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Background: Lung adenocarcinoma (LUAD) shows high recurrence rate and
poor prognosis. Genes associated with ubiquitin play a role in the onset and
advancement of cancers; however, they have yet to be employed for the
diagnosis and prognosis of LUAD.
Methods: First, gene modules correlated with ubiquitin were identified by
WGCNA. The expression profiles obtained were intersected with differential
genes taken between the LUAD and control samples. The genes were then
further compressed using univariate and multifactorial Cox regression analyses
and risk models. In addition, the model was validated by constructing a
nomogram using clinical characteristics and Riskscore. Next, the differences in
immune infiltration between different subgroups were explored, and
immunotherapy and drug sensitivity evaluations were performed. The
biological role of HEATR1 in LUAD was also explored using CCK-8, wound
healing assay and transwell.
Results: The intersection between the module genes between LUAD samples
and control samples and differentially expressed genes (DEGs) yielded
197 intersected genes after we screened three particular modules with the
strongest ubiquitin association by WGCNA. 32 genes associated with LUAD
prognosis were screened, and B4GALT4, DNAJB4, GORAB, HEATR1, LPGAT1,
FAT1,GAB2,MTMR4 and TCP11L2were selected as independent prognosis genes
for risk modeling. Patients were classified into low- and high-risk groups by the
Riskscore. Low-risk patients had markedly better overall survival (OS) than those
in the high-risk group. The quantity of immune cell infiltration between the two
patient groups varied notably, and the expression of model genes was negatively
connected with the infiltration of the great majority of immune cells. The
medications TAE684, Cisplatin, and Midostaurin exhibited the largest negative
correlation with Riskscore, according to drug sensitivity study. Lastly, we
demonstrated through in vitro tests that HEATR1 knockdown markedly
reduced LUAD cell survival, migration, and invasion.
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Conclusion: This study is the first to systematically integrate the ubiquitin pathway
with multi-omics data, constructing a robust risk model for LUAD prognosis and
immune characteristics, providing a theoretical reference for future exploration of
potential biomarkers for LUAD patients’ diagnosis.
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Introduction

Around 50% of all lung malignancies are lung adenocarcinoma
(LUAD), which is the primary histologic subtype of lung cancer and
a major cause of cancer-correlated mortality worldwide (Sung et al.,
2021; Little et al., 2007). In recent decades, considerable
advancements have been achieved in understanding the
molecular mechanisms underlying LUAD progression, resulting
in the creation of targeted therapies like tyrosine kinase
inhibitors (Chaft et al., 2021). In addition, new treatment
strategies have been proposed, particularly immunotherapy
(including immune checkpoint inhibitors and adoptive cell
therapy), which show promising results for patients whose cancer
has spread and who no longer respond to traditional treatments
(Ren et al., 2023). Nevertheless, only a small number of patients
benefited from immunotherapy, highlighting the urgent need to
identify potential biomarkers for effective prognostic predictions.

Since post-translational modification can precisely regulate
protein function, thereby determining cellular metabolism or
responses to genetic and environmental changes, this process is
crucial (Cappadocia and Lima, 2018). Ubiquitin-mediated post-
translational alterations can alter the level, location, and function
of its particular targets (Clague et al., 2015). Through an enzymatic
cascade process involving three enzymes—E1 (activating enzyme),
E2 (conjugating enzyme), and E3 (ligase)—these modifiers
covalently bond to their targets. The E1 enzyme activates
ubiquitin and creates a covalent thioester link by catalyzing the
adenylation of its C-terminal end with the help of adenosine
triphosphate. The active ubiquitin is subsequently taken up by
the E2 enzyme via a transsulfurylation process. Lastly, ubiquitin
is transferred to particular target lysine residues by the ubiquitin-
containing E2 enzyme, either by itself or in conjunction with the
chaperone E3 enzyme, creating an amide (or isopeptide) bond
between ubiquitin and the substrate. Ubiquitin dissociation,
editing, and recycling are carried out by deubiquitinating

enzymes and ubiquitin-specific proteases (Guo et al., 2023;
Hwang et al., 2022). It has recently been shown that a number of
ubiquitins are intimately associated with the development and
metastasis of different forms of cancer. The deubiquitinating
enzyme USP7, for instance, promotes the progression of
colorectal cancer by up-regulating several cellular pathways, such
as Wnt/β-catenin signaling (Zhao et al., 2024; Li X. et al., 2020).
According to Liao et al. (Liao et al., 2021), the deubiquitinating
enzyme USP1 is responsible for the advancement of prostate cancer
by blocking the K48-linked polyubiquitination of SIX1.
Upregulating the ubiquitin-specific peptidase USP48 reduces
hepatocellular cancer by changing SIRT6 stabilization (Du et al.,
2021). In breast cancer, hyperactivation of the deubiquitinase
USP1 promotes metastasis of breast cancer cells to lung,
upregulates the expressions of many pro-metastatic genes in
cancer cells, and enhances cell migration and invasion in vitro
(Ma et al., 2019). Nevertheless, nothing is known about the
expression status, activity, and role of ubiquitin in LUAD. Thus,
the hunt for ubiquitin-related indicators in LUAD might yield fresh
concepts for cancer treatment.

This research used bioinformatics to examine the ubiquitin-
related gene scores of LUAD patients in public databases. WGCNA
was used to identify and enhance the modular genes linked to
ubiquitin in LUAD. A Riskscore system was developed using the
screened characteristic genes linked to the prognosis of LUAD.
LUAD patients were divided by the median Riskscore into low-risk
and high-risk groups, and a nomogram of the Riskscore in relation
to the various clinicopathological characteristics of LUAD patients
was created. The correlation of the risk model with drug
sensitization and immunotherapy was analyzed. Overall, our
study provides a new method to predict the prognosis and
immune infiltration of LUAD patients based on ubiquitin-related
genes, which may provide new insights into prognostic assessment
and therapeutic strategies for LUAD.

