 1027 (PDB code 505U)
were used for docking studies of identified GCPII inhibitors. Prior to
docking the protein structures were processed using the Structure
Preparation Module in the MOE program (www.chemcomp.com).
Docking of cefsulodin and amaranth to the three protein structures
was performed using the MOE Dock with the ligand-induced fit
docking protocol, respectively. The binding affinity was evaluated
using the GBVI/WSA score. 30 docking poses were generated from
each target docking. The top-ranked binding poses were inspected,
and the predicted inhibitor binding models were selected based on
the consensus scores. The predicted binding complexes of cefsulodin
and amaranth with GCPII were subjected to step-wise energy
minimization, followed by 2-ns MD simulations and MM-GBSA
binding free energy calculations using the program Flare (www.
cresset-group.com).
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2.7 Thermal shift assay

nanoDSF experiments were performed to assess the thermal stability
of GCPII in the presence of various inhibitors. Protein samples were
prepared at a concentration of 0.15 mg/mL in 50 mM Tris-HCI (pH 7.4),
1 mM CoCl,, 150 mM NaCl, and 0.01% Tween-20. Samples were
incubated at 25 °C for 30 min prior to measurement with shaking at
1,000 rpm. Thermal unfolding was monitored using a Prometheus Panta
nanoDSF
Technologies). The intrinsic fluorescence at 350 nm and 330 nm was

instrument using standard capillaries (NanoTemper
recorded as a function of temperature, and the fluorescence ratio (350/
330 nm) and its first derivative were used to track protein unfolding. A
thermal gradient from 25 °C to 95 °C was applied at a rate of 0.5 °C per
minute. The melting temperature (T,,,) was determined from the global
maximum of the first derivative of the fluorescence ratio curve. Each
condition was tested in at least three independent replicates, and data
was analyzed using PR. ThermControl software (NanoTemper
Technologies). One-way ANOVA with multiple comparisons to the
DMSO vehicle control group was used to determine significant shifts
from the control thermal unfolding profile.

2.8 Pharmacokinetic analysis

Pharmacokinetic studies in mice were approved by the Animal
Care and Use Committee at Johns Hopkins University. Male C57BL/
6 mice (25-30 g) were housed under a 12-h light-dark cycle with ad
libitum access to food and water. Cefsulodin was administered
intraperitoneally (IP) at a dosage of 100 mg/kg prepared freshly
(5% DMSO and 95% HEPES saline v/v) with a dosing volume of
10 mL/kg. Blood and brain tissue samples were collected at
0.083-3 h post-administration (n = 3 per time point). Blood was
obtained via cardiac puncture, and plasma was separated by low-
speed centrifugation at 3,000 x g for 15 min and stored at —80 “C.
Brain tissues were harvested, and immediately frozen in liquid
nitrogen, and stored at —80 °C until analyses.

As cefsulodin is known to be unstable, plasma and brain tissue
samples were prepared with the addition of 2% formic acid in water
to adjust the pH to 5 (Lecaillon et al., 1982). For quantification of
cefsulodin, plasma samples were diluted 10-fold with blank plasma,
and a total of 40 uL of plasma was extracted using a protein
precipitation method by adding methanol containing the internal
standard (diclofenac, 1 uM). The mixture was vortex-mixed for 30 s
and centrifuged at 14,000 rpm for 5 min at 4 °C. Brain tissues were
homogenized in methanol at a 1:5 (w/v) ratio. A 50 uL aliquot of the
homogenate was precipitated with methanol containing the internal
standard, vortex-mixed, and centrifuged at 14,000 rpm for 5 min at 4
°‘C. A 150 pL aliquot of the supernatant was transferred to a
polypropylene vial sealed with a Teflon cap and analyzed by
liquid chromatography with tandem mass spectrometric methods
(LC-MS/MS) as described below.

