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Petroselinum crispum (Mill.) Fuss (parsley), a traditional botanical drug used for
treating skin conditions including atopic dermatitis (AD), has unclear effects on
epidermal keratinocytes. This study investigated the antioxidant and anti-
inflammatory properties of parsley extracts in human keratinocytes and
evaluated their therapeutic potential in an experimental AD model. The
aqueous, ethanolic, and hydro-ethanolic (HE) extracts of parsley were
evaluated for total polyphenol and flavonoid metabolites (TPC, TFC) and
antioxidant activity using DPPH and FRAP assays. In vitro, HaCaT cells were
treated with tert-butyl hydroperoxide (t-BHP) and TNF-α/IFN-γ to induce
oxidative stress and inflammation. Therapeutic efficacy was further evaluated
in 2,4-dinitrofluorobenzene (DNFB)-induced AD-like mouse model. The results
showed that HE extracts of parsley (HEP) contained the highest TPC and TFC and
exhibited the strongest antioxidant activity, significantly improving cell viability
and reducing ROS levels in t-BHP-treated cells. Mechanistically, HEP alleviated
oxidative stress by activating Nrf2 pathway and enhancing the expression of
antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT). In
addition, HEP suppressed inflammatory cytokines IL-33, IL-6, and IL-8 expression
by inhibiting JAK1/STAT1 and NF-κB signaling, and simultaneously increased the
expression of skin barrier proteins, including filaggrin and claudin-1 in TNF-α/IFN-
γ-stimulated HaCaT cells. Moreover, HEP application could alleviate AD-like
symptoms in DNFB-induced mouse model, including reduced skin hyperplasia
and decreased immune cells infiltration. These findings suggest that HEP
modulates oxidative stress and inflammation through multiple signaling
pathways, offering promising natural therapeutic agent for AD management.
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1 Introduction

Keratinocytes, the primary cell type in the epidermis, are central to
skin function and integrity. They not only form the first line to defense
against external threats, such as pathogens and UV radiation, but also
play a crucial role in immune surveillance (Watt, 2014). Through the
activation of innate immune receptors, keratinocytes initiate a cascade
of immune responses, producing cytokines, chemokines, and
antimicrobial peptides that protect the skin from microbial invasion
and regulate local inflammation (Chieosilapatham et al., 2021;
Albanesi and Pastore, 2010). Dysregulation of keratinocyte
functions compromises the skin barrier, a hallmark of
inflammatory skin disorders like atopic dermatitis (AD).
Additionally, AD is characterized by excessive inflammation and
heightened susceptibility to infections, posing significant therapeutic
challenges (Yang et al., 2020;Morizane et al., 2023; Schuler et al., 2023).

Oxidative stress and chronic inflammation are key contributors to
the onset and progression of AD (Ji and Li, 2016; Raimondo, Serio, and
Lembo, 2023; Bertino et al., 2020). The imbalance between reactive
oxygen species (ROS) and antioxidant defenses in the skin exacerbates
tissue damage, while persistent inflammation further impairs barrier
function and accelerates disease progression (Wullaert, Bonnet, and
Pasparakis, 2011; Bertino et al., 2020). Consequently, strategies that
modulate oxidative stress and inflammation hold significant
therapeutic potential for managing AD and other related skin
conditions (De Simoni et al., 2024; Li et al., 2021).

Petroselinum crispum (Mill.) Fuss (parsley), a widely used
botanical drug, has recently attracted increasing attention for its
therapeutic effects on skin health, particularly due to its
antioxidant and anti-inflammatory properties. Containing bioactive
metabolites, such as polyphenols and flavonoids, parsley has
demonstrated a wide range of biological activities, including
modulation of oxidative stress and inhibition of inflammatory
pathways (Bahramsoltani et al., 2024; Farzaei et al., 2013;
Mahmood, Hussain, and Malik, 2014). The application of parsley-
derived formulations has recently been investigated for
dermatological benefits (Slighoua et al., 2023; Khosravan et al.,
2017; Ganea et al., 2024). For example, topical application of HE
and polyphenol extracts of parsley (10% (w/w)) has been shown to
suppress wound infections and enhance burn healing. Despite these
benefits, the effects andmolecular mechanisms through which parsley
extracts influence keratinocytes remain unclear.

In this study, we investigated the effects of the hydro-ethanolic
extract of parsley (HEP) on oxidative stress, inflammatory responses,
and skin barrier function in human HaCaT keratinocytes and an AD
mouse model. Our findings indicate that HEP is rich in bioactive
polyphenolic and flavonoid metabolites, which play a crucial role in
modulating oxidative stress and inflammatory responses in vitro and

in vivo. Mechanistically, HEP modulates the activities of Nrf2, JAK/
STAT and NF-κB signaling pathway, which play crucial roles in
cellular antioxidant responses, inflammation, and immune regulation.
A deep understanding of the molecular mechanisms underlying
parsley extract could provide valuable insights into its therapeutic
potential for treating inflammatory skin diseases such as AD.

2 Materials and methods

2.1 Plantmaterial and preparation of extracts

Parsley root of P. crispum (Mill.) Fuss (syn. Petroselinum
sativum Hoffm., Apiaceae) was purchased from a local herbal
market in Shanghai, China, where the plants were traditionally
cultivated on an organically composed natural substrate. The
plant materials were taxonomically authenticated by Prof. Guixin
Chou, Institute of Chinese Materia Medica, Shanghai University of
Traditional Chinese Medicine, Shanghai, China.