Methods

Data acquisition and preprocessing

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) was accessed to collect clinical information of LUAD
and gene expression profiles. After removing samples without
survival time or status, the included patients had a survival time
longer than 0 days. RNA-seq expression profiles were collected and
transformed to reads per million mapped (FPKM) format and
log2 transformed, resulting in 500 lung cancer samples and
59 control samples for final screening. Microarray data for

Abbreviations: LUAD, Lung adenocarcinoma; URGs, Ubiquitin-related genes;
WGCNA, Weighted gene co-expression network analysis; GO, Gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP,
Biological process; MF, Molecular function; CC, Cellular component;
TAM.M2, Tumor-associated macrophages of the M2 subtype; MDSC,
Myeloid-derived suppressor cells; CAF, Tumor-associated fibroblasts;
DEGs, Differentially expressed genes; KM, Kaplan-Meier; GDSC, Drug
sensitivity in cancer; IC50, Inhibitory concentration; AUC, Area under ROC
curve; DCA, Decision curve analysis; GEO, Gene expression omnibus; LASSO,
Least absolute shrinkage and selection operator; OS, Overall survival; ROC,
Receiver operating characteristic analysis; GSVA, Gene set variant analysis;
ssGSEA, single-sample gene set enrichment analysis; TCGA, The cancer
genome atlas; TIDE, Tumor immune dysfunction and exclusion.
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GSE31210 were downloaded from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. Based on the
annotation file, normal tissue samples were removed by converting
the probe to Symbol. Samples without overall survival (OS) or
clinical follow-up data were subsequently removed, and a sum of
226 tumor samples were finally screened by GSE31210. This study
used TCGA-LUAD as the training set and the GSE31210 dataset as
the independent validation set. Subsequently, the iUUCD 2.
0 database (http://iuucd.biocuckoo.org/) was accessed to obtain a
total of 807 ubiquitin-related genes (URGs). The URGs scores for
each sample in TCGA_LUAD cohort were calculated using single-
sample gene set enrichment analysis (ssGSEA) in the “GSVA”
package (Subramanian et al., 2005).

Weighted gene co-expression network
construction

WGCNA was then used to preprocess the gene expression data,
eliminating genes with low variance and keeping only those with
high variance (Wang Y. et al., 2024). In particular, we screened the
genes using the mad (median absolute deviation) measure, set a
threshold of 0.01 and chose the top 75% of genes with higher
variance. Then, the proper soft threshold β was found using the
pickSoftThreshold function. Once the soft threshold was
established, the topological reconstruction similarity (TOM)
between genes was further computed using a weighted neighbor-
joining matrix. The genes were then grouped using the hierarchical
clustering approach, and the topological reconstruction dissimilarity
(dissTOM) was used to calculate the distance between the genes. The
minimal number of module genes was set at 60 during the module
identification procedure, with deepSplit = 2, and the cut height for
module merging was set at mergeCutHeight = 0.3. We computed
and grouped each module’s feature gene vectors in order to examine
the connection between gene modules and URGs feature scores in
more detail. Based on this, the “Heatmap” package (Saunders et al.,
2007) was used to conduct module-trait correlation analysis.
Pearson correlation coefficients between each module and URGs
trait scores were then obtained, and the corPvalueStudent function
was used to determine the appropriate p-values. To assist in
identifying key modules associated with URGs function, we use
heatmaps to illustrate the relationship between modules and URGs
feature scores. The genes contained in the modules were filtered out
of the modules having the highest correlations. Finally, we computed
Gene Module Membership for module genes and Gene Trait
Significance for each gene with respect to URGs trait scores in
order to obtain a better understanding of the characterization of
genes within a module. We then used scatter plots to illustrate the
connection betweenmodule membership and gene trait significance.

Gene enrichment analysis

Using the “clusterProfiler” package (Yu et al., 2012), themodular
genes derived from WGCNA screening were subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses, with p < 0.05 considered statistically
significant (Wang et al., 2025). The Top 10 GO terms (for BP, MF,

and CC) and KEGG pathways were selected based on gene count
and adjusted p-values, and visualized using bubble plots to highlight
the most relevant biological functions.

Screening of differentially expressed genes

The “limma” package (Ritchie et al., 2015) was employed to
select DEGs between LUAD cases and control samples in the TCGA
cohort. Using p.value < 0.05 and |log2 (FC)| > log2 (1.5) as statistical
significance criteria, gene expression profiling data were background
adjusted, quartile normalized, and professionally summarized to
screen for significant DEGs. The junction of modular genes and
DEGs derived from the WGCNA screen was then captured.

Risk modeling and validation

We next performed univariate Cox proportional risk regression
on intersecting genes using the R package “survival” (Lirette and
Aban, 2017) to identify genes closely linked to the prognosis of
patients in the TCGA_LUAD cohort. Multifactorial stepwise
regression analysis was then used to develop a Riskscore model,
which screened the TCGA_LUAD dataset for significant genes and
correlation coefficients that were independently associated with
patient prognosis. The following formula was used to determine
the Riskscore: Riskscore = Σβi × Expi. Expi is the expression of every
gene gathered, i denotes the gene expression level, and β is the
associated gene’s Cox regression coefficient. Following zscore
normalization, the Riskscore’s ideal critical value was used to
divide the TCGA_LUAD dataset’s patients into low-risk and
high-risk groups. Plotting Kaplan-Meier (K-M) survival curves
and performing survival analyses comparing the two risk groups
using the R package “survminer” (Ozhan et al., 2021) were then used
to conduct prognostic studies. Additionally, we calculated the AUC
for the TCGA-LUAD training and test sets at 1-, 2-, 3-, 4-, and 5-
year AUC and assessed the predictive model’s performance by the
ROC curves using the R package “timeROC” (Blanche et al., 2013) in
order to evaluate the diagnostic accuracy of the prognostic risk
model. Finally, we applied the same techniques to the
GSE31210 dataset to further validate the reliability and stability
of our established clinical prognostic models based on risk-related
gene signatures.

