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Postoperative cognitive dysfunction (POCD) is a common and significant
neurological complication, occurring more frequently in elderly individuals
and those with frailty or underlying neurodegenerative conditions, though it is
not limited to these populations. The glymphatic system—a brain-wide clearance
network dependent on aquaporin-4 (AQP4) polarity, arterial pulsation, and sleep-
driven cerebrospinal fluid (CSF)–interstitial fluid exchange—has recently
emerged as a promising target for cognitive protection. Dexmedetomidine
(Dex), a selective α2-adrenergic receptor agonist, facilitates glymphatic
function by mimicking non-REM sleep patterns and reducing central
norepinephrine tone. Preclinical studies suggest Dex enhances glymphatic
clearance by promoting CSF flow, restoring AQP4 localization, and
attenuating neuroinflammation, potentially reducing POCD risk. Additionally,
Dex provides neuroprotection by inhibiting neuronal apoptosis and preserving
blood-brain barrier integrity. Despite promising evidence, most current data are
derived from animal studies, and direct clinical validation remains limited. Key
challenges include inadequate clinical tools for assessing glymphatic function
and the absence of standardized protocols regarding Dex dosage, timing, and
patient selection. This review provides a comprehensive summary of how Dex
modulates glymphatic system function, with a particular focus on its potential to
prevent POCD through mechanisms such as promoting CSF flow, restoring
AQP4 polarity, and attenuating neuroinflammation. It also highlights current
research gaps, including the lack of direct clinical evidence, the limited
availability of reliable methods to assess glymphatic function, and the absence
of standardized Dex administration protocols. The review emphasizes the need
for future studies to incorporate multimodal imaging, integrated mechanistic
analysis, and identification of high-risk patient subgroups, in order to facilitate the
clinical translation of Dex as a glymphatic-targeted neuroprotective agent.
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1 Introduction

Postoperative cognitive dysfunction (POCD) is a common and
clinically significant neurological complication in the perioperative
period, occurring more frequently in elderly individuals and those
with frailty or underlying neurodegenerative conditions, though it is
not limited to these populations (Bhushan et al., 2021; Peden et al.,
2021; Deiner and Silverstein, 2009; Moller et al., 1998; Figueiredo
and Devezas, 2024; O’Gara et al., 2021; Evered et al., 2018; Berger
et al., 2018; Jin et al., 2020). Clinically, POCD is characterized by
altered mental status, impaired environmental awareness, attention
deficits, perceptual disturbances (e.g., hallucinations), and cognitive
dysfunction, including disorientation and transient memory loss
(Deiner and Silverstein, 2009; Suraarunsumrit et al., 2024). These
symptoms can substantially hinder postoperative recovery and
negatively impact long-term quality of life.

Although the precise pathophysiology of POCD remains elusive,
current evidence suggests that it involves a constellation of
interrelated mechanisms, including neuroinflammation, oxidative
stress, impaired cerebral perfusion, and inadequate clearance of
metabolic waste products from the brain (Liu et al., 2023; Xu et al.,
2023; Bonfante et al., 2024). While anti-inflammatory agents have
shown promise in animal models, their efficacy in clinical settings
remains limited. For instance, high-dose intraoperative
dexamethasone failed to reduce POCD incidence after cardiac
surgery (Ottens et al., 2014), and clinical trials on parecoxib are
limited in number and primarily conducted in China (Daojun et al.,
2025). Moreover, adverse effects—such as increased risk of
postoperative bleeding, particularly gastrointestinal hemorrhage
in elderly patients—further constrain their routine clinical
application (Dirkmann et al., 2015).

The multifactorial nature of POCD was further underscored in a
2024 systematic review by Figueiredo and Devezas, which
highlighted the heterogeneity of POCD phenotypes and their
association with diverse mechanisms, including inflammation,
cellular stress, neuronal injury, and genetic vulnerability
(Figueiredo and Devezas, 2024). This complexity is further
supported by the absence of universally accepted diagnostic
biomarkers, indicating that POCD cannot be fully explained by
inflammation alone. Therefore, anti-inflammatory therapy alone is
likely insufficient (Yu et al., 2022), emphasizing the urgent need to
explore novel mechanisms and therapeutic targets more closely
aligned with the pathophysiology of human cognition (Huang
et al., 2019; Huang et al., 2020; Wang et al., 2019).

