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Background: The natural compound paeonol exhibits therapeutic promise
against cervical carcinoma, though its precise molecular mechanisms
remain undefined.

Methods: First, we treated human cervical cancer (Hela) cells with different
concentrations of paeonol. Cellular proliferation and apoptotic responses were
evaluated via cell-counting kit 8 (CCK8) assays and flow cytometric analysis.
Subsequent transcriptomic profiling employed RNA sequencing coupled with
alternative splicing assessment to detect differentially expressed genes (DEGs).
Protein interaction networks were established for pivotal DEGs, followed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment investigations. Clinical data pertinent to cervical cancer were
retrieved from The Cancer Genome Atlas (TCGA). Prognostic model
development incorporated Kaplan—Meier survival estimation, Least Absolute
Shrinkage and Selection Operator (LASSO) regression, alongside univariate and
multivariate COX proportional hazards analyses, with model accuracy
subsequently assessed. Finally, Quantitative reverse transcription polymerase
chain reaction (QRT-PCR) validated DEG expression.

Results: Paeonol treatment suppressed proliferation while inducing apoptosis in
Hela cells. Transcriptomic and splicing analyses revealed 12 critical DEGs: NLRP1,
FN1, NQO2, NREP, BAGALNTL, ANK3, FAM219A, ODF3B, MAPK15, EPGN, MUC1,
and MEG3. Enrichment analyses indicated these DEGs principally associate with
inflammatory processes and the biological regulation of cellular proliferation and
apoptotic death. Analysis of clinical outcomes in 197 TCGA patients
demonstrated significantly enhanced five-year survival probability within the
low-risk cohort. FN1, NQO2, and ODF3B were incorporated into a prognostic
signature following LASSO regression. Univariate and multivariate COX analyses
identified T stage, tumor grade, and differential expression of these three genes as
significant outcome predictors; the resultant prognostic model exhibited robust
accuracy. qRT-PCR results corroborated the RNA sequencing data concerning
DEG expression patterns.

Conclusion: Paeonol modulates Hela cell proliferation and apoptosis through
regulation of 12 key genes, including FN1. This activity involves governing
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1 Introduction

Cervical carcinoma represents a prevalent malignancy affecting
the female reproductive tract. Globally, its incidence constitutes the
second most frequently diagnosed malignancy among women,
surpassed only by breast cancer (Saei et al., 2018; Moore, 2006),
and ranks fourth overall for female malignant neoplasms (Sharma
et al., 2020). During 2020, approximately 604,127 new cervical
cancer diagnoses occurred worldwide alongside
341,831 associated mortalities, reflecting an upward trajectory for
both metrics (Singh et al, 2023). Within numerous developed
nations, widespread implementation of Human Papillomavirus
(HPV) vaccination programs coupled with routine screening has
successfully diminished cervical cancer occurrence (Vu et al., 2018).
Conversely, within many developing regions, incidence and
mortality rates persistently escalate, necessitating novel
therapeutic approaches. Current management strategies involve
surgical intervention, radiotherapy, and  chemotherapy,
supplemented by second-line options including targeted agents
and immunotherapies (Mauricio et al., 2021; Feng et al., 2020);
these modalities, however, frequently incur adverse effects,
substantial expense, and significant patient morbidity. Natural
products have gained increasing attention in recent years as
potential anti-neoplastic agents. Such compounds often offer
advantages including multi-target activity, lower cost structures,
and reduced adverse reaction profiles compared to conventional
therapies (Naecem et al, 2022). Consequently, our investigation
focuses on identifying novel natural product-derived therapeutics
effective against this malignancy.

Alternative splicing (AS), or differential mRNA processing,
denotes the mechanism generating varied mature transcript
isoforms from precursor mRNAs. This process significantly
expands proteomic diversity and functional complexity (Peng

et al, 2022). Neoplastic cells frequently exhibit aberrant AS

events vyielding proteins that disrupt critical cellular
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functions—such as apoptotic and cell cycle