Cefsulodin concentrations in mouse plasma and brain were
measured using a Shimadzu Nexera X2 LC-40D system (Shimadzu
Corporation, Kyoto, Japan) coupled with an API 6500 triple
quadrupole mass spectrometer (AB Sciex, Redwood City, CA,
United States). Chromatographic separation was achieved using
an Acquity UPLC BEH Amide column (2.1 x 100 mm, 1.7 pm;
Waters, Milford, MA, United States) with a gradient mobile phase
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TABLE 1 Screening results of cefsulodin and amaranth using dual-stream liquid chromatography—tandem mass spectrometry-based method.

Compound AC50 (uM) Max resp (100uM) HTS max resp Structure
2-PMPA 0.030 -98.19 -100.00 O, OHo
1]
HO P.
Y\I&OH
(0]
2-MPPA 25 -96.75 ~100.00 0
HS/\/I\)LOH
HO O
L-Quisqualic acid 7.9 -91.35 -93.07 (o]
o=""N OH
HN"& NH,
(0]
Cefsulodin 39 -98.19 -92.18 0_0O
SNTNA o
HoN X s . /// % _on
o) H i W
Amaranth 2.5 -101.68 -101.93 +

consisting of (A) 0.1% formic acid in water and (B) 0.1% formic acid
in acetonitrile at a flow rate of 0.3 mL/min. Quantitation was
performed in multiple reaction monitoring (MRM) mode using
cefsulodin (533.03 > 123.03) and diclofenac as the internal standard
(296.13 > 215.03) (Zhou et al., 2024; Park et al., 2024). Calibration
curves were constructed over the range of 0.01-100 nmol/mL or
nmol/g for plasma and brain, respectively.

Plasma concentrations (nmol/mL) and brain concentrations
(nmol/g) were determined, and mean concentration-time profiles
were plotted for pharmacokinetic analysis. Non-compartmental
analysis was performed using the Phoenix WinNonlin software
version 8.4 (Certara United States, Inc., Princeton, NJ) to
calculate pharmacokinetic parameters, including the maximum
concentration (Cp,y), time to Co.x (Tmax), and area under the
concentration-time curve (AUC,_,).

3 Results

3.1 Libraries were screened for GCPII
inhibition using the dual-stream liquid
chromatography—tandem mass
spectrometry-based method

Prior art compounds of varying potency were selected to

validate use of the assay for identifying GCPII inhibitors
including 2-(phosphonomethyl)pentanedioic acid (2-PMPA,
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o P

Na
O
O:ISII O N\\ HO S\\O

Na* O . N
O"S\é)o Na*

ICso = 200 pM), 2-(3-mercaptopropyl)pentanedioic acid (2-
MPPA, ICsq = 90 nM), and quisqualic acid (ICsy = 10 puM).
Once the assay was validated, NCATS Pharmaceutical Collection
(NPC) and Help End Addiction Longterm (HEAL) compound
libraries comprised of 5,494 compounds were selected for GCPII
inhibition screening. Initially compounds were screened at 10 uM
and hits exhibiting greater than 50% reduction of NAAG
conversion relative to DMSO controls were then analyzed in a
seven-point dose response curve. Of the 5,494 compounds
screened at 10puM, 139 (2.5%) demonstrated >50% inhibition
relative to the DMSO and no enzyme controls. These included
compounds already reported in the literature, including 2-
PMPA, 2-MPPA, Quisqualic Acid, Folic Acid and
Methotrexate and several of its analogs. Of the 139 hits
identified in the
representing hits and numerous structural analogs, were re-

single point screen, 192 compounds,
plated in a 7 pt titration at 1:3 dilution and re-tested to
generate dose response curves and calculate IC50 values. The
most potent, confirmed hits included Cefsulodin and Amaranth,

and several of their analogs (Table 1).

3.2 GCPIll inhibitor hits were confirmed in an
orthogonal radioenzymatic-based assay

Hits above were next evaluated in an orthogonal radiometric
assay (Rojas et al., 2002). Cefsulodin and amaranth were shown to be
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dose-dependent inhibitors in this assay, with ICs, values of 2.0 +
0.1 and 0.30 * 0.01 uM, respectively (Figure 1).