After air-drying, the roots were ground into a fine powder to
obtain the crude extract. To obtain the aqueous extract of parsley
(AP), each plant powder (100 g) was macerated in 900 mL of
distilled water for 1 h at 95 °C. The HEP was obtained by reflux
extracting plant powder using a mixture of ethanol and distilled
water (50:50 V/V) in a ratio of 100 g powder to 1,000 mL of hydro-
ethanolic solvent for 1 h at 90 °C. Ethanolic extracts of parsley (EP)
were obtained by reflux extraction of 100 g plant powder using
1,000 mL of 95% alcohol for 1 h at 80 °C. In all cases, the extracts
were filtered (Whatman No. 1), concentrated by rotary evaporation
under reduced pressure, and subsequently freeze-dried to constant
weight. The extraction yields were as follows: 16.35 g (AP), 12.35 g
(HEP), and 7.90 g (EP), corresponding to drug–extract ratios (DER)
of approximately 6.12:1, 8.10:1, and 12.66:1, respectively. Dried
extracts were stored in airtight containers at 4 °C until use.

Extracts were chemically characterized to ensure batch-to-batch
consistency. Flavonoid constituents of HEP extract were initially
profiled using Liquid Chromatography-Mass Spectrometry (LC-
MS) as previously described (Obmann et al., 2011), enabling the
identification of key bioactive compounds. Quantitative analysis of the
principal marker flavonoids, isorhamnetin, quercetin, and luteolin,
was subsequently carried out using High-Performance Liquid
Chromatography (HPLC), with reference standards for each
compound. Details of the extraction procedure, chromatographic
conditions, and representative results were provided in the
Supplementary Methods and Supplementary Tables S1 and S2.
The phytochemical evaluation and documentation of the extract
followed the GA best-practice and ConPhyMP (Consensus on the
Phytochemical Characterization of Medicinal Plant Extracts)
reporting guidelines for botanical products (Heinrich et al., 2022),
and the corresponding completed GA checklist tables are included as
Supplementary Material.

2.2 Reagents

Recombinant human TNF-α and IFN-γ were from Peprotech
(Rocky Hill). Tert-Butyl hydroperoxide (t-BHP) and other chemicals
were purchased from Sigma-Aldrich. Primary antibodies for Nrf2

Abbreviations: AD, atopic dermatitis; AP, aqueous extract of parsley; EP,
Ethanolic extracts of parsley; HEP, hydro-ethanolic extract of Parsley;
ILC2s, 2 innate lymphoid cells; JAK1/STAT1, Janus kinase 1/signal
transducers and activators of transcription 1; NF-κB, nuclear factor-kappa
B; Nrf2, NF-E2-related factor 2; qPCR, Quantitative real-time polymerase
chain reaction; ROS, reactive oxygen species; SOD, superoxide dismutase;
t-BHP, tert-Butyl hydroperoxide; TEWL, trans-epidermal water loss; DNFB,
trans-epidermal water loss; DEX, Dexamethasone; TB, trans-
epidermal water loss.
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(cat. no. 12721), NF-κB P65 (cat. no. 8242), IκBα (cat. no. 4814),
p-JAK1 (cat. no. 74129), JAK1 (cat. no. 3344), p-STAT1 (cat. no.
9167), STAT1 (cat. no. 14994), and β-actin (cat. no. 4970) were
obtained from Cell Signaling Technology. The primary antibodies
against anti-Lamin B (cat. no. ab16048) were purchased from Abcam.
Horseradish peroxidase-conjugated secondary antibodies were
purchased from Jackson ImmunoResearch Laboratories.

2.3 Analysis of total polyphenol and
flavonoid metabolites in parsley extracts

Total polyphenol content (TPC) was determined using the Folin-
Ciocalteu method (Pyeon et al., 2021). Briefly, the extract was dissolved
in deionized water. Dissolved extract solution (1 mL) was mixed with
9 mL of distilled deionized water (dd H2O) and treated with 1 mL of
Folin-Ciocalteu reagent (Sigma-Aldrich). After reacting at room
temperature for 5 min, this solution was mixed with 10 mL of 7%
sodium carbonate (Na2CO3) and 4mL of ddH2O. Themixture stood at
room temperature for 90 min, and the absorbance was measured at
750 nm by a fluorescence microplate reader (BioTek Instruments).
Gallic acid (GA, Sigma-Aldrich) was used as a standard. The data were
expressed as mgGA equivalents (GAE)/g of lyophilized extract powder.

Total flavonoid content (TFC) was determined by the aluminum
chloride (AlCl3) colorimetric assay (Pyeon et al., 2021). The extract
was dissolved in deionized water. Dissolved extract solution (1 mL)
was mixed with 4 mL of dd H2O and treated with 0.3 mL of 5%
sodium nitrate (NaNO2). After 6 min at room temperature, 0.3 mL
of 5% AlCl3, 2 mL of 1M sodium hydroxide (NaOH), and 2.4 mL dd
H2Owere added. Additionally, the absorbance was then measured at
510 nm by a fluorescence microplate reader. Rutin (Sigma-Aldrich)
was used as a standard. The data were expressed as mg rutin
equivalents (CE)/g lyophilized extract powder.

2.4 Assessment of in vitro antioxidant activity
of parsley extracts

Antioxidant activity of the extracts was evaluated using the
DPPH radical scavenging assay and Ferric Reducing Antioxidant
Power (FRAP) assay.

2.4.1 DPPH radical scavenging assay
The assay was performed according to the method described

previously (Gulcin, 2020) with some modifications. Briefly, 100 μL
of the extract and 100 μL of the DPPH solution (0.2 mM) were
mixed in individual wells of a 96-well microplate. After 30 min of
incubation in the dark, the optical density (OD) at a wavelength of
517 nm (OD517) was measured using a microplate reader (BioTek
Epoch). All the experiments were performed in triplicate. Trolox
was used as the standard antioxidant. To calculate DPPH radical
scavenging rate (%), the following formula was used:

DPPH radical scavenging rate %( ) � Ablank - Asample/Ablank( ) × 100

Ablank: OD517 of DPPH solution in the absence of the extract or Trolox

Asample: OD517 of DPPH solution containing the extract or Trolox

The DPPH radical scavenging rate (%) was plotted against
different concentrations of the tested substance (parsley extracts
or Trolox). The IC50 value, representing the concentration required
to inhibit 50% of the DPPH radicals, was calculated from the linear
regression of the scavenging rate plotted against extract
concentrations.