Establishment and validation of
prognostic nomogram

Univariate and multivariate Cox regression analyses combining
the various clinical variables of LUAD (age, gender, T.stage, N.stage,
M.stage, stage) were utilized in order to ascertain whether Riskscore
was an independent prognostic factor predicting the survival of
LUAD patients. The clinical characteristics identified by the
prognostic model and multivariate regression analysis were then
combined to create a prediction nomogram (Iasonos et al., 2008). To
assess the nomogram’s deviation from the ideal model, the “caret”
package (Kuhn, 2008) produced calibration curves, and the
predictive ability of the model was assessed by using the “rmda”
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package (Gerds et al., 2014) in R software to plot decision curve
analysis (DCA).

Immune infiltration analysis

To examine the relationship between Riskscore and LUAD
immune function, the immune cell scores of the TCGA dataset
in different subgroups were evaluated using the tumor immunity
estimate resource (TIMER) database (https://cistrome.shinyapps.io/
timer/) (Li et al., 2017). Furthermore, the correlation between the
Riskscore and the 10 immune cell ratings of the TCGA-LUAD
dataset was ascertained using the “MCPcounter” package (Becht
et al., 2016). Based on the transcriptome expression profiles of the
samples, we then investigated the correlation between the hub genes
and the infiltration patterns of the 28 immune cells (Charoentong
et al., 2017) using the ssGSEA function of the “GSVA” package for
the scores of the TCGA-LUAD cohort.

Immunotherapy relevance and drug
sensitivity analysis

TIDE describes T-cell malfunction and influences patient
survival and immunotherapy response by utilizing the correlation
between the tumor’s gene expression profiles and the extent of
cytotoxic T-lymphocyte infiltration (Fu et al., 2020). Patients with a
higher TIDE prediction score have higher immune escape potential,
which implies that immunotherapy has a lower chance of success
and less likely to benefit in any way. Using the TIDE (http://tide.dfci.
harvard.edu/) database, we first evaluated the possible clinical effects
of immunotherapy in low- and high-risk groups in order to ascertain
the significance of genes to the advantages of immunotherapy. Then,
we used the “pRRophetic” package (Geeleher et al., 2014) in R to
analyze the sensitivities of commonly used chemotherapeutic drugs
in the TCGA-LUAD cohort and to determine the correlation
between the half-maximal inhibitory concentration (IC50) and the
Riskscore, with p < 0.05 deemed significant. Spearman correlation
analysis was employed to evaluate the relationship between the
predicted IC50 values and the Riskscore across samples.

Cell culture and plasmid transfection

Human normal lung epithelial cells (BEAS-2B, CRL-3588) and
human LUAD cells (H2228, CRL-5935 and A549, CRM-CCL-185)
purchased from the American Type Culture Collection were
cultivated in RPMI-1640 medium (11875093, Gibco,
United States) containing 10% fetal bovine serum (FBS,
10099141, Gibco, United States) and 100 U/mL of penicillin and
streptomycin (15140122, Gibco, United States). Every cell was
cultivated in an incubator at 37 °C with 5% CO2. We have
performed STR identification on the cells, and the mycoplasma
detection results turned out to be negative.

HEATR1 knockdown plasmid (si-HEATR1) and control
plasmid (si-NC) ordered from GenePharma (Shanghai, China)
were transfected into 2 × 104 cells/well of H2228 and A549 cells,
respectively, according to the instructions of Lipo3000 Liposomal

Transfection Reagent (L3000-001, ThermoScientific, Waltham, MA,
United States). si-HEATR1 sequence was as follows: 5′-UGGAUU
GUACCAUUCUUCUG-3’ (si-HEATR1#1) and 5′- TCCTTCCTT
TGAGCAGTTTGAAG-3’ (si-HEATR1#2).

RNA extraction and quantitative real-
time PCR

Total RNA from BEAS-2B, H2228, and A549 cells was isolated
utilizing the RNA Extraction Kit (TRIzol, Invitrogen, United States)
in accordance with the instructions. The concentration and purity of
the total RNA extracted were tested. The creation of cDNA
templates was then initiated using the HiScript II kit (Vazyme,
China). Specific primers and the KAPA SYBR® FAST kit (Sigma
Aldrich, San Luis, MO, United States) were used for qRT-PCR. The
conditions for the PCR reaction are outlined as follows: 30 s at 95 °C,
followed by 10 s at 95 °C, then 30 s at 60 °C, and finally 34 s at 70 °C,
totaling 40 cycles. Relative gene expression was computed
employing the 2−ΔΔCT technique was utilized to examine the data,
while GAPDH as an internal control. Primer sequences for
particular genes were shown in Table 1.

Cell viability

To evaluate the effect of HEATR1 on H2228 and A549 cell
viability, colorimetric assays were performed following the protocol,
CCK-8 (DOJINDO, Japan). Briefly, cells (2000 cells/Well) were
grown in 96-well microplates for 0, 24, 48, and 72 h. Cells were
washed with PBS twice, then 100 mL of fresh medium and CCK-8
solution (10 μL) were supplemented to each well and incubated with
5% CO2 at 37 °C for 3 h. Using a microplate reader SPECTROstar
Nano (BMG LABTECH GmbH, Ortenberg, Germany), the
absorbance at 450 nm was determined.