control—induce DNA damage, and consequently foster tumor

regulation

initiation and progression. Furthermore, such aberrantly spliced
isoforms can influence signaling pathways and drug targets,
contributing to therapeutic resistance (Sciarrillo et al., 2020).
Certain cancer-specific splicing variants possess utility as
diagnostic biomarkers and potential therapeutic targets (Zhang
et al,, 2021). Cervical carcinogenesis may involve HPV-mediated
dysregulation of splicing in normal cervical epithelia (Francies et al.,
2021; Wu et al,, 2018), motivating our search for agents capable of
modulating pathological AS within cervical carcinoma cells.
Paeonol (2'-hydroxy-4'-methoxyacetophenone), a bioactive
phenolic compound isolated from the dried root bark of Paeonia
suffruticosa (Ranunculaceae family), demonstrates established anti-
cancer properties. It suppresses malignant progression in breast,
ovarian, and gastric carcinomas via mechanisms encompassing
inhibition of neoplastic cell growth, induction of programmed
cell death, cell cycle arrest, and modulation of diverse oncogenic
signaling cascades (Sheng et al, 2021). In vitro studies confirm
paeonol curbs proliferation, migration, and invasion capabilities of
HeLa cervical cancer cells (Du et al, 2022), though its precise
mechanistic underpinnings require elucidation; potential
involvement of PI3K/AKT (Zhang et al, 2019), Nrf2/HO-1
(Hong et al, 2022), and JAK-STAT (Liu et al,, 2023) signaling
inhibition has been proposed. Additionally, paconol reverses tumor
cell resistance to chemotherapeutics like paclitaxel and cisplatin
(Gao et al, 2019), enhances radiosensitivity, and synergistically
suppresses HelLa cell

cisplatin—likely through enhanced apoptotic induction (Han

proliferation when combined with
et al, 2016). Collectively, these findings underscore paeonol’s
therapeutic promise for cervical cancer.

HeLa cells were treated with paeonol to evaluate its effects on
cellular proliferation and apoptosis. Concurrently, transcriptomic
profiling via high-throughput RNA sequencing (RNA-seq) was
performed to discern potential molecular targets. Bioinformatics

Paeonol and
cervical cancer

analysis
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analyses were subsequently applied to cervical cancer clinical
datasets sourced from The Cancer Genome Atlas (TCGA).
Utilizing R software, survival analysis integrated these molecular
signatures to establish a prognostic model, thereby evaluating
paeonol’s translational potential. This
a molecular rationale supporting future

integrated approach
furnishes clinical

application of this compound.

2 Methods
2.1 Reagents

The following materials were utilized: Paeonol (Aladdin:
H111081; 0.5 mg/mL), Dulbecco’s Modified Eagle Medium
(Procell: PM150210), trypsin solution (Gibco: 25200072), fetal
bovine serum (Hyclone: SH30084.03), and phosphate-buffered
saline (PBS) (Life: C10010500BT). Proliferation assays employed
RPMI-1640 medium (Hyclone, Inc.: SH30809.01B), fetal bovine
serum (Gibco: 10099-141C), and a CCK-8 assay kit (Dongren
Chemical: CK04).

2.2 Instruments

CO, incubator (Heal force: HF90); Biological safety cabinet
(Heal force: HF-1200LC); Inverted phase contrast microscope
(Olympus: IX71); Electric constant temperature water bath
standard: HH-US-A);
detector (PerkinElmer/envision); Refrigerated centrifuge (Heal
force: neofuge 15R).

(American Full-featured microplate

2.3 Cell culture

HeLa cells were maintained in complete DMEM medium
(Procell, Cat# PM150210) supplemented with 10% heat-
inactivated fetal bovine serum (Hyclone, Cat# SH30084.03),
100 U/mL penicillin, and 100 U/mL streptomycin at 37 °C under
5% CO, humidified atmosphere. For experiments, logarithmically
growing cells were washed with PBS (Life Technologies, Cat#
C10010500BT), detached using 0.25% trypsin-EDTA (Gibco,
Cat# 25200072) for 1-3 min at 37 °C, and centrifuged at
1,000 rpm for 5 min. Cell density was determined via Trypan
Blue suspension/dye mixture.
Remaining cells were pelleted (1,000 rpm, 5 min), resuspended,
and seeded into 6-well plates at 4 x 10° cells/well (n = 6 replicates per
condition). Following overnight incubation, experimental groups

exclusion using a 1:1 cell

received medium containing 0.5 mg/mL paeonol, while controls
received paeonol-free medium. Incubation continued for 24 h prior
to proliferation and apoptosis assessment.