2.4.2 FRAP assay
FRAP assay was carried out in a 96-well plate as described

previously (Gulcin, 2020), with modifications. Briefly, the FRAP
reagent was freshly prepared by mixing acetate buffer (300 mM),
TPTZ (10mM inHCl, 40mM), and FeCl3 (20mM in distilled water)
in a ratio of 10:1:1 (v/v/v), then incubated at 37 °C for 10 min. For
analysis, 150 μL of the FRAP solution was mixed with 30 μL of the
samples and incubated at room temperature for 30 min. The optical
density at a wavelength of 593 nm (OD593) was measured using a
microplate reader (BioTek Epoch). The results were expressed as
EC50, calculated from the standard curve, representing the
concentration required for 50% of the maximum
antioxidant activity.

2.5 Cell culture

HaCaT cells were purchased from The Cell Bank of Chinese
Academy of Sciences. Cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) (Sigma-Aldrich), supplemented with 10%
(v/v) fetal bovine serum (FBS) (Gibco) and 1% penicillin/
streptomycin (Gibco) at 37 °C and in a humidified 5%
CO2 incubator.

2.6 Cell viability assay

Cell viability was measured with a Cell Counting Kit-8 (CCK-8)
assay (APExBio) according to the manufacturer’s instructions. The
HEP solution was prepared by dissolving lyophilized HEP in DMSO
to generate a 50 mg/mL stock solution. Prior to cell treatment, this
DMSO stock was diluted with culture medium to achieve final
treatment concentrations. HaCaT cells were seeded in 96-well plates
at a density of 1 × 104 cells per well and incubated for 24 h. Cells were
treated for 6 h with different concentrations of the hydro-ethanolic
extract of parsley and then treated with 0.4 mM t-BHP for 2 h. After
that, the cells were cultured with fresh medium supplemented with
the same concentrations of HEP for another 24 h. 15 μL of
CCK-8 reagent (5 mg/mL) was then added to cells and incubated
for 2 h at 37 °C. The optical density at a wavelength of 450 nm
(OD450) was measured using a microplate reader (BioTek Epoch).
Each measurement was performed in triplicate. Cell viability was
expressed relative to that of the vehicle control group.

2.7 Estimation of intracellular ROS level

Intracellular ROS levels in t-BHP-stimulated HaCaT cells were
estimated by DCFH-DA fluorescence staining method. HaCaT cells
were seeded in 6-well plates at a density of 1 × 105 cells/well for 24 h.
Cells were pretreated with different concentrations of the HEP for
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6 h and then stimulated with t-BHP for 2 h. Subsequently, cells were
further incubated with 10 μM DCFH-DA (diluted in fresh DMEM)
for 30 min at 37 °C. DCFH-DA labeled intracellular ROS were
observed under an Olympus fluorescent microscope. Fluorescence
intensity of the DCFH-stained cells for each condition was
quantified by Olympus Softimage solution software (Olympus
Imaging America), and data were represented as fold change
relative to untreated control values.

2.8 Western blotting

Total protein was extracted from HaCaT cells using cell lysis
buffer (Beyotime Biotechnology, Shanghai, China). Nuclear and
cytoplasmic protein fractions were extracted from HaCaT cells
using an extraction reagent kit (Beyotime Biotechnology,
Shanghai, China), according to the manufacturer’s instructions.
The protein concentration was determined by a modified BCA
protein assay (Beyotime Biotechnology, Shanghai, China). About
20 μg protein was subjected to electrophoresis on an
SDS–polyacrylamide gel, and transferred onto a polyvinylidene
difluoride (PVDF) membrane. The membranes were incubated
with a blocking solution (5% BSA dissolved in Tris-buffered
saline with 0.05% TWEEN-20 (TBST) for 30 min at room
temperature and then incubated overnight with a primary
antibody (dilution, 1:1,000 in TBST) at 4 °C. After washing thrice
with TBST, the blots were incubated with a horseradish peroxidase-
conjugated secondary antibody (West Grove) (dilution, 1:2,000) for
2 h at room temperature and washed again thrice with TBST. The
blots were visualized using a SuperPico ECL Chemiluminescence Kit
(Nanjing Vazyme Biotech). Densitometry was performed using the
ImageJ software.

2.9 RNA extraction and real time quantitative
polymerase chain reaction (qPCR)

Total RNA was extracted from HaCaT cells using an RNA
isolation kit (Yeasen Biotechnology Co., Ltd., Shanghai, China)
according to the manufacturer’s instructions. For each sample,
1 µg total RNA was reverse transcribed into cDNA using
PrimeScript RT reagent Kit (Accurate Biotechnology Co., Ltd.,

Hunan, China). qPCR was performed on the quantum Studio
6 real-time PCR system (Thermo Fisher Scientific, Inc., Waltham,
MA, United States) using SYBR Green Master Mix (Accurate
Biotechnology Co., Ltd., Hunan, China). The sequences of used
primers are presented in Table 1. The relative messenger RNA
(mRNA) level of each target gene was quantified using the 2−ΔΔCT

method and normalized to that of β-actin.