Cell migration and invasion assays

To assess the effect of HEATR1 on the migration and invasion
ability of H2228 and A549 cells, we subsequently performed scratch
and transwell assays. In the invasion assay, H2228 and A549 cell
suspensions (5 × 105/mL) were prepared with serum-free medium.
Then, 100 μL of cell suspension was filled into the upper transwell
chamber (Corning, Beijing, China) pre-coated with Martigel (30 μg/
well; BD, San Jose, CA, United States), while the lower chamber
contained 600 μL of RPMI-1640 medium with10% FBS. Migrated
cells were fixed with 4% paraformaldehyde and dyed with crystal
violet solution. These migrated or invaded cells in the lower chamber
were quantified under a microscope (CKX41; Olympus, Tokyo,
Japan) using 6 different fields of view (Fan, 2023).

For migration assays, collective cell migration was detected by
wound healing assay. Transfected cells were inoculated into 6-well
plates (5 × 105/mL). Two mL of cell suspension was inoculated into
6-well plates and incubated at 37 °C and 5% CO2 in an incubator.
When the cells were adherent to the wall, the monolayer was scraped
with a 10 μL plastic pipette tip to form a uniform wound. After
washing with PBS, the monolayers were incubated in non-FBS
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medium. The wound edge distances between the two edges of the
migrating cell sheet were photographed at 0 h and 48 h, respectively.
All the experiments were conducted in triplicate (Zh et al., 2024).

Statistical tests

GraphPad Prism 8 (GraphPad Software, San Diego,
United States) and R software version 3.6.0 (R Foundation,
Vienna, Austria) were employed in all statistical analyses.
Kaplan-Meier (KM) survival curves and log-rank tests were used
to compare survival differences between high- and low-risk groups.
Spearman’s algorithm was used to analyze correlations. For cell
experiments, Student’s t-test was used to compare differences
between two groups, or one-way ANOVA was used to test
differences between multiple groups. All cell experiments were
performed in triplicate. A p-value < 0.05 stood for statistical
significance in all analyses.

Result

WGCNA screening for gene modules
associated with URGs

First, we used the ssGSEA technique to evaluate the URG scores
of each LUAD sample and control sample in the TCGA dataset. It
was discovered that the tumor group’s URG score was noticeably
greater than the control group’s (Figure 1A). URGs were thought to
be connected to the development of LUAD. In order to find the gene
modules associated with URGs in the TCGA dataset, the R package
“WGCNA” was further used. After clustering the samples to screen
the co-expression modules, we constructed the topological network
using a soft threshold of β = 7 to guarantee that the network was
scale-free (Figure 1B). Hierarchical clustering was then used to
identify the gene modules. After the modules were merged,
22 co-expression modules were produced (Figure 1C), with the
gray module representing the gene that was unable to be grouped
into any other modules. Out of the 22 modules, the turquoise
module had the comparatively most genes, followed by the grey

and blue modules, as illustrated in Figure 1D. We computed each
module’s connection with URG scores and created a module-shape
correlation heat map in order to identify clinically significant
modules. It can be seen that the cyan (cor = 0.65, p = 2.99e-61),
blue (cor = 0.65, p = 1.69e-61) and royalblue (cor = 0.66, p = 7.96e-
63) modules have a strong correlation with URGs scores were
strongly correlated (Figure 1E). Therefore, we selected the cyan,
blue and royalblue modules as clinically significant for further
analysis. Lastly, we determined the Gene Module Membership of
the module genes and the Gene Trait Significance of each gene in
relation to the feature scores of the URGs in order to obtain a better
understanding of the characterization of the genes inside the
modules. The scatterplot indicates that the blue (cor = 0.7, p =
6.9e-50), royalblue (cor = 0.84, p = 4e-33), and cyan (cor = 0.7, p <
1e-200) module genes had a substantial positive association between
module membership and URGs score (Figure 1F).

Enrichment analysis of modular genes

The genes in the modules were substantially enriched in
endocytosis, ubiquitin proteolysis, and proteoglycans in cancer
pathways, per KEGG analysis (Figure 2A). The modular genes
were primarily involved in the BPs of covalent chromatin
modification, chromatin modification, histone modification,
according to GO enrichment analysis. Autophagy, histone
modification, chromatin modification, and the use of autophagic
mechanism pathways (Figure 2B). The centrosome, chromatin,
nuclear speck, and other structures were the CCs where module
genes were primarily enriched (Figure 2C). Pathways like
transcription coregulator activity, GTPase interaction, and
protein serine/threonine kinase activity were the MFs most
significantly enriched for module genes (Figure 2D).

Prognostic modeling and validation

The DEGs between LUAD and control samples were then found
in the TCGA dataset. The volcano plot showing DEGs is displayed in
Figure 3A. Additionally, we took the intersection of the DEGs with

TABLE 1 The sequences of primers for RT−qPCR used in this study.