Currently, evidence-based guidelines advocate for multimodal
non-pharmacological strategies—such as orientation therapy, sleep
optimization, and early mobilization—as foundational preventive
approaches (Wildes et al., 2019; Aldecoa et al., 2024).
Pharmacological options remain limited, with only a few
agents—such as dexmedetomidine (Dex), melatonin, and
sufentanil—supported by high-quality evidence for reducing
POCD risk (Zeng et al., 2023; Zhang et al., 2025; Wang et al.,
2022; Yu et al., 2022; Zhao et al., 2020). Recent studies suggest that
Dex may exert neuroprotective effects by enhancing glymphatic
circulation and promoting the clearance of neurotoxic metabolites
from the brain (Wang et al., 2024). The glymphatic system, a
recently identified waste clearance pathway in the central nervous
system, has emerged as a potentially critical factor in cognitive

dysfunction (Li et al., 2024). Its function relies on several key
elements—including optimal sleep architecture, aquaporin-4
(AQP4) polarization, and cerebrovascular dynamics—all of which
are commonly impaired in individuals at high risk for POCD, such
as older adults or those with sleep disorders and chronic
inflammation. Therefore, enhancing glymphatic activity may
represent a novel and actionable therapeutic strategy for POCD
prevention.

This review aims to synthesize current evidence on Dex-
mediated enhancement of glymphatic function. It explores the
underlying mechanisms—including improvements in
cerebrospinal fluid (CSF) dynamics, restoration of AQP4 polarity,
and suppression of neuroinflammation—and discusses their
potential translational implications for clinical
management of POCD.

2 Methods

This narrative review is not a meta-analysis. A literature search
was conducted using PubMed, Embase, and Web of Science with
keywords including “glymphatic system,” “dexmedetomidine,”
“sleep,” “POCD,” “AQP4 polarization,” and “perioperative
neurocognitive disorders.” Studies were selected based on their
relevance to POCD, glymphatic function, and Dex pharmacology.
Publications lacking empirical data or based primarily on opinion
without substantial experimental or clinical evidence were excluded.
No quantitative or statistical analyses were performed. Instead, the
literature was qualitatively synthesized to provide an integrative
understanding of glymphatic mechanisms, perioperative cognitive
management, and pharmacological interventions for POCD.

3 The glymphatic system: structure and
modulatory factors

3.1 Polarized AQP4 expression: the
structural core of the glymphatic system

The glymphatic system, first clearly characterized byNedergaard’s
group in 2012, is a waste clearance pathway in the brain (Iliff et al.,
2012). In this system, CSF enters the brain parenchyma through
periarterial spaces and exchanges with interstitial fluid (ISF), enabling
the clearance of metabolic wastes such as β-amyloid and tau via
perivenous pathways into meningeal lymphatics and ultimately the
deep cervical lymph nodes. Impaired glymphatic function has been
closely associated with neurodegenerative diseases and the
development of POCD (Fyfe, 2025).

Aquaporin-4 (AQP4), a water channel highly expressed in the
perivascular endfeet of astrocytes, plays a pivotal structural role in
facilitating CSF–ISF exchange (Iliff et al., 2012; Chen et al., 2025;
Salman et al., 2022). Polarized AQP4 distribution is essential for
maintaining convective fluid flow and efficient metabolic clearance
within the brain. Regulation of AQP4 polarity is multifaceted,
involving transcriptional control, post-translational modifications
(e.g., phosphorylation), metal ions, small-molecule modulators,
circadian rhythm, and various intracellular signaling pathways
(Vandebroek and Yasui, 2020; Hablitz et al., 2020). Experimental
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studies have shown that the loss of AQP4 polarization significantly
reduces CSF influx and impairs solute clearance (Kress et al., 2014;
Hablitz et al., 2020). Although AQP4 knockout is non-lethal, it
markedly disrupts glymphatic transport efficiency (Mestre et al.,
2018). Loss of AQP4 polarity has been implicated in Alzheimer’s
disease, post-stroke cognitive impairment, and POCD. Aging, chronic
inflammation, and neurodegeneration can disrupt perivascular
AQP4 localization, leading to neurotoxic protein accumulation
(e.g., Aβ, phosphorylated tau), neuroinflammation, and cognitive
decline. Clinically, impaired AQP4 polarization may represent a
shared pathological feature in populations at high risk for POCD,
including elderly individuals, those with chronic inflammation, or
sleep disorders. Thus, AQP4 polarity is not only a key anatomical
determinant of glymphatic efficacy but also a promising therapeutic
target for mitigating cognitive impairment.