2.10 Animals and induction of AD-
like symptoms

All in vivo studies were approved by Institutional Animal Care
and Use Committee of Shanghai University (project approval
number ESSHU2024-003). After 1 week of acclimation, mice
were randomly divided into the following four groups: (1)
Control (Ctrl): Untreated mice receiving vehicle only; (2) 2,4-
dinitrofluorobenzene (DNFB): Mice treated with DNFB to induce
AD-like dermatitis; (3) DNFB+ dexamethasone (DEX): DNFB-
treated mice receiving DEX (positive control); (4) DNFB+HEP:
DNFB-treated mice receiving HEP. The hapten-induced AD
model was established using a two-phase sensitization protocol
(Yang et al., 2023). On day 0, mice were sensitized by topical
application of 25 μL of 1% DNFB (Sigma, St. Louis, MO,
United States) dissolved in acetone/olive oil (4:1 v/v) to the
shaved abdominal skin (Figure 8A). On day 5, mice received
challenge applications of 5 μL of 0.4% DNFB solution to both
inner and outer ear surfaces to elicit localized inflammatory
responses (Ding et al., 2020). Given the rapid anti-inflammatory
action of DEX during peak inflammation, HEP was administered
prophylactically on Day 3 post-induction (1%DNFB), whereas DEX
intervention commenced at the inflammatory peak on Day 5.
Briefly, HEP group: Mice received daily pretreatment with HEP
(50 mg/kg) for two consecutive days prior to 0.4% DNFB challenge.
DEX group: Mice received daily subcutaneous injections of DEX
(2 mg/kg/day) from day 5. All treatment groups except controls
received a final 0.4% DNFB application on day 5 to maintain
inflammatory stimulation. Disease severity was evaluated using a
standardized scoring system applied by blinded observers (Shi et al.,
2019). The severities of erythema (hemorrhage), edema, erosion,
and dryness in individual mice were scored as 0 (absent), 1 (mild), 2
(moderate), and 3 (severe) in a blinded manner. Ear thickness was

TABLE 1 Primer sequences used for qPCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

SOD GGTGGGCCAAAGGATGAAGAG CCACAAGCCAAACGACTTCC

CAT ATTCTGGAGAAGTGCGGAGA CGGCAATGTTCTCACACAGA

FLG TGAAGCCTATGACACCACTGA TCCCCTACGCTTTCTTGTCCT

Claudin-1 CCGTGCCTTGATGGTGGTTGG CATCTTCTGCACCTCATCGTCTTCC

IL-33 GGAAGAACACAGCAAGCAAAGCC GGCCAGAGCGGAGCTTCATAAAG

IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG

IL-8 AGAGAGCTCTGTCTGGACCC TTCTCAGCCCTCTTCAAAAACT

β-actin GTACGCCAACACAGTGCTG CGTCATACTCCTGCTTGCTG
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measured at 0, 8, 24, and 48 h after DEX administration with a
digital caliper. Ear thickness was calculated by four groups
compared with Ctrl group. The tissue samples were collected on
day 7, and used for subsequent experiments.

2.11 Histological analysis and
immunohistochemistry staining

Mouse ear skin tissues were collected and fixed with 4%
paraformaldehyde (PFA) in PBS overnight before paraffin
embedding, and sectioned. Tissue sections (4 μm) were stained
with hematoxylin and eosin (H&E) and toluidine blue (TB,
Biosharp). Ear epidermal thickness was taken using
ImageJ software.

The expression of CD3 and CD68 was detected using
immunohistochemistry staining as described previously (Tang
et al., 2024; Liu et al., 2024). The tissues sections underwent
heat-induced epitope retrieval at 95 °C for 20 min. After blocking
with 3% BSA, the slides were stained with primary antibodies: CD3
(Abcam: ab16669), CD68 (Cell Signaling Technology: #97778)
overnight at 4 °C. Subsequently, sections were incubated with
HRP-conjugated secondary antibody (Goat anti-rabbit IgG) for
1 h at RT. DAB substrate kit was used to detect the signal.
Images were taken using the Olympus Microscope IX71
(Olympus, Tokyo, Japan). Five visions were counted per tissue
section used for measurement. The mean intensity and cell
quantity of skin tissue was quantified from photographs using
ImageJ software with the IHC Toolbox.

2.12 Statistical analysis

All data were expressed as a mean ± standard deviation (SD)
from three independent experiments. Comparisons among
groups were carried out using one-way analysis of variance
followed by Dunnett’s post hoc test using GraphPad Prism
6.0 software (Graphpad Software). Statistical significance was
set at p < 0.05.

3 Results

3.1 Parsley extracts exhibit high TPC and
TFC levels

The analysis of TPC and TFC revealed significant variations
among AP, EP and HEP. Notably, HEP demonstrated the highest
concentration of both polyphenols (43.87 ± 0.09 mg GA/g extract)
and flavonoids (57.76 ± 0.30 mg rutin/g extract) (Table 2),
indicating superior extraction efficiency of bioactive
constituents. LC-MS profiling was employed to identify the
major flavonoid constituents of HEP extract (Supplementary
Methods). HPLC was used to quantify key marker compounds,
including isorhamnetin, quercetin, and luteolin. The results from
HPLC corroborated the LC-MS findings, confirming comparable
levels of these flavonoids across analytical methods
(Supplementary Tables S1 and S2). These findings suggest that

the hydro-ethanolic extraction method is more effective in
extracting TPC and TFC, the key bioactive metabolites
from parsley.

3.2 In vitro antioxidant activity of
parsley extracts

The antioxidant capacity of parsley extracts was evaluated using
DPPH and FRAP assays. Among the extracts, HEP showed the
highest DPPH scavenging activity with an IC50 of 113.467 μg/mL,
while AP and EP had higher IC50 (221.800 μg/mL and 239.067 μg/
mL, respectively) (Figure 1A; Table 3), indicating a decreased
potency in scavenging DPPH radicals for the latter two extracts.
Similarly, the FRAP assay demonstrated that HEP had the greatest
ferric reducing antioxidant power with an EC50 of 96.42 μg/mL,
compared to AP (186.50 μg/mL) and EP (164.97 μg/mL) (Figure 1B;
Table 3). These findings highlight the superior antioxidant potency
of HEP, which correlates with its higher TPC and TFC content in
parsley extracts.