Gene name Forward primer Reverse primer

B4GALT4 5′ CTCTGACTAATGAAGCATCCACG 3′ 5′ CTGCCTGTACCTCTTCCAAAGTG 3′

DNAJB4 5′ TTAAAGAGGTCGCAGAAGCTTATG 3′ 5′ GATCGCCATGAAAGGTGTACCG 3′

GORAB 5′ CCAAAAGAACTCAGGCAGAGACC 3′ 5′ CTTCAGCCCTGTCAAACCGCTT 3′

HEATR1 5′ GTCCGAATAGAACTGGAGCCAC 3′ 5′ GCCAGTAAGAACCTCCAACTTCC 3′

LPGAT1 5′ TACCACTTGGCTCTATCAGCGG 3′ 5′ CCACAAGTTGCTGAGGGTCATC 3′

FAT1 5′ ATCTGTGGAGCCTCCTGGCATA 3′ 5′ CATCTGTAGCCTCGACTGTGAG 3′

GAB2 5′ TCAGCAGAGACCGCCAATCAGT 3′ 5′ GGTACTCGTAGGTCTCACAGGA 3′

MTMR4 5′ CTGTGTTCCTCCAGTGGCTTGA 3′ 5′ TGCCGTAGAGGCAGGAGTATGT 3′

TCP11L2 5′ AAGGCTACTGGCAACATCGTGG 3′ 5′ ACCAACTGGCGTTGAAGGTGCG 3′

GAPDH 5′ GTCTCCTCTGACTTCAACAGCG 3′ 5′ ACCACCCTGTTGCTGTAGCCAA 3′
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FIGURE 1
Identification of URGs-related gene modules in the TCGA dataset using WGCNA. (A) URG scores were obtained from ssGSEA calculations between
normal and tumor. The scale-free fit index and average connectivity analyses of different soft-threshold powers (β) are presented in (B). (C) Gene
dendrogram based on clustering using the dissimilarity measure (1-TOM). (D) Each module’s gene count. (E) Heatmap showing the correlation between
gene modules and URGs scores. Each cell contains the correlation coefficient and corresponding p-value. The depth of color represents the
strength of the correlation between the module and the URGs score. Red indicates a positive correlation, blue indicates a negative correlation, and the
deeper the color, the more significant the correlation. (F) Scatterplot of correlation between module membership degree and URGs score of module
genes for cyan, blue and royalblue module genes.
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cyan, blue, and royalblue modular genes, which produced 197 URGs
that were differentially expressed (Figure 3B). Subsequently, we used
univariate Cox regression analysis in order to identify 32 genes that
were strongly associated with survival in TCGA-LUAD patients (p <
0.05). Further using stepwise multifactorial Cox regression, nine
(B4GALT4, DNAJB4, GORAB, HEATR1, LPGAT1, FAT1, GAB2,
MTMR4 and TCP11L2) genes independently associated with
TCGA-LUAD prognosis were finally identified (Figure 3C).
Subsequently, a characterization to assess the prognosis of
TCGA-LUAD patients was developed based on the expression of
the genes and the regression coefficients as described below:
Riskscore = 0.222*B4GALT4+0.196*DNAJB4+(-0.372*GORAB)
+0.382*HEATR1+ 0.37*LPGAT1+0.164* FAT1 + (−0.248*GAB2)
+ (−0.564*MTMR4) + (−0.454*TCP11L2). According to the
formula of the risk model, each sample Riskscore is calculated,
and then the Riskscore is zscore standardized. According to the
threshold “0”, the samples in the TCGA-LUAD training cohort were
divided into high-risk and low-risk groups.

The AUC values in the TCGA-LUAD training set were 0.7, 0.67,
0.7, 0.72, and 0.67 at 1, 2-, 3-, 4- and 5 years, respectively, confirming
the robustness of the prognostic characteristics in predicting OS in
TCGA-LUAD patients (Figure 3D). Further analysis of the
Riskscore and survival distribution in TCGA-LUAD patients
revealed that the OS (p < 0.0001) and disease-specific survival

(p < 0.0001) of the high-risk group were considerably worse than
those of the low-risk group (Figures 3E,F). Upon comparing the two
risk groups’ survival rates, we found that the high-risk group
experienced a higher number of deaths (p < 0.001, Figure 3G).
To verify the stability and reliability of our clinical prognostic
models constructed using URGs, we employed the
GSE31210 validation set to assess the prognostic models’
resilience using models and equivalence coefficients similar to
those used for the identified training set. The validation results
(Figure 3H) corroborated the training set finding that patients who
died in the GSE31210 dataset were more concentrated in high-risk
groups. The AUC values for the GSE31210 validation set were 0.77,
0.7, 0.66, 0.65, and 0.66 for the 1-, 2-, 3-, 4-, and 5-year periods,
respectively (Figure 3I). In the GSE31210 validation cohort, patients
in the high-risk group similarly performed worse (p < 0.0014,
Figure 3J). Proving that model genes are accurate predictors of
the prognosis of LUAD patients.

Riskscore and key clinical features-based
nomogram construction and validation

First, we assessed the prognosis of LUAD patients by univariate
(T.stage: HR (95% CI) = 2.3 (1.57,3.37), p < 0.001; N.stage: HR (95%

FIGURE 2
Functional enrichment analysis of modular genes. (A) Gene KEGG enrichment analysis bubble plot with horizontal coordinates representing the
number of genes contained within the entries and colors representing the significance p-value, increasing in significance from blue to red. (B) Gene GO
enrichment analysis BP bubble plot. (C) Gene GO enrichment analysis CC bubble plot. (D) Gene GO enrichment analysis MF bubble plot.
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FIGURE 3
Development and verification of prognostic models for LUAD patients associated with URGs. (A) DEG volcano map of the TCGA cohort’s LUAD and
control samples. (B) The junction of the cyan, blue, and royalblue module genes with differential genes. (C) The training set’s important genes’ risk
coefficients. (D–F) TCGA dataset ROC curves, disease-specific survival (DSS) K-M curves, and OS K-M curves. (G) TCGA dataset risk modeling of survival
status differences between high and low-risk groups. (H) Riskscore curves and survival status in the GSE31210 dataset. (I,J) ROC curves, OS K-M
curves in the GSE31210 dataset.