3.2 Sleep: a physiological window for
glymphatic activation

Sleep—especially non-rapid eye movement slow-wave sleep—is
a critical period for glymphatic clearance (Xie et al., 2013; O’Gara
et al., 2021). During this phase, delta waves dominate the
electroencephalogram (EEG), accompanied by reduced
noradrenergic tone, astrocyte shrinkage, and expansion of the
extracellular space (ECS). These changes facilitate enhanced
CSF–ISF exchange and accelerate the clearance of neurotoxic
metabolites such as Aβ and phosphorylated tau (Hauglund et al.,
2025; Benveniste et al., 2019). Animal studies suggest that
glymphatic efficiency increases by up to 90% during natural sleep
or anesthesia, with ECS volume expanding by as much as 60% (Xie
et al., 2013; Voumvourakis et al., 2023). Clinically, CSF levels of Aβ
and tau peak before sleep and reach their lowest levels in the early
morning, supporting the notion of enhanced clearance during sleep
(Lucey et al., 2018). Advanced neuroimaging (e.g., DTI-ALPS index)
has revealed impaired glymphatic function and reduced CSF
clearance in individuals with sleep disturbances. These alterations
correlate with disrupted structure–function coupling and cognitive
deficits. In contrast, enhanced structure–function coupling and
ALPS indices are associated with preserved cognition in well-
rested individuals.

These findings suggest a pathological feedback loop linking sleep
impairment to cognitive dysfunction: sleep deprivation leads to
AQP4 depolarization, which impairs glymphatic clearance,
resulting in Aβ/p-tau accumulation, neuroinflammation, synaptic
dysfunction, and ultimately cognitive decline. This cascade may
underlie both POCD and neurodegenerative disorders such as
Alzheimer’s disease. In summary, sleep serves as a critical
window for brain waste clearance. Disruption of sleep quality or
architecture may be a key contributor to POCD pathogenesis.

3.3 Noradrenergic tone and EEG rhythms:
neuromodulatory drivers of
glymphatic function

The noradrenergic system, primarily driven by the locus
coeruleus, regulates arousal states and astrocytic physiology,

thus influencing glymphatic function. During the waking state,
elevated norepinephrine (NE) levels induce astrocytic swelling and
reduce ECS volume, impeding CSF–ISF exchange (Bordon, 2024).
In contrast, NE levels decline during non-rapid eye movement
sleep or anesthesia, facilitating astrocyte relaxation, ECS
expansion, and glymphatic flow (Persson et al., 2022; Hauglund
et al., 2025). This state corresponds to slow-wave EEG activity, a
hallmark of glymphatic activation. Melatonin, a circadian
hormone secreted at night, promotes slow-wave sleep, reduces
central NE levels, supports ECS expansion, and facilitates
glymphatic clearance. Additionally, it exerts anti-inflammatory
and antioxidant effects, helping to preserve AQP4 polarity and
astrocyte integrity. Together, these findings indicate that both
endogenous and pharmacological modulation of noradrenergic
tone—especially through interventions that enhance slow-wave
sleep—may offer effective strategies to support glymphatic
clearance and reduce POCD risk, particularly in vulnerable
populations.