3.3 Protective effect of HEP on oxidative
damage in keratinocytes

Given the superior potential of HEP, our following
experiments mainly concentrated on investigating its activities.
The possible cytotoxic effects of HEP on HaCaT cells were first
evaluated via CCK-8 assay. The results revealed that HEP at
concentrations of 25 μg/mL or lower did not exhibit any effect
on the cell viability over a 24-h period (Figure 2A), excluding the
cytotoxicity on HaCaT cells. Therefore, further experiments were
performed at concentrations of 1, 5, and 10 µg/mL of HEP. t-BHP
is an organic peroxide that can be metabolized by cytochrome
P450 in cells to generate peroxyl and alkoxyl radicals or detoxified
to tert-butanol, both of which can inflict oxidative damage to cells.
t-BHP is a commonly used trigger to induce oxidative stress
in vitro and in vivo (Taffe et al., 1987; Bellomo, Thor, and
Orrenius, 1984; Kučera et al., 2014; Pinho, Oliveira, and
Cunha-Oliveira, 2025). To assess the protective effect of HEP
on t-BHP-induced oxidative damage, HaCaT cells were
pretreated with HEP (1, 5, and 10 μg/mL) for 6 h and then
exposed to 0.4 mM t-BHP. The CCK-8 assay demonstrated that
t-BHP stimulation inhibited cell viability, and HEP pretreatment
alleviated its inhibition (Figure 2B), suggesting that HEP protected
cells from t-BHP-induced oxidative damage.

3.4 Effect of HEP on intracellular ROS levels
in t-BHP-stimulated HaCaT cells

Excessive ROS contributes to the skin inflammation and
disruption of skin barrier (Woodby et al., 2020; Sies and Jones,
2020). Since HEP alleviated the t-BHP-induced oxidative damage,
we therefore tested whether HEP alleviated the t-BHP-mediated
ROS production. DCFH-DA is a fluorescent indicator. Upon
oxidation by ROS, it converts into DCF and emits green
fluorescence. Hence, fluorescence intensity in cells can be used to
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indicate the ROS level. HaCaT cells were pretreated with indicated
concentrations of HEP (1–10 μg/mL), following with t-BHP
treatment. Compared to the untreated control cells, t-BHP

stimulation alone triggered a remarkable increase in fluorescence
intensity. However, this effect was dramatically alleviated by HEP-
pretreatment in a concentration-dependent manner (Figures 3A,B),

TABLE 2 Total polyphenol and flavonoid contents in parsley extracts.

Parsley extracts Total polyphenols (mg GA/g extract) Total flavonoids (mg rutin/g extract)

HEP 43.87 ± 0.09 57.76 ± 0.30

AP 27.60 ± 0.16 25.62 ± 0.22

EP 26.28 ± 0.37 36.78 ± 0.08

FIGURE 1
HEP displays superior antioxidant potency. Antioxidant activity of different parsley extracts (HEP, EP, and AP) using (A) DPPH and (B) FRAP assays.

TABLE 3 Antioxidant activity of parsley extracts using DPPH and FRAP assays.

Parsley extracts DPPH IC50 (μg/mL) DPPH IC50 (μg/mL)

HEP 113.47 ± 6.40 96.42 ± 9.92

AP 239.07 ± 8.41 164.97 ± 17.26

EP 227.1 ± 5.77 186.50 ± 10.26

FIGURE 2
The protective effect of HEP on t-BHP-induced oxidative damage in HaCaT cells. (A)HaCaT cells were treated with indicated concentrations of HEP
for 24 h, and the cell viability was assayed with CCK8 assay. (B) HaCaT cells were treated with HEP for 6 h at indicated concentrations and then treated
with 0.4 mM t-BHP for 2 h. After that, the cells were cultured with fresh medium supplemented with the same concentrations of HEP for another 24 h.
Cell viability was thenmeasured using CCK-8 assay. The data are presented asmean ± SD of three independent experiments. *p < 0.05, **p < 0.01 vs
t-BHP alone control; ##p < 0.01 vs non-treatment control.
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indicative of the decreased ROS level. Hence, HEP exhibited
antioxidant activity in t-BHP stimulated HaCaT cells.

3.5 HEP activates the Nrf2 signaling pathway
and upregulates antioxidant genes in
stimulated HaCaT cells

Nrf2 signaling pathway has an important role in the regulation
of oxidative responses (Liu et al., 2022). Therefore, we wondered

whether HEP exerted antioxidant activity via activating Nrf2.
Nuclear-translocated Nrf2, the activated form, was investigated
using Western blotting. As shown in Figure 4A, HEP treatment
prior to t-BHP stimulation increased nuclear and total Nrf2 protein
levels compared to the t-BHP-only group, indicating that HEP
treatment resulted in Nrf2 accumulation and nuclear
translocation (Figure 4A).

Nrf2 in the nucleus promotes the transcription of multiple
antioxidant genes, including superoxide dismutase (SOD) and
catalase (CAT). To consolidate the transcription activity, we

FIGURE 3
Effect of HEP on intracellular ROS levels in t-BHP-stimulated HaCaT cells. HaCaT cells were pretreated with HEP (0, 1, 5, or 10 μg/mL) for 6 h
followed by stimulation with t-BHP for 2 h. (A) The accumulation of t-BHP-induced ROS was measured using fluorescence microscopy after DCFH-DA
staining (×200 magnification). (B) Fluorescence intensity of the DCFH-stained cells for each condition was quantified by Olympus Softimage solution
software. The data are presented as mean ± SD of three independent experiments. **p < 0.01 vs single t-BHP treatment group; ##p < 0.01 vs non-
treatment control.

FIGURE 4
HEP activates Nrf2 signaling pathway in t-BHP-stimulated HaCaT cells. HaCaT cells were treated with the indicated amounts of HEP for 6 h, then
stimulated with 0.4mMof t-BHP for 2 h. (A)Nuclear Nrf2 levels and total levels of Nrf2 were assessed bywestern blotting and quantified by densitometric
analysis. (B) ThemRNA levels of SOD andCATweremeasured with qPCR. Data are presented as themean and quantified by densitometric anal. *p < 0.05,
**p < 0.01 vs t-BHP alone control; ##p < 0.01 vs non-treatment control.
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analyzed the expression of its target genes via qPCR. HEP treatment
increased mRNA expression levels of SOD and CAT in t-BHP-
stimulated HaCaT cells (Figure 4B). These findings support the
notion that HEP activates Nrf2 signaling pathway.