Frontiers in Pharmacology frontiersin.org08

Li et al. 10.3389/fphar.2025.1646396

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1646396


CI) = 2.58 (1.92,3.47), p < 0.001; M.stage: HR (95% CI) = 2.13
(1.25,3.65), p = 0.006; stage: HR (95%CI) = 2.59 (1.9,3.53), p < 0.001;
Riskscore: HR (95% CI) = 2.72 (2.12,3.48), p < 0.001) and
multivariate Cox regression analyses emphasized the
importance of the Riskscore (HR (95% CI) = 2.19 (1.63,2.95),
p < 0.001) and N.stage (HR (95% CI) = 1.73 (1.16,2.56), p = 0.007)
as significant prognosis factors for LUAD (Figures 4A,B). In
order to better quantify the survival probability and risk
assessment for LUAD patients, Riskscore with N.stage were
combined to construct a nomogram to estimate the OS of
LUAD patients at 1-, 3-, and 5-years. Riskscore was the most

important factor affecting the OS prediction of LUAD patients, as
shown in Figure 4C. Furthermore, we used calibration curves to
assess the nomogrammodel’s prediction accuracy. We found that
the 1-, 3-, and 5-year predicted calibration points agreed well
with the ideal curves, suggesting that the nomogram had
outstanding predictive performance (Figure 4D). We
conducted a DCA analysis to assess the model’s dependability,
and the results demonstrated that nomogram and Riskscore
were the most successful in predicting prognosis, with
advantages that were significantly more than those of the
baseline model (Figure 4E).

FIGURE 4
LUAD patients’ prognosis can be predicted via nomogram creation. (A)One-way Cox analysis of clinical features and risk score. (B)Multifactor Cox
analysis of clinical features and risk score. (C) Modeling nomograms. (D,E) Decision curves and nomogram calibration curves.
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Differences in immune characteristics
among different risk subgroups of
LUAD patients

We first computed the immune cell scores of the TCGA dataset in
various subgroups using the TIMER algorithm in order to see the
association between Riskscore and immune function in LUAD. The
low-risk group’s B_cell score was higher than the high-risk group’s (p <
0.001, Figure 5A). The high-risk group had significantly higher CD8_
T cell (p < 0.05) and neutrophil (p < 0.01) scores than the low-risk

group. Furthermore, when comparing the high-risk group to the low-
risk group, the results of the immune cell score calculation using the
MCP algorithm revealed that the immune scores of myeloid dendritic
cells (p < 0.001), neutrophils (p < 0.05), and endothelial cells (p < 0.05)
were lower in the high-risk group (Figure 5B). The expression of pivotal
genes was linked to the infiltration of the greatmajority of immune cells,
according to our calculation of the association between pivotal gene
expression profiles and Immune Cell Infiltration Score. In general,
HEATR1 and MTMR4 genes showed a stronger correlation with
immune cell infiltration (Figure 5C).

FIGURE 5
Immunologic characteristics between high and low-risk subgroups of LUAD patients. (A) TIMER assessment of immune cell scores in Riskscore
subgroup comparisons. (B) MCP-counter assessment of immune infiltration in Riskscore subgroup comparison. (C) Spearman correlation analysis of
9 biomarkers with 28 immune cell infiltration profiles. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Pharmacology frontiersin.org10

Li et al. 10.3389/fphar.2025.1646396

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1646396


Immunotherapy and drug sensitivity
assessment of patients in different risk
groups of LUAD

To shed light on the relationship between the model and drug
sensitivity, we then calculated the Riskscore and IC50 correlation to
filter for drugs with p < 0.05 and predicted chemotherapeutic
therapies for patients in the high and low-risk categories of
LUAD. Calculations revealed a strong relationship between
21 pharmaceutical sensitivities and Riskscore (Figure 6A). Except
for the drugs KIN001.135, Phenformin, and Rapamycin, whose
sensitivity had a positive correlation with Riskscore, the other
18 drugs had a negative correlation with Riskscore. TAE684,
Cisplatin, and Midostaurin were the three that showed the
strongest correlation with Riskscore. The LUAD high-risk group
performed better than the LUAD low-risk group in terms of TIDE,
myeloid-derived suppressor cells (MDSC), tumor-associated
fibroblasts (CAF), and exclusion, as seen in Figure 6B. Here, it is
evident that the main way that patients in the high-risk group can
evade the immune system is through immunological rejection
mechanisms. The low-risk group had higher levels of tumor-
associated macrophages of the M2 subtype (TAM.M2) than the
high-risk group did, indicating that immune cell suppression may be
the primary mechanism by which the low-risk group achieves
immunological escape.

Downregulation of HEATR1 impairs the
migratory and invasive capabilities of
LUAD cells

The mRNA expressions of nine important genes in BEAS-2B,
H2228, and A549 cells were detected by qPCR. The results showed
that both H2228 and A549 cells had considerably lower levels of the
GORAB, MTMR4 and TCP11L2 genes than BEAS-2B cells. In both
H2228 and A549 cells, the levels of the genes B4GALT4, DNAJB4,
HEATR1, LPGAT1, FAT1 and GAB2 were markedly
elevated (Figure 7A).

We investigated how HEATR1 contributes to the development
of LUAD. Here, we used the CCK8 assay to see how HEATR1
knockdown affected the viability of H2228 and A549 cells. In order
to transfect H2228 and A549 cells, respectively, we first created two
HEATR1 knockdown plasmids. Afterward, we selected the
transfected cells with the best knockdown effect (H2228, si-
HEATR1#1 and A549, si-HEATR1#2) for the ensuing tests
(Figures 7B,C). HEATR1 knockdown was shown to dramatically
reduce the viability of H2228 and A549 cells (Figures 7D,E).We next
used the wound healing assay and the transwell assay to investigate
the impact of the HEATR1 gene on the invasion and metastasis of
H2228 and A549 cells. The findings demonstrated that HEATR1
knockdown markedly reduced H2228 and A549 cell migration and
metastasis (Figures 7F–I).