2.4 Cell proliferation and apoptosis
experiments

Cellular proliferation was quantified at 0, 24, 48, and 72 h
post-treatment using CCK-8 reagent. Briefly, 10 pL CCK-8
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solution was added per well, plates incubated (37 °C, 5%
CO,, 4 h), mixed thoroughly, and absorbance measured
at 450 nm.

Apoptosis was evaluated in 48 h-treated cells. Cells were
collected, pelleted (1,000 rpm, 5 min), washed once with PBS,
repelleted, and resuspended in 1x binding buffer. Annexin
V-FITC (5 pL) and propidium iodide (10 pL) were added,
followed by 15 min dark incubation at ambient temperature.
Cells were diluted in 200 pL binding buffer and analyzed by flow
cytometry. Comparative analysis t-test
(significance threshold P < 0.05).

employed Student’s

2.5 RNA-sequnce library construction

Total RNA (1 pg per sample; n = 6, 3 control, 3 treated)
underwent purification with RNA clean beads and RQ1 DNase
(Promega). RNA fragmentation and strand-specific library
construction utilized the VAHTS Universal V8 RNA-seq Library
Prep Kit for Illumina (NR605), involving sequential steps: first-
strand synthesis, second-strand synthesis, end repair, adapter
PCR
concentration was determined via Qubit 4.0 fluorometry, and

ligation, amplification, and  purification. ~ Library
samples stored at —80 °C. Sequencing was performed on the
Ilumina Novaseq 6000 platform (PE150 mode) to generate high-

quality transcriptomic data.

2.6 RNAseq analysis and differential gene
expression analysis

Raw sequencing reads containing more than 2-N bases were
first discarded. Subsequently, the raw reads were trimmed of
adaptors and low-quality bases using a FASTX-Toolkit (v.0.0.13;
http://hannonlab.cshl.edu/fastxtoolkit/). In addition, short reads
of less than 16 nt were dropped to retain clean reads, which were
subsequently aligned to the GRch38 genome by HISAT2.
Uniquely mapped reads were ultimately used to calculate read
number and paired-end fragments per kilobase of exon per
million fragments mapped (FPKM) for each gene. The
software DEseq2, which is specifically used to analyze the
differential expression of genes, was applied to screen the
RNA-seq data for DEGs. The results were analyzed based on
the fold change (FC > 2 or <0.5) and false discovery rate (FDR<O0.
05) to determine whether a gene was differentially expressed (Liu
et al., 2022). Significantly upregulated and downregulated genes
were visualized via heatmaps.

2.7 Alternative splicing analysis

RNA-seq data were interrogated to quantify alternative
splicing events per sample. Differentially regulated alternative
(RASE) in treated defined
(p-value <0.05) and associated with their corresponding genes
(RASGs). Integration of RASG and DEG datasets identified key
DEGs exhibiting concurrent differential expression and splicing

splicing events cells  were

alterations for subsequent investigation.
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2.8 Enrichment analysis

Key DEGs underwent Gene Ontology (GO) and Kyoto
(KEGG)
enrichment analyses using the “clusterProfiler”

Encyclopedia of Genes and Genomes pathway
R package
(significance P < 0.05), with results graphically represented.
These analyses implicated paeonol in suppressing proliferation

and inducing apoptosis in HeLa cells.

2.9 gRT-PCR

Quantitative reverse transcription polymerase chain reaction
(qQRT-PCR) was applied to validate RNA-seq-derived differential
expression patterns of key DEGs. Quantitative PCR analysis was
performed on RNA samples reverse-transcribed into cDNA using
HiScript” I1I RT SuperMix (+gDNA wiper) following genomic DNA
elimination (42 °C, 2 min), with RT reactions conducted at 37 °C for
15 min and 85 °C for 5 s qPCR amplifications were carried out in
10 pL reactions containing 2 uL ¢cDNA, 1 uL each of 10 uM gene-
specific primers (GAPDH: F-GGTCGGAGTCAACGGATTTG/
R-GGAAGATGGTGATGGGATTTC; NLRP1: F-GTCCCTCCTA
TTCCTCTTTG/R-GCCTAACAGCATCTCAGG; FN1: F-CCTC
TTATCAACTGCATACT/R-GCATGATCTTGTTACTGTGA; NQ
02: FF-CATCCGAAGAAGAAAGAAAGG/R-CCTAGTGTGCTGC
TTACG; NREP: F-AGGAGGGAGAGGAGTAATG/R-GTTGTTG
TGTTAGCCAGTC; B4AGALNTI1: F-GAACAATGGACATCTACA
AGG/R-CACTCTGCCTAATCTTCCTC; FAM219A: F-GGAGTG
TTAAGGCAGTATCTA/R-TGGCAGCTTCTGTGTCTA; ODF3B:
F-CTGGCTTCCGAGTGTTGT/R-GCCTATCAGGTCGTGAGT;
MAPKI15: F-ACGAACATGGATCTGAGGA/R-ACACCAGGAGT
CGCCTAA; EPGN: F-GGAGTGGAGAGTTGAAGTT/R-AGGCA
ATCCTGTATTGTTTC; MUCI: F-TCTGAAGGAGGCTGTGAG/
R-ACTTCTGCCAACTTGTAGG), and HiefffTM qPCR SYBR®
Green Master Mix on a QuantStudio 12K system, using the
following thermocycling protocol: 95 °C for 5 min; 40 cycles of
95 °C for 10 s and 60 °C for 30 s; followed by melt curve analysis
(95 “C—60 °C—95 °C, 15 s/step). Gene expression was normalized
to GAPDH and analyzed using the 27**“T method to compare
untreated controls (n =
cells (n = 3).