3.3 Biophysical interrogation of inhibitor
binding using thermal shift assays

Given their potency and novelty as GCPII inhibitors, we further
characterized the interaction of cefsulodin and amaranth with

Frontiers in Pharmacology

recombinant human (rh) GCPII using a nanoDSF thermal shift
assay that monitors protein unfolding through intrinsic protein
fluorescence. To assess the thermal stability of GCPII in the presence
of known inhibitors, experiments were conducted with increasing
concentrations of 2-PMPA and 2-MPPA (Figures 2A,B). The
thermal unfolding profiles showed a dose-dependent stabilization
effect when compared to the DMSO vehicle control group, with
increasing concentrations of both compounds resulting in a
rightward shift of the unfolding transition. First derivative
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Mode of inhibition determination of cefsulodin. (A) Michaelis Menten curve of 40pM GCPIl enzyme with varying concentrations of NAAG substrate
and cefsulodin with the corresponding Km and Vmax values. (B) Lineweaver-Burke plot demonstrating competitive inhibition of cefsulodin. (C)
Secondary plot (Ky appvmax Vs. [Cefsulodin]) to obtain the binding constant (K; = =X intercept).

analysis of the fluorescence ratio (350/330 nm) revealed a clear
increase in melting temperature, validating the nanoDSF thermal
shift assay as a means of identifying binding to GCPII through
thermal stabilization events. The T, of GCPII in the presence of 2-
PMPA increased from the DMSO T, of 78.93 °C (+0.07) to 90.70 °C
(+0.01) at 250 uM, while 2-MPPA at 250 uM led to a T, shift to
79.25 °C (£0.04).

We next explored the thermal stability of GCPII in the
(Figure 2C). Both
compounds induced shifts in the unfolding transition. First
derivative analysis revealed a shift in T,, of A 0.56 ‘C (+0.05)
and 0.76 °C (+£0.04) for amaranth at 2.5 and 25 uM and A 0.65
(+0.07) and 1.01 (+0.05) for cefsulodin at 25 and 250 uM,
indicating stabilization of GCPIIL. Repeated testing of cefsulodin

presence of amaranth and cefsulodin

demonstrated consistent stabilization across multiple batches
(Figure 2D), with minor variations between them.

3.4 Mode of inhibition

We next characterized the mode of inhibition (MOI) of
cefsulodin and amaranth using the radiometric assay with
varying concentrations of the NAA [’H]G substrate to complete
a Michaelis-Menten analysis. The MOI analysis of cefsulodin
(Figure 3) showed that increasing concentrations of cefsulodin
increased the GCPII K,, with NAAG as a substrate with no
change in V., consistent with competitive inhibition. In
contrast, increasing concentrations of amaranth led to reductions
in V.« while the K, remained constant (Figure 4), suggesting non-
competitive inhibition.
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3.5 In silico docking studies

To complement the MOI studies, in silico docking/modeling
studies were performed to determine the potential binding site of
cefsulodin and amaranth within the GCPII enzyme structure.
Figure 5A shows the crystal structure of GCPII overlaid with
various Glu-based inhibitors. The active site is located at the
bottom of the substrate binding pocket, with two Zn®" ions
coordinated by the side chains of His377, Asp 387, Glu425, and
His553. The entrance of substrate binding cavity is extended to the
apical domain and surrounded by a number of polar residues such as
Arg463, Arg511, Arg 514 which are crucial to substrate recognition.
Docking studies showed that cefsulodin fit well in the active site by
forming metal chelation with the Zn** ions and H-bonding with
residues Arg210, Arg 536, Tyr234 in the pocket (Figure 5B).
Amaranth did not fit in the active site, due to its bulky structure,
and is instead predicted to bind to the allosteric site at the entrance
by forming extensive H-bonding interactions with residues Arg511,
Arg514, Ser547, and Tyr700, likely playing an inhibitory role by
blocking substrate binding (Figure 5C). The calculated total AG by
MM-GBSA showed that the electrostatic binding energy played a
major role in inhibitor binding, which is consistent with the binding
model analysis (Supplementary Tables S1, S2).