FIGURE 6
Riskscore, immunotherapy, andmedication sensitivity in LUAD are correlated. (A) Findings from the association between Riskscore and IC50 for drug
sensitivity. (B) Variation in TIDE analysis outcomes between groups at high and low risk.
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FIGURE 7
Investigating HEATR1’s biological function in LUAD. (A) B4GALT4, DNAJB4, GORAB, HEATR1, LPGAT1, FAT1, GAB2, MTMR4 and TCP11L2 gene
expression levels in BEAS-2B, H2228, and A549 cells were detected by qPCR. (B,C) Verification ofHEATR1 knockdown’s impact. (D,E) Verification of how
HEATR1 knockdown affects H2228 and A549 cell viability. (F–I) Representative pictures of H2228 and A549 cells following HEATR1 knockdown in the
wound healing experiment (magnification, ×40; scale bars = 200 μm) and transwell assay (magnification, ×100; scale bars = 200 μm). All procedures
were performed in triplicate. SD ± mean, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001 are the ways in which the data are presented.
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Discussion

Proteins generated by certain oncogenes may degrade
abnormally due to the ubiquitin-associated pathway, which can
then cause these proteins to accumulate abnormally in the body. As
a result, the ubiquitin system is intimately linked to the initiation
and spread of cancer (Reich et al., 2006; Jayadev and Yusuff, 2024).
According to recent research, LUAD is associated with
downregulated levels of the E3 ubiquitin-protein ligase TRIM3, a
crucial regulator of ferroptosis. By raising intracellular ROS and lipid
peroxidation levels, high TRIM3 expression encourages cell death
(Wang Z. et al., 2024). URGs have been shown to function as
immunological traits and tumor progression biomarkers in several
tumor types, such as pancreatic cancer (Tan et al., 2024) and
hepatocellular carcinoma (Chen et al., 2024). The modular genes
in LUAD that had the largest positive connection with URGs were
primarily found to be enriched in the pathways of endocytosis,
proteoglycans in cancer, and ubiquitin-mediated proteolysis. Zhang
et al. demonstrated that endocytosis inhibitors increased apoptosis
and suppressed the growth of LUAD cells (Zhang et al., 2023).
LUAD cells were more sensitive to gefitinib when the ubiquitin-
mediated protein hydrolysis of the epidermal growth factor receptor
protein was inhibited (Zhou et al., 2024). Unlike previous studies
that focused on single ubiquitination regulators, our study
comprehensively integrates URG-based co-expression modules
and clinical prognosis to construct a robust predictive model,
highlighting novel functional associations between ubiquitin-
related genes and LUAD progression.

Nine prognostic-related hub genes were identified by combining
common bioinformatics methods from URGs: B4GALT4, DNAJB4,
GORAB, HEATR1, LPGAT1, FAT1, GAB2, MTMR4 and TCP11L2.
The results of the ROC curve study showed that the Riskscore based
on the nine hub genes had exceptional diagnostic efficacy for OS in
LUAD patients. Glycosyltransferases of the B4GALT family are
implicated in several biological mechanisms that accelerate the
development of cancer. Poor prognosis was tightly linked to
microtubule spindle formation and the general upregulation of
B4GALT transcript levels in hepatocellular cancer tissues (Foote
et al., 2023; Dai et al., 2022). Better OS in patients was positively
connected with lower levels of DNAJB4 expression in LUAD tissues
(Yu et al., 2020). By blocking MDM2-mediated ubiquitination,
lowering cell growth rate, raising apoptosis levels, and reducing
tumorigenicity, overexpression of GORAB (SCYL1-BP1) stabilizes
functional p53 (Yan et al., 2010). HEATR1 negatively regulates Akt
to increase the cancer cells’ sensitivity to chemotherapy, making it a
possible predictive and prognostic biomarker for treatment
responsiveness and the prognosis of patients with pancreatic
cancer, according to Liu et al. (Liu et al., 2016). LPGAT1
expression is increased in LUAD tissues. Overexpression of
LPGAT1 is associated with a poor outcome in patients with
LUAD. LPGAT1 gene knockdown inhibited the growth and
spread of tumors in cellular and animal experiments (Gong et al.,
2023). Dendritic cell infiltration is much larger in LUAD patients
with higher FAT1 mutation rates, while memory B cell and resting
memory CD4+ T cell infiltration is much lower (Feng et al., 2022).
FAT1 mRNA levels are also markedly elevated in LUAD. By
controlling TAM.M2 polarization, GAB2 stimulates the growth of
colorectal cancer (Gao et al., 2024). In grade IV glioblastomas,

diffuse gliomas exhibit significant expression of MTMR4
(Bourgonje et al., 2016). Another possible pharmacological target
for blocking breast cancer stem cells is MTMR4 (Hermawan et al.,
2024). Through formin-like 2 (FMNL2), TCP11L2, which is
primarily found near microfilaments and microtubules, stimulates
the migration and differentiation of satellite cells originating from
bovine skeletal muscle (Li S. et al., 2020). According to these
findings, biological processes like drug sensitivity, invasion,
metastasis, and tumor growth may be linked to URG signature
genes. Furthermore, additional in vivo and in vitro studies are
required in the future to examine the biological roles and
possible processes of the remaining genes in LUAD, as they have
not been described in this condition with the exception of DNAJB4,
LPGAT1 and FAT1.

Moreover, epidemiological studies have shown that poorer OS
in LUAD patients is associated with higher tumor purity, lower
immunological scores of the immune microenvironment, and
notably lower numbers and immune-related traits of the majority
of immune cells (Ma et al., 2022). Therefore, investigating the
relationship between tumor immune function and prognosis is
instructive for LUAD diagnosis and treatment. According to the
current classification, the low-risk group had higher B-cell values. In
individuals with LUAD, contact between CD4 T follicular helper
cells and B cells was linked to longer life. In a mouse LUAD model,
neoantigen-driven B cells and CD4T follicular helper cells work in
concert to stimulate anti-tumor immunity and anti-tumor
CD8T cell responses (Cui et al., 2021). Furthermore, the high-
risk group’s CD8_Tcell and Neutrophi scores were noticeably
greater than those of the low-risk group. According to studies,
anti-tumor immunity in vivo with anti-PD-1 therapy is improved
by increased CD8 + T cell activity and abundance in the LUAD
tumor microenvironment (Cui et al., 2023). The immunological
escape of LUAD cells is mediated by inhibition of CD8+ T cell
activity (Yang et al., 2024). This could indicate that the high-risk
group will respond to immunotherapy at a higher rate. OS and
progression-free survival were lower in LUAD patients with a
greater neutrophil-to-lymphocyte ratio (Tanizaki et al., 2018).
This supports our conclusion that the prognosis is poorer for
patients in the high-risk group.