3) versus 0.5 mg/mL drug-treated

2.10 Survival analysis and construction and
evaluation of pivotal gene prognostic model

Cervical cancer patient transcriptomic data, alongside
clinical variables (age, disease stage), were retrieved from The
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/
repository). Prognostically relevant genes and covariates were
identified through Least Absolute Shrinkage and Selection
Operator (LASSO) regression, followed by univariate and
multivariate Cox proportional hazards analyses (Song and
Shu, 2022; Xu et al, 2022).
constructed, visualized via forest plot. Individual risk scores

A predictive model was
were computed [risk score = X (gene expression X regression

coefficient)]. Patients were stratified into high-risk and low-risk
cohorts based on median risk score, and survival differences
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FIGURE 1

Impact of paeonol on Hela cell proliferation and apoptosis.

Effect of paeonol on cell proliferation (A,B) and apoptosis (C).

** indicates that P value is less than 0.01. *** indicates that P value
is less than 0.001. Flow cytometric analysis of cell apoptosis (D),
assessed by Annexin V-FITC/PI double staining

assessed via Kaplan-Meier analysis using R (Wu et al., 2022). A
nomogram integrated Cox regression results for prognostic
Model
calibration curves.

visualization. calibration was evaluated using

2.11 Statistical analysis

Pairwise comparisons utilized Student’s t-test. Bioinformatics
analyses employed R software. Survival outcomes were evaluated by
Kaplan-Meier determinants

methodology. Prognostic were
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identified via LASSO-Cox regression, enabling prognostic model
construction.

3 Results

3.1 Impact of paeonol on cellular
proliferation and apoptosis

Treatment with 0.5 mg/mL paeonol induced significant
suppression of HeLa cell proliferation relative to untreated
controls as observed effects in leukemia cell lines before (Kim
et al, 2004). This inhibitory effect was statistically robust after
24 h (P = 0.0005) and persisted through 72 h (P = 0.0003)
(Figures 1A,B). Furthermore, at this concentration, paeonol
treatment markedly enhanced apoptotic cell death in HeLa
cultures (Figures 1C,D).
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3.2 Transcriptomic profiling outcomes

High-quality sequencing reads (clean reads) were aligned
against the HeLa cell reference genome (GRCh38, Homo
sapiens), vyielding uniquely mapped positioned
exclusively at singular genomic loci. Distribution analysis of

reads

these uniquely mapped sequences across genomic regions
revealed predominant enrichment within coding sequence
(CDS),
(Figure 2A). Consequently, uniquely mapped reads were

regions indicative of robust sequencing quality

retained for downstream analyses. Inter-sample gene

expression correlation coefficients were computed, where
elevated values denote substantial similarity in transcriptional
profiles and data
coefficients

homogeneity. Conversely, diminished

reflect pronounced differential expression or
potential quality concerns.

minimal inter-sample

Proximity to unity signifies

variation and fewer

differentially
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TABLE 1 Distribution of differential variable splicing events (RASE).

10.3389/fphar.2025.1646473

Sample Type 3pMXE 5pMXE A3SS A3SS&ES A5SS ASSSGES ES MXE  cassetteExon  Total
Paeonol_vs._NC Up 77 61 227 32 206 23 153 45 115 939
Paconol_vs. NC  Down | 62 56 176 20 163 27 88 43 104 739

TABLE 2 Key DEGs.