3.4 Other mechanophysical regulators:
Hemodynamic and positional modulators of
glymphatic efficiency

Beyond molecular pathways, several mechanical and
physiological forces modulate glymphatic function. Arterial
pulsation, driven by cardiac and respiratory rhythms, serves as
a primary motive force for CSF influx along perivascular spaces
(Iliff et al., 2013; Feinberg and Mark, 1987; Rasmussen et al., 2022).
Reduced vascular compliance (e.g., in aging or atherosclerosis)
disrupts this pulsatility and compromises waste clearance
(Rasmussen et al., 2022). Cerebral hypoperfusion further
reduces CSF flow and promotes metabolite accumulation,
contributing to cognitive impairment. Additionally, intracranial
pressure fluctuations and body posture influence CSF–ISF
exchange, highlighting the importance of systemic and
positional factors in glymphatic transport. Recent research
indicates that synchronized delta oscillations during sleep
enhance CSF dynamics (Hablitz et al., 2019). Emerging non-
invasive interventions—such as gamma-frequency entrainment
and low-intensity ultrasound—have shown potential to
modulate glymphatic flow (Murdock et al., 2024; Xie et al.,
2024). Collectively, these mechanophysical forces interact with
molecular regulators to shape glymphatic efficiency under both
physiological and pathological conditions.

4 Dexmedetomidine and glymphatic
modulation: preclinical evidence

4.1 Pharmacological properties of
dexmedetomidine

Dex is a highly selective α2-adrenergic receptor agonist
widely used in clinical anesthesia for its sedative, analgesic,
and anxiolytic properties, as well as its ability to improve
perioperative recovery (Verret et al., 2024; Arcangeli et al.,
2009; Tan and Ho, 2010). Dex primarily exerts its sedative
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effects through inhibition of NE release in the locus coeruleus,
producing a state that closely resembles physiological non-REM
sleep without causing significant respiratory depression
(Huupponen et al., 2008). In addition to its sedative
properties, Dex exhibits potent anti-inflammatory effects. It
has been shown to reduce levels of proinflammatory cytokines
such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-
1β), and interleukin-6 (IL-6), thereby attenuating both systemic
and neuroinflammation induced by surgical trauma or
ischemia–reperfusion injury (Wang et al., 2022; Li et al., 2015;
Bao and Tang, 2020). Dex also confers neuroprotection by
inhibiting neuronal apoptosis, preserving the blood–brain
barrier, and reducing ischemic or surgery-related brain injury
(Cai et al., 2025; Gao et al., 2020; Li et al., 2008; Zhai et al., 2019;
Zhu et al., 2019). Together, these multifaceted pharmacological
actions make Dex a promising candidate for preventing POCD,
particularly via mechanisms involving glymphatic enhancement
(Figure 1).

4.2 Summary of key studies on glymphatic
modulation

Preclinical studies in recent years have provided compelling
evidence that Dex enhances glymphatic function (Table 1). In a
mouse model, Persson et al. reported that ketamine/
dexmedetomidine (K/Dex) significantly increased CSF influx and
improved metabolic waste clearance efficiency (Persson et al., 2024).
Additional studies have demonstrated that Dex restores polarized
AQP4 localization in astrocytic endfeet, facilitating CSF–ISF
exchange and glymphatic transport (Wang et al., 2024; Xie et al.,
2021). In models of lipopolysaccharide (LPS)-induced
neuroinflammation, Dex not only mitigated neuroinflammation
but also improved glymphatic clearance capacity (Zeng et al.,
2021). Mechanistically, Dex mimics natural non-rapid eye
movement sleep-like EEG activity and suppresses central
noradrenergic tone, creating an optimal environment for
glymphatic activation (Persson et al., 2022). Imaging studies
using MRI and diffusion tensor imaging–analysis along the
perivascular space (DTI–ALPS) further support these findings
(Hsu et al., 2023). After Dex administration, increased CSF flow
and improved structural integrity of glymphatic pathways were
observed (Persson et al., 2022). While indirect, these imaging-
based results strengthen the rationale for further mechanistic and
clinical investigations. Additionally, Dex has demonstrated
neuroprotective effects in models of stroke, hemorrhage, and
traumatic brain injury, where it reduces neuronal apoptosis,
suppresses inflammation, and improves behavioral outcomes.
These findings support the hypothesis that Dex enhances
glymphatic activity as part of its neuroprotective repertoire.