3.6 HEP suppresses pro-inflammatory
cytokine expression in TNF-α/IFN-γ-
stimulated HaCaT cells

To evaluate the anti-inflammatory activity of HEP, the
inhibitory effect of HEP on the expression of TNF-α/IFN-γ-
stimulated pro-inflammatory cytokines in HaCaT cells were
assessed using qPCR. As shown in Figure 5, TNF-α/IFN-γ
stimulation significantly increased the mRNA expression levels of
IL-33, IL-6, and IL-8 in HaCaT cells, compared to the untreated
control group, whereas HEP treatment markedly suppressed the
mRNA expression levels of these proinflammatory cytokines in
TNF-α/IFN-γ-stimulated HaCaT cells. These findings indicate
that HEP possesses anti-inflammatory property.

3.7 HEP inhibits JAK/STAT and NF-κB
signaling pathway activation in HaCaT cell

JAK/STAT and NF-κB signaling pathways contribute to TNF-α/
IFN-γ-mediated inflammatory responses. Given that HEP inhibited
the expression of TNF-α/IFN-γ-induced inflammatory cytokines,
we examined its effect on JAK/STAT and NF-κB pathways. Western
blot analysis revealed that stimulation of HaCaT cells with TNF-α/
IFN-γ markedly induced the phosphorylation of JAK1 and STAT1,
and this effect was inhibited by HEP pretreatment (Figure 6A). In
addition, TNF-α/IFN-γ stimulation induced degradation of the
inhibitor of NF-κB (IκBα) and nuclear translocation of NF-κB
subunit p65 (NF-κB p65), whereas HEP treatment inhibited the
TNF-α/IFN-γ-induced degradation of IκBα and also prevented the
nuclear localization of NF-κB p65 (Figure 6B). These results
collectively revealed that HEP inhibited the activation of JAK/
STAT and NF-κB signaling pathways in TNF-α/IFN-γ-stimulated

HaCaT cells, thereby accounting for its suppressive impact on
inflammatory reactions.

3.8 HEP increases skin barrier regulator
expression in TNF-α/IFN-γ-stimulated
HaCaT cells

To determine the protective potential of HEP on inflammation-
induced skin barrier dysfunction, the effect of HEP on the
expression of skin barrier-related proteins in TNF-α/IFN-γ-
stimulated HaCaT cells was assessed using qPCR. TNF-α/IFN-γ
stimulation downregulated mRNA expression levels of genes related
to skin barrier formation, including Claudin-1 and Filaggrin (FLG),
compared to the untreated control group, whereas HEP treatment
markedly increased both mRNA expressions in TNF-α/IFN-γ-
stimulated HaCaT cells (Figure 7).

3.9 HEP attenuates DNFB-Induced
epidermal hyperplasia and inflammatory cell
infiltration in an AD-like mouse model

To evaluate the therapeutic potential of HEP in AD, we
utilized a well-established DNFB-induced AD model that
recapitulates key features of human AD (Figure 8A) (Li et al.,
2013). Following DNFB challenge, characteristic inflammatory
responses developed progressively, with edema and erythema
manifesting at 8, 24, and 48 h post-application. Comprehensive
clinical assessment using standardized dermatitis scoring
revealed that both the positive control dexamethasone (DEX)
and HEP treatment significantly reduced overall dermatitis
severity compared to DNFB-treated controls (Figure 8B). H&E
staining demonstrated that DNFB-induced lesions were
characterized by pronounced epidermal hyperplasia and
extensive dermal immune cell infiltration, hallmarks of
inflammatory skin disease. In contrast, both DEX- and HEP-
treated mice exhibited marked amelioration of these pathological
changes, with substantially reduced inflammatory cell

FIGURE 5
HEP suppresses pro-inflammatory cytokine expression in TNF-α/IFN-γ-stimulated HaCaT cells. HaCaT cells were pre-treated with the indicated amount
ofHEP for 6 h, then treatedwith TNF-α/IFN-γ (20 ng/mL) for 24 h. ThemRNAexpression levels of IL-33, IL-1β, IL-6, and IL-8were thenmeasured by qPCR.Data
are presented as the mean ± SD of three independent experiments. ##p < 0.01 vs untreated controls; *p < 0.05, **p < 0.01 vs TNF-α/IFN-γ only control.
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accumulation and normalization of epidermal
thickness (Figure 8C).

To further characterize the inflammatory response, we
performed immunohistochemical analysis targeting key immune
cell populations, including macrophages (CD68), T lymphocytes
(CD3), and mast cells (toluidine blue, TB). DNFB-induced skin
lesions exhibited significantly increased CD68+ macrophages,

confirming robust innate immune activation, while both DEX
and HEP treatment substantially decreased CD68+ macrophage
number, indicating the reduced macrophage infiltration and
inflammatory responses. Similarly, CD3+ T-cell accumulation and
TB-positive mast cell numbers were markedly decreased in both
treatment groups compared to DNFB controls (Figure 8D).
Collectively, these findings indicate that HEP exhibits potent

FIGURE 6
HEP inhibits JAK/STAT and NF-κB signaling pathway activation in HaCaT cell. HaCaT cells were treated with the indicated amount of HEP for 6 h,
then stimulated with TNF-α/IFN-γ for 30 min. (A) The protein levels of total and phosphorylated JAK1 and STAT1 in the cell lysate were determined by
western blotting and quantified by densitometric analysis. (B) The protein levels of IκBα and nuclear NF-κB p65 were determined by western blotting and
quantified by densitometric analysis. β-actin and Lamin B1 were used as protein control for cytosol and nuclear fractions, respectively. Data are
presented as mean ± SD from three independent experiments. ##p < 0.01 vs untreated controls; * p < 0.05, ** p < 0.01 vs TNF-α/IFN-γ only control.