Name Description

NLRP1 NLR family pyrin domain containing 1

FN1 fibronectin 1

NQO2 N-ribosyldihydronicotinamide:quinone reductase 2
NREP neuronal regeneration related protein
B4GALNT1 beta-1,4-N-acetyl-galactosaminyltransferase 1
ANK3 ankyrin 3

FAM219A family with sequence similarity 219 member A
ODF3B outer dense fiber of sperm tails 3B

MAPK15 mitogen-activated protein kinase 15

EPGN epithelial mitogen

MUC1 mucin 1, cell surface associated

MEG3 maternally expressed 3

expressed genes (Jazayeri et al, 2015). Cluster analysis
demonstrated pairwise correlation coefficients exceeding 0.98
(Figure 2B), confirming high replicate consistency. These
findings collectively indicate paeonol modulates a limited
transcriptional repertoire (Zhou et al., 2022).

3.3 Differential gene expression

Comparative transcriptomics identified 434 differentially expressed
genes (DEGs), comprising 71 significantly upregulated and
363 downregulated transcripts (Figure 2C). Hierarchical clustering of
expression values revealed distinct transcriptional signatures between
control and treated cohorts (Figure 2D).

3.4 Alternative splicing analysis

Nine splicing modalities were quantified: exon skipping (ES),
alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS),
mutually exclusive exons (MXE), mutually exclusive 5’ UTRs
(5pMXE), mutually exclusive 3’ UTRs (3pMXE), cassette exon,
A3SS&ES, and A5SS&ES. Among 105,078 detected splicing events,
46,568 corresponded to previously annotated isoforms while
58,510 represented novel events (Figure 2E).

Comparative analysis between experimental and control
conditions identified 939 upregulated and 739 downregulated
regulated alternative splicing events (RASEs). The A3SS and

Frontiers in Pharmacology

AS5SS subtypes constituted the predominant fraction among all
detected RASEs (Table 1).

Integrative examination of regulated alternative splicing genes
(RASGs) and differentially expressed genes (DEGs) revealed twelve
transcripts exhibiting concurrent marked transcriptional divergence
and significant splicing alterations. These pivotal genes—designated
key DEGs—comprise NLRP1, FN1, NQO2, NREP, B4GALNT1,
ANK3, FAM219A, ODF3B, MAPK15, EPGN, MUCI1, and MEG3.
Transcriptional profiling demonstrated upregulation of NLRPI,
B4GALNTI, FAM219A, NQO2, and EPGN, alongside
downregulation of FNI1, NREP, ANK3, ODF3B, MAPKI5,
MUCI, and MEG3 in treated cells (Table 2).

3.5 GO enrichment analysis and KEGG
enrichment analysis of the key DEGs

Results from GO and KEGG enrichment analyses of key DEGs
are presented in Figure 3. The GO analysis identified enrichment in
biological processes including positive regulation of cell cycle
progression, MAPK cascade signaling, and positive modulation
of cell population proliferation (Figure 3A). Molecular functions
and cellular components implicated encompassed MAPK activity,
protein domain-specific binding, and tight junction formation

(Figures 3B,C). KEGG pathway analysis demonstrated
significant enrichment for DEGs in: NOD-like receptor
signaling,  cancer-associated  proteoglycans,  ganglio-series

glycosphingolipid biosynthesis, ECM-receptor interactions, and
IL-17 signaling pathways (Figure 3D).

3.6 Survival analysis and prognostic model
construction

Cervical cancer patients (n = 197) from TCGA were stratified
into high-risk and low-risk cohorts based on analytical outcomes.
Subsequent Kaplan-Meier analysis demonstrated significantly
reduced five-year survival in high-risk versus low-risk patients
(P = 0.0411; Figures 4A,B).