There is a significant influx of cytotoxic T cells in some tumor
microenvironments, but these T cells are usually functionally exhausted
and no longer able to destroy tumors. On the other hand,
immunosuppressive cells (such as CAF, MDSC, and TAM) limit
T-cell penetration into the tumor microenvironment (Gajewski
et al., 2013; Joyce et al., 2015). Therefore, elucidating the primary
immune escape pathways of tumor cells can greatly enhance the efficacy
of anti-tumor immunotherapy. The Peng, J. team created an
algorithmic framework for TIDE based on genetic elements of T cell
dysfunction and T cell exclusion in order to calculate T cell dysfunction
andT cell exclusion scores as well as the levels of CAF,MDSC andTAM
infiltration in TME (Jiang et al., 2018). Notably, when we compared the
potential therapeutic effects of immunotherapy across high and low-risk
groups for LUAD using TIDE software, TIDE, CAF, MDSC, and
Exclusion scored highest in the high-risk group. According to earlier
research, glutamine inflow and a bad prognosis for LUADpatients were
linked to exosome expression in CAF (Liu T. et al., 2022). Low CD8+

T cell infiltration and poor treatment response of patients to immune-
detecting sites were linked to elevated MDSC infiltration in LUAD
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patients’ tumors (Yin et al., 2022). With anti-programmed cell death
protein-1 therapy, inhibition of the immunological rejection-associated
neo-oncogene NME4 in LUAD enhanced CD8+ T cell activity and
abundance and supported in vivo anti-tumor immunity (Zhang et al.,
2024). From this, it is clear that immunological rejection mechanisms
are the primary means by which patients in the high-risk group may
elude the immune system. According to Li et al., LUAD cell invasion,
migration, and proliferation were all impeded by TAM.M2 polarization
inhibition (Li et al., 2024). On the other hand, the low-risk group’s
higher TAM.M2 score suggests that their primary means of
immunological escape may be immune cell malfunction.

Additionally, the frequent onset of treatment resistance
considerably shortens the survival span of LUAD patients, making
therapeutic decisions much more difficult for clinicians (Altorki et al.,
2019). Therefore, a comprehensive assessment of the medication
sensitivity of LUAD patients is necessary. In this work, we
performed a correlation analysis between Riskscore and drug
sensitivity. The drugs that had the biggest negative correlation with
Riskscore were TAE684, Cisplatin, and Midostaurin; this could help to
explain why the high-risk group did not do well. According to earlier
research, exogenous EGF in LUAD prevented TAE684 from inhibiting
ERK and STAT3 signaling, which reduced the sensitivity of cell growth
to TAE684 (Tanizaki et al., 2012). Lowering the expression of E2F7, a
crucial gene linked to cisplatin resistance, dramatically decreased LUAD
invasion, migration, and proliferation while raising apoptosis (Mao
et al., 2024). According to Liu et al., immunological subgroups of LUAD
that did not respond well to immunotherapy were more vulnerable to
chemotherapy withmidostaurin (LiuM. et al., 2022). In conclusion, our
research might offer a theoretical foundation for treating LUAD
patients on an individual basis.

It is worth noting that our study has certain limitations. For
example, this study mainly relies on public datasets for model
construction and validation. Although the data quality is high and
the sample size is large, due to the heterogeneity of sample
collection, sequencing platforms, and processing methods, there
may be potential biases that limit the model’s generalization ability
in actual clinical scenarios. Future research should integrate data
from multi-center, multi-platform, and multi-source clinical
samples to further reduce batch effects. Additionally, local
clinical cohorts should be collected for prospective validation to
enhance the model’s applicability and reliability. In addition,
although this study identified nine key genes and validated the
function ofHEATR1, the specific roles of other genes in LUAD and
their potential regulatory mechanisms have not been thoroughly
explored, nor has it been clarified whether there is a synergistic
network among them. In the future, we will conduct more in vitro
and in vivo experiments, such as gene overexpression/knockout
and mouse xenograft models, to systematically validate their roles
in LUAD and explore the regulatory relationships and signaling
axes among key genes, thereby revealing potential synergistic
mechanisms. Finally, although we have constructed a prognostic
model, it has not yet been prospectively validated in real-world
clinical practice, nor has its practical guidance value for
individualized treatment strategies been explored. Therefore,
future studies should conduct independent validation in
prospective clinical cohorts to assess the model’s actual efficacy
in predicting prognosis, immune therapy response, or
chemotherapy response in LUAD patients. Additionally, it

should be integrated and compared with existing clinical
scoring systems to explore its supplementary value in clinical
decision-making.

Conclusion

In order to create a prognostic model with high robustness, we
employed machine learning techniques to screen three modular genes
that had the strongest correlation with URGs. We then took the
intersection of these genes with DEGs between LUAD samples and
control samples and screened nine featured genes. It can accurately
forecast LUAD patients’ prognosis, immunotherapy, immunological
infiltration, and sensitivity to anticancer medications, giving doctors a
solid foundation on which to build individualized treatment plans. This
study can serve as a theoretical guide for future investigations into possible
biomarkers for LUAD patient diagnosis and prognosis prediction.
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