FIGURE 7
HEP increases skin barrier regulator expression in TNF-α/IFN-γ-stimulated HaCaT cells. HaCaT cells were pre-treated with the indicated amount of
HEP for 6 h, then treated with TNF-α/IFN-γ (20 ng/mL each) for 24 h. The mRNA levels of Claudin-1 and FLG were then measured by qPCR. Data are
presented as the mean ± SD from three independent experiments. ##p < 0.01 vs untreated controls; *p < 0.05, **p < 0.01 vs TNF-α/IFN-γ only control.
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FIGURE 8
HEP ameliorates DNFB-induced skin inflammation and pathological changes in an AD-like mouse model. (A) Schematic representation of the
experimental protocol for establishing the DNFB-induced allergic contact dermatitis model. (B) Representative macroscopic images showing distinct ear
skin morphological changes across treatment groups: Ctrl, DNFB, DNFB + DEX, and DNFB + HEP. Quantitative analysis of ear thickness changes and
clinical dermatitis scores evaluated at multiple time points in all experimental groups (n = 5). (C) Left, representative images of H&E stained skin
sections from Ctrl, DNFB, DNFB+DEX, and DNFB+HEP mice groups (n = 5). Scale bar: 200 μm. Right, the quantitative analysis of epidermal thickness

(Continued )
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anti-inflammatory properties in vivo, effectively attenuating
multiple pathological features of AD-like skin inflammation
through suppression of both innate and adaptive immune responses.

4 Discussion

The results of our study demonstrate that HEP exhibits potent
antioxidant and anti-inflammatory activities in HaCaT cells. The
high levels of polyphenolic and flavonoid metabolites in HEP, which
are known to play a critical role in cellular defense mechanisms,
indicate that HEP may serve as a promising natural therapeutic for
modulating oxidative stress and inflammation. The observed
modulation of key signaling pathways, including Nrf2, NF-κB,
and JAK/STAT, aligns with previous studies demonstrating the
involvement of these pathways in cellular antioxidant responses
and immune regulation. Furthermore, the in vivo validation
demonstrated that HEP effectively ameliorated AD-like
symptoms in the DNFB-induced mouse model. These findings
underscore the multifaceted role of HEP in maintaining skin
homeostasis and its potential as a targeted intervention for
inflammatory skin conditions such as AD.

Parsley is well-recognized for its antioxidant properties,
attributed to phenolic and flavonoid metabolites such as
apigenin, quercetin, and coumaric acid (Slighoua et al., 2023;
Mahdi et al., 2024). Consistent with previous studies, we
observed in vitro antioxidant activity in parsley extracts by
DPPH and FRAP assays. Notably, we used three different
extraction methods and found that the hydro-ethanolic
extraction was most effective for obtaining high contents of
polyphenol and flavonoid. Consistently, hydro-ethanolic
extraction exhibited superior radical scavenging activity and
ferric reducing power, which was further validated in a cell-based
model where HEP mitigated t-BHP-induced oxidative stress in
HaCaT cells by enhancing cell viability, reducing ROS
generation, and activating antioxidant defenses.

The endogenous antioxidant system is primarily regulated by
Nrf2. The activation of the Nrf2 can induce key enzymes like SOD,
contributing to neutralization of ROS-mediated damaging effects by
converting hydrogen peroxide into water and oxygen (De Simoni
et al., 2024; Niture, Khatri, and Jaiswal, 2014; Kuai et al., 2024). Our
results reveal that HEP not only scavenges ROS, but also enhances
the endogenous antioxidant defenses by promoting Nrf2 nuclear
translocation and upregulating SOD and CAT expression. These
findings highlight the potent antioxidant capability of HEP and its
therapeutic potential for protecting skin cells against oxidative
damage through Nrf2 pathway activation.

Keratinocytes are central to initiating and amplifying
cutaneous inflammation in AD, primarily through the release of
pro-inflammatory cytokines and chemokines (Chieosilapatham

et al., 2021). Among these, IL-33 plays a major role in AD
initiation (Imai, 2019). Overexpressed in keratinocytes of AD
patients, IL-33 is rapidly released in response to injury or
infection, triggering Th2 polarization by activating immune
cells such as mast cells and group 2 innate lymphoid cells
(ILC2s) to produce IL-4, IL-5, and IL-13 (Schmitz et al., 2005;
Salimi et al., 2013). Additionally, IL-33 promotes the secretion of
pruritic cytokines, including TSLP and IL-31 from keratinocytes
and Th2 cells, respectively, creating a feedback loop of scratching
and cytokine release that exacerbates inflammation and barrier
dysfunction (Roan, Obata-Ninomiya, and Ziegler, 2019). IL-6 and
IL-8 also contribute significantly to AD pathology (Zhang et al.,
2014). IL-6 facilitates Th17 differentiation, chronic inflammation,
and defective skin barrier function, while elevated IL-6 levels in AD
skin are linked to bacterial colonization and dermatitis severity
(Zhou et al., 2007; Son et al., 2014; Kim and Kim, 2019; Navarini,
French, and Hofbauer, 2011). IL-8, initially identified as a
neutrophil chemoattractant, also recruits macrophages and
dendritic cells in the AD microenvironment. Its levels correlate
with disease severity, making it a potential therapeutic target
(Matsushima, Yang, and Oppenheim, 2022; Neuber, Hilger, and
König, 1991). In the present study, HEP effectively suppressed the
mRNA expression of IL-33, IL-6, and IL-8 in a dose-dependent
manner in HaCaT cells stimulated by TNF-α/IFN-γ, indicating its
anti-inflammatory potential.