Key DEGs underwent LASSO regression analysis to identify genes
suitable for inclusion in prognostic models (Figure 5A). Three genes
FN1, NQO2, and ODF3B, which log2foldchange is —1.67, 1.39,
and -1.22, demonstrated significant associations with cervical
cancer patient survival and were consequently incorporated into
the prognostic model. Univariate COX regression indicated
correlations between these genes and both tumor size (T stage)
and TNM staging (Figure 5B), where T denotes primary tumor
status, N represents lymph node involvement, and M indicates
distant metastasis. Multivariate COX analysis (Figure 5C) revealed
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enrichment analysis of DEGs. (D). KEGG enrichment analysis of DEGs.

that tumor T stage and risk score exerted significant prognostic Correlating with improved survival outcomes, patients
influence, with the risk score functioning as an independent  exhibiting lower risk scores were identified. A corresponding
outcome predictor. expression heatmap provides enhanced visualization of these
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findings (Figure 6A). Subsequent nomogram development based on
the prognostic model (Figure 6B) enabled model validation via
calibration curve assessment (Figure 6C).

3.7 gRT-PCR verification

Quantitative RT-PCR measurements were performed for
selected pivotal DEGs in experimental versus control cellular

populations (Figure 7). Relative to controls, treated cells
demonstrated elevated NLRP1, FAM219A, NQO2, and EPGN
expression alongside reduced FNI1, NREP, ODF3B, and

MUCI transcription levels.

4 Discussion

As a natural compound exhibiting anticancer properties,
paeonol modulates serum glutathione peroxidase and superoxide
dismutase activities in experimental models, suppressing lipid
peroxidation and inflammatory responses to inhibit tumor
growth (Sun et al, 2023; Morsy et al, 2022a). This positions
paeonol as a potential therapeutic agent against cervical
carcinoma. Our investigation assessed 0.5 mg/mL paeonol’s
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impact on HeLa cell proliferation and apoptosis, revealing
significant proliferation suppression and apoptosis induction.
Transcriptomic profiling identified 12 pivotal differentially
expressed genes (DEGs)—NLRP1, FN1, NQO2, NREP,
B4GALNT1, ANK3, FAM219A, ODF3B, MAPKI15, EPGN,
MUC1, and MEG3—potentially
cell behavior.

regulating cervical cancer

Functional enrichment studies implicated these DEGs in
MAPK signaling cascades, cancer-associated proteoglycan
pathways, extracellular matrix (ECM) recognition systems,

NOD-like receptor signaling, IL-17 pathways, and metabolic

processes. These molecular networks govern inflammatory
cascades, cellular proliferation, migratory capacity, and
apoptotic induction, collectively inhibiting

neoplastic expansion.

Transcriptomic and qRT-PCR validation demonstrated
elevated NLRP1, FAM219A, NQO?2, and EPGN expression in
treated cells. NLRP1, an inflammasome component, triggers
pyroptosis during viral challenge (Morsy et al., 2022b), while
NQO?2 overexpression diminishes oxygen radical concentrations
to restrict proliferation (Robinson et al., 2022). Conversely, FN1,
NREP, ODF3B, and MUCI exhibited reduced expression.
FN1 facilitates cellular adhesion and motility (Lozinskaya
et al., 2023; Wang et al., 2022; Cai et al., 2018), with elevated
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outcomes appear as a forest plot. (C) Forest plot for multivariate COX analysis.

levels correlating with adverse clinical outcomes. NREP  protective epithelial barriers (Kashyap and Kullaa, 2020), but its
promotes tumor invasion and metastasis when overexpressed  pathological overexpression in malignancies stimulates
(Li et al., 2023; McDonough et al., 2005). MUCI typically forms  angiogenesis, proliferation, invasion, and chemoresistance

Frontiers in Pharmacology 09 frontiersin.org


mailto:Image of FPHAR_fphar-2025-1646473_wc_f5|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1646473

Li et al.

10.3389/fphar.2025.1646473

A N RIEE B mED SN EE RIS 1 D RN EEI | W ) g lw-d-
1 SRR Pom 1 1o mEoan B BT stage al1
1 i 1 11 1 o EHIT
o 1. | n - 1 m 1 m (LN} WA e 5
NN A (R 08 S S S | 0 ) S B (5SS S SN | 5 6 S R 068 m
EEETSee—— o Rk : i
T v
'
oy
2T
"
— FN1 jI
0
race
!3
1
! age
<60
[
Riskgroup
High
Low
NQO2
CDF3B
B o ‘nomcox coxph C
3 1 % * &0 %0 @ 7o 8 % 180 o W | L T R
e l - e l—year 'R
» ~——— 3-year
race w ~——— S—year
L =
o . [
08 —_—
SR
grade =
L o g
2
Riskgroup® i =] <
o < 7
i
i X
08 08 | o o e
Total points =
150 2% 20 250 o
g 4
) il T T T T T T
Pri surviva_time > &) gy 088 08 06 04 02 0b7  ob2
n—_— 0.0 0.2 0.4 0.6 0.8 1.0
P Lime:> 3!1‘.5‘ 09 84 07 05 03 012 0.04 "
A Nomogram—prediced(%)
0.969 =107 d=40 p=4, 10.7 subjects per group X £ resampling optimism added, B=200
Pri sunval_tme > 1 \ss 0478 3 X7 23 075 085 0bs Oy Mol Based on observed:-predicted
FIGURE 6
Evaluation of the efficacy of prognostic models. (A) Heat map. (B) Nomogram graph. (C) Calibration graph.