3.6 Brain penetration of cefsulodin
Cefsulodin has been reported in literature to penetrate the blood

brain barrier in rat models of meningitis (Meulemans et al., 2009;
Meulemans et al., 1986). To confirm the brain permeation of
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Binding model of Cefsulodin and amaranth to GCPII. (A) Known GCPIl inhibitors bound in the active and allosteric site of GCPII. (B) predicted binding
model of cefsulodin in the active site; (C) predicted binding model of amaranth in the allosteric site.

cefsulodin when no disruption is present, we conducted a
pharmacokinetic and brain penetration study in mice. The
pharmacokinetic profiles of cefsulodin in plasma and brain
following IP administration (100 mg/kg) are illustrated in
Figure 6. Plasma levels were initially high but declined rapidly by
3 h. In contrast, brain levels were steady for all the sampled time

Frontiers in Pharmacology

08

points, reaching a maximum concentration (Cmax) of 4.9 uM at
30 min post-dose. The brain exposure measured by area under the
curve (AUC) was 4.36 + 1.12 nmol/g*h. Although brain penetration
index was low, micromolar concentrations of cefsulodin were
achieved in the brain, which is in line with the compound’s K;
value (2 uM).
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FIGURE 6
Plasma and brain concentration profiles following IP
administration of 100 mg/kg cefsulodin in C57BL/6J mice

3.7 SAR of cefsulodin and amaranth

Given the promising initial characterization data, several
analogs of cefsulodin and amaranth were evaluated to obtain
SAR data (Table 2). For analogs of cefsulodin, we tested
cephalosporin-based compounds containing a 7-
aminocephalosporanic acid (ACA) as the core scaffold, including
cefonicid, ceforanide, and cefotetan. The lower inhibitory potency
displayed by cefonicid and ceforanide may suggest that acidic
moieties attached to the 7-amino group play a more important
role in interacting with the enzyme compared to those attached to
the three-position. We also tested additional sulfonic acid dyes as
analogs of amaranth. Trypan blue and sulfobromophthalein were
found to be equally potent as amaranth while substantial loss of
inhibitory potency was observed with indocyanine green in both
assays, suggesting the preference of the enzyme for arylsulfonic acids

over aliphatic sulfonic acids.

4 Discussion

A novel dual-stream liquid chromatography-tandem mass
spectrometry assay was utilized to identify novel inhibitors of the
enzyme GCPIIL. For this effort, two libraries of known, small
molecule drug repurposing candidates were selected. We
identified the third-generation cephalosporin, cefsulodin
(ICs0 = 2.0 = 0.1 puM), and amaranth dye (IC5, = 0.30 =%
0.01 uM) as inhibitors of GCPIIL. Several analogs of these
compounds were also tested and shown to also have inhibitory
activity. Direct interaction of GCPII with cefsulodin and
amaranth was further supported by stabilization in the
nanoDSF thermal shift assay, where an elevation in T, was
observed with both compounds. After validation of the
potency of cefsulodin and amaranth with the MS method and
an orthogonal radioactivity based enzymatic assay, we further
characterized the nature of the enzyme-inhibitor interactions.
We used a radioactivity-based enzymatic assay to determine the
inhibition mode of cefsulodin and amaranth. For cefsulodin,
Vmax remained constant while K,, increased, consistent with
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competitive, active-site inhibition. Docking studies confirmed
that cefsulodin fits within the GCPII active site, acting as a
bidentate Zn>* chelator, similar to known inhibitors such as 2-
PMPA and 2-MPPA, but with fewer charged groups and a more
hydrophobic backbone, features that may enhance drug-likeness.
In contrast, amaranth reduced V.. without affecting K,
indicating non-competitive inhibition. Docking suggested that
amaranth’s bulky structure cannot occupy the active site but
instead binds an allosteric pocket, consistent with its distinct
mechanism. Given the challenges of developing drug-like
competitive inhibitors for GCPII, the potency and novel
allosteric binding of amaranth make it an attractive new
scaffold, especially as few allosteric GCPII inhibitors have
been reported (Gori et al., 2022).