Skin barrier defects are an initiating step in AD, allowing
allergen and pathogen infiltration that triggers keratinocyte-
derived cytokines, perpetuating inflammation and barrier
disruption (Kim and Leung, 2018; Furue et al., 2017). Therapies
targeting skin barrier have proven effective in managing AD
(Schmuth et al., 2024). AD skin exhibits increased trans-
epidermal water loss (TEWL), decreased stratum corneum
hydration, and diminished expression of key differentiation
markers, including FLG, involucrin and loricrin. FLG, a key
epidermal barrier protein, contributes to maintaining skin
pH and water retention (Moosbrugger-Martinz et al., 2022). Its
loss, driven by genetic mutations (Palmer et al., 2006) or
Th2 cytokines such as IL-4, IL-13, and IL-33, compromises the
barrier, irrespective of genotype (Moosbrugger-Martinz et al., 2022;
Seltmann et al., 2015; Nygaard et al., 2017; Ryu et al., 2016). Claudin-
1, a tight junction protein, plays an equally crucial role by sealing
intercellular spaces to prevent pathogen entry (Sumigray and
Lechler, 2015). Numerous studies have demonstrated that the
reduced claudin-1 expression correlates with the impaired skin
barrier functions in AD (Bergmann et al., 2020; Gao, 2011). IL-
33 and other Th2 cytokines can also downregulate claudin-1
expression through JAK/STAT pathway in keratinocytes (Ryu
et al., 2018; Gruber et al., 2015). The present study demonstrated
that HEP treatment recovered the FLG and Claudin-1 expression by
TNF-α/IFN-γ stimulation in HaCaT cells. These results suggest that

FIGURE 8 (Continued)

measurement. e, epidermis; d, dermis. (D) Left, representative immunohistochemical images showing CD3+ T lymphocytes, CD68+ macrophages,
and TB-stained mast cells in dermal tissue sections from each treatment group (scale bar: 200 μm). Right, the quantitative analysis of CD3+, CD68+, and
TB stained cells in skin dermal lesions. Each dot represents onemouse. Data represent themean values ± SEM, and statistical significancewas determined
by two-way ANOVA for multiple comparisons. ****p < 0.0001, ***p < 0.001, **p < 0.01.
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HEP may be a useful medicinal agent for restoring the skin barrier
and inhibiting chronic inflammation in AD.

The NF-κB and JAK/STAT pathway signaling pathways are
central regulators of inflammatory and immune responses, and its
dysregulated activation is implicated in numerous inflammatory
skin disorders, including AD (Giridharan and Srinivasan, 2018;
Herrington, Carmody, and Goodyear, 2016; Liu et al., 2024). Given
their pivotal roles, these pathways represent promising therapeutic
targets for inflammatory skin diseases. Our findings demonstrate
that HEP effectively attenuates TNF-α/IFN-γ-induced
inflammation in HaCaT cells by suppressing NF-κB and JAK/
STAT1 pathways. This dual inhibition provides a mechanistic
explanation for the anti-inflammatory effects of HEP on AD,
where dysregulated NF-κB and JAK/STAT signaling drive
keratinocyte-mediated inflammation and epidermal barrier
dysfunction.

The in vivo validation using the DNFB-induced mouse AD
model provided compelling evidence for the therapeutic efficacy of
HEP in treating AD-like inflammation. The observed reduction in
clinical dermatitis scores demonstrates the translational potential of
our in vitro findings. Histopathological analysis revealed that HEP
effectively attenuated key pathological features of AD, including
epidermal hyperplasia and inflammatory cell infiltration, which
directly correlate with the molecular mechanisms identified in
our cell culture studies. The significant reduction in CD68+

macrophages, CD3+ T cells, and mast cells in HEP-treated mice
suggests that the extract’s anti-inflammatory effects extend beyond
keratinocyte-mediated responses to encompass broader immune
modulation (Ganea et al., 2024). This multi-cellular therapeutic
impact aligns with the observed suppression of inflammatory
cytokines in vitro and supports the concept that HEP acts
through coordinated inhibition of both innate and adaptive
immune pathways. Specifically, due to the distinct
pharmacological properties of DEX and HEP, HEP was
intentionally administered to mouse ears 2 days prior to DEX
treatment to evaluate its therapeutic potential in this study.
Although DEX was more efficacious than HEP in ameliorating
clinical dermatitis phenotypes and histopathological features, the
well-documented adverse effects of DEX warrant further
investigation of HEP as a safer alternative for long-term AD
management.

The pathogenesis of AD is multifactorial, involving complex
interactions between oxidative stress, inflammation, and skin
barrier dysfunction. Our findings introduce the HEP as a
promising anti-AD agent with triple anti-AD potency. Namely,
HEP mitigated oxidative stress, suppressed inflammation and
restored skin barrier integrity. These findings support its
potential as a candidate for further investigation in future
preclinical and clinical studies.

This study has certain limitations. First, the current research is
mainly based on DNFB-induced AD mouse model, it is difficult to
fully recapitulate the complex pathological dentures of human AD.
Further study with alternative models, such as organoids or patient-
derived xenografts, is required. Second, although we identified key
signaling pathways mediated by HEP, detailed molecular
mechanisms, including upstream regulators and pathway
crosstalk, remain incompletely characterized. Moreover, the long-
term safety and therapeutic benefits need to be further determined.

5 Conclusion

In the current study, HEP exhibited potent in vitro antioxidant
activity and alleviated cellular oxidative damage by reducing
intracellular ROS level and promoting antioxidant expression in
human keratinocytes. HEP also effectively suppressed the
inflammatory responses in keratinocytes by downregulating the
expression of pro-inflammatory cytokines and upregulating the
expression of skin barrier proteins. The mechanisms underlying the
antioxidant and anti-inflammatory effects of HEP are associated with
activatingNrf2 signaling pathway and inhibiting JAK/STAT andNF-κB
signaling pathways in keratinocytes. In addition, HEP decreases the
epidermis thickness and alleviates skin inflammation in DNFB-induced
AD-like mouse model. These findings offer evidence supporting the
potential application of HEP as a promising agent for AD therapy.
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