while inhibiting apoptosis (Li et al., 2022; Chen et al., 2021; Nath
and Mukherjee, 2014) through MAPK, Wnt, and PI3K/Akt
pathway activation.

Thus, upregulated genes in paeonol-treated cells exert antitumor
effects, while downregulated genes typically promote oncogenesis
and treatment resistance.
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MAPK cascades comprise three-tiered kinase modules
MAPKKK (MAP3K), MAPKK (MKK/MEK/MAP2K), and
MAPK (MK) regulating growth, differentiation,
inflammatory responses, and immune modulation (Widmann
et al, 1999; Davis, 1993). These pathways influence numerous

cancer-relevant processes (Gong et 2022),

cellular
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quantified by qRT-PCR in Hela

components like JNK and p38 potential therapeutic targets (Dhillon
et al, 2007). The ECM—comprising collagen, fibronectin, and
glycoproteins (Nersisyan et al., 2021)—modulates cell survival,

Frontiers in Pharmacology

11

differentiation, and ECM-receptor

interactions critically influence tumor cell detachment, adhesion,

apoptosis, migration.

proliferation, and death (Bao et al., 2019), with dysregulation
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implicated in gastric, prostate, colorectal, and glioblastoma
pathogenesis (Andersen et al., 2018; Yan et al, 2018; Rahbari
et al,, 2016; Cui et al.,, 2018). As ECM constituents, proteoglycans
facilitate tumor progression; certain HPV subtypes exploit
proteoglycan receptors for cellular entry and transformation
(Bartlett and Park, 2010).

NOD-like receptor signaling activates NF-kB, MAPK, and
inflammasome pathways, driving IL-1p-mediated inflammation.
While IL-17 normally confers protection, aberrant pathway
activation stimulates ERK, JNK, and p38 cascades, upregulating IL-
6, IL-1, and NF-kB to promote carcinogenesis (Amatya et al., 2017).
pivotal DEGs modulate
proinflammatory cytokine production, inflammatory regulation, and
cellular  proliferation/differentiation/migration/apoptosis. ~ Systemic
inflammation accelerates cancer progression through multifaceted

Enrichment analyses indicate

mechanisms (Liang et al,, 2022), highlighting inflammatory pathway
regulation as crucial for oncogenesis control. Notably, downregulated
DEGs associate with tumor-promoting pathways (IL-17, Wnt, ECM-
receptor interactions), suggesting paeonol suppresses inflammatory and
proliferative networks in HeLa cells.

Survival modeling revealed differential FN1, NQO2, and ODF3B
expression between high-risk and low-risk cohorts. Elevated
FN1 characterized high-risk patients, while NQO2 and ODF3B
expression was diminished. Reduced FN1 with increased NQO2/
ODF3B may inhibit inflammation and cellular proliferation/
migration. Forest plots indicated hazard ratios >1 correlate with
adverse outcomes. Calibration curves demonstrated model reliability
when approaching ideal prediction lines. qRT-PCR validation
confirmed RNA-seq differential expression patterns for key DEGs.

5 Conclusion

Integrating transcriptomic  sequencing with  bioinformatics
approaches, this study establishes paconol’s capacity to modulate
critical DEGs including FN1 and MUCI.

inflammatory pathways and cellular proliferation/differentiation/

By governing

invasion, paeonol inhibits cervical cancer cell growth while
These
foundations for paeonol’s clinical application in cervical cancer

promoting  apoptosis. findings establish mechanistic
management and provide novel perspectives on natural product
therapeutics.  Further precise

pharmacological characteristics to validate clinical translation potential.

investigation ~must  elucidate
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