One of the driving goals of this project was to identify
inhibitors of GCPII which are also able to penetrate the
blood-brain barrier for the treatment of disorders involving
in the
peripheral nervous systems such as neuropathic pain and

aberrant glutamatergic transmission central and
cognitive dysfunction. Cefsulodin is an antibiotic that has
been used to treat bacterial meningitis both clinically and in
pre-clinical rat models of disease (Meulemans et al., 1986;
Meulemans et al., 2009; Tsuchiya et al., 1978). However, little
work has been done characterizing the ability of cefsulodin to
penetrate the brain when profound blood-brain barrier
breakdown is not present, such as in meningitis. For this
reason, we selected cefsulodin for a pharmacokinetic study in
mice. We found that IP administration of a 100 mg/kg dose of
cefsulodin in healthy, adult mice led to brain levels above the
compound’s ICs, for GCPII.

In conclusion, this tandem mass spectrometry method is now
validated as an effective approach for identifying novel GCPII
inhibitors from the two repurposing libraries. The key findings from
this study are: (i) cefsulodin represents a competitive, active-site
inhibitor = structurally distinct from previously known GCPII
inhibitors, potentially offering a novel scaffold for therapeutic
development; (i) amaranth is a potent, non-competitive inhibitor
that is proposed to bind at a newly identified allosteric site,
providing a new molecular scaffold for the development of allosteric
GCPII inhibitors; and (iii) cefsulodin achieves brain concentrations
above its GCPII ICs, value in healthy mice following systemic
administration, suggesting its therapeutic potential in neurological
disorders associated with elevated GCPII activity.

These findings also pave the way for continued efforts to
discover novel GCPII inhibitors through multiple approaches.
First, based on the observed SAR trends and docking analyses,
future structural modifications of cefsulodin could focus on
optimizing its hydrophobic backbone and fine-tuning of the
chelating moiety to retain zinc coordination while reducing polar
surface area, thereby enhancing CNS penetration. Second, resolving
the co-crystal structure of GCPII with amaranth could enable more
rational structural optimization, including the potential removal of
its highly acidic moieties and a reduction in molecular weight to
improve CNS permeability. Lastly, given the successful identification
of two mechanistically distinct GCPII inhibitors from the two
relatively focused libraries, screening larger compound libraries,
especially those enriched for CNS drug-like molecules, using the
dual-stream liquid chromatography-tandem mass spectrometry
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TABLE 2 Follow up screening results of cefsulodin, amaranth, and analogs from both the dual stream LC/MS and the orthogonal radioenzymatic assay.

Compounds ICs0 (um) . ICs50 (uM) Structure
(mass spec assay) (radioenzymatic assay)
Cefsulodin sodium salt 3.6+03 2.0 +0.1 [eXge]
o]
SN NN
|
HzN\”/Q s N/[l % _on
0 \
Cefonicid sodium 32+2 49 +2 N-N Na*
N | .
NJ\S 0.0
(ol )
82 Nj
d o %
Na* S N
H
HO
Ceforanide 29 £ 04 14+6 N-N HO.___O
N'jN | o) NH,
=
KFO S N
HO H
Cefotetan 97 +3 20+ 1 N‘N/ HO___O
N o
~N -~ OH
s oHd
o7 "NH;
Amaranth 1.5+ 03 0.30 £ 0.01 Na*
% Ho ©g7
0=8 N, @
Nt N )
.O°
O/'S‘b Na*
Trypan blue 2.1 +04 0.21 £ 0.05 Na*
Sulfobromophthalein 0.40 + 0.1 023 +0.1

(Continued on following page)
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TABLE 2 (Continued) Follow up screening results of cefsulodin, amaranth, and analogs from both the dual stream LC/MS and the orthogonal
radioenzymatic assay.

Compounds ICs0 (um) ICs0 (um) Structure

(mass spec assay) (radioenzymatic assay)

Indocyanine green 11 £0.2 1.9+ 03

Triplicate IC5, values +standard deviation.
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