Although direct clinical studies on Dex and glymphatic function
are still lacking, systematic reviews and meta-analyses have
identified Dex as a potentially effective agent for POCD
prevention. Future studies incorporating dynamic CSF imaging,
ALPS index quantification, and biomarker
monitoring—combined with large-scale prospective trials—will be
crucial to establishing a definitive link between Dex and glymphatic
function in humans.

4.3 Overview of mechanistic diversity and
therapeutic implications

A growing body of preclinical research indicates that Dex exerts
glymphatic-supportive effects via multiple converging mechanisms.
These include enhancement of CSF–ISF exchange, restoration of
AQP4 polarity, suppression of neuroinflammation, and
improvement of cognitive outcomes. Notably, the effects of Dex
appear dose- and time-dependent (Yu et al., 2022). Several signaling
pathways have been implicated in Dex-mediated glymphatic
regulation. These include the PI3K/AKT/ΔFosB axis, the
σ1 receptor pathway, and the AKT/GSK-3β/CRMP2 cascade, all
of which influence AQP4 localization and astrocytic function.
Moreover, Dex-induced suppression of locus coeruleus activity
decreases NE release, facilitating astrocytic relaxation and
expansion of interstitial space—both essential for efficient
glymphatic flow and slow-wave EEG activity. Animal models
employed in these studies range from LPS-triggered
neuroinflammation and sevoflurane-induced glymphatic
dysfunction to POCD simulation. Despite heterogeneity in model
design, Dex dosage (typically 15–50 μg/kg), and route of
administration (intraperitoneal or intravenous), results
consistently demonstrate Dex-enhanced glymphatic flow and
neuroprotection. Collectively, these findings suggest that Dex

FIGURE 1
Dexmedetomidine promotes glymphatic function through
neural, inflammatory, and vascular pathways to reduce postoperative
cognitive dysfunction. Proposed mechanisms by which
dexmedetomidine enhances glymphatic function and mitigates
postoperative cognitive dysfunction (POCD). Dex suppresses locus
coeruleus–mediated noradrenaline release, induces slow-wave EEG
activity, reduces neuroinflammation, and restores AQP4 polarization
in astrocytes. These changes facilitate cerebrospinal fluid (CSF)
exchange, increase glymphatic flow, and promote clearance of
neurotoxic metabolites.
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promotes glymphatic clearance through both structural restoration
and functional modulation. These preclinical insights provide a
robust foundation for future clinical research into Dex as a
glymphatic-targeted perioperative neuroprotective agent.

5 Mechanisms of dexmedetomidine in
preventing POCD

5.1 Modulation of slow-wave EEG activity to
facilitate glymphatic clearance

Dex induces a sedative state that closely mimics non-rapid eye
movement sleep, characterized by increased slow-wave EEG activity
(0.5–4 Hz) (Nelson et al., 2003). These slow-wave oscillations are
strongly associated with enhanced CSF–ISF exchange and are
regarded as the electrophysiological basis for active glymphatic
clearance. In contrast, high-frequency EEG patterns during the
waking state (e.g., beta and gamma waves) are linked to
suppressed glymphatic transport. By inhibiting NE release from
the locus coeruleus and reducing central excitability, Dex enhances
slow-wave activity, optimizes the cerebral microenvironment, and
promotes glymphatic function.

5.2 Restoration of AQP4 polarity in
astrocytes

Dex may help restore the polarized expression of AQP4water
channels in astrocytic endfeet. In animal models of aging or brain
injury, Dex has been shown to reestablish AQP4 polarity, thereby
enhancing perivascular CSF transport and improving the clearance

of neurotoxic solutes (Wang et al., 2024). This mechanism is
particularly relevant because AQP4 depolarization is associated
with glymphatic dysfunction and is implicated in
neurodegenerative diseases such as Alzheimer’s disease, which
shares pathophysiological features with POCD (Rasmussen et al.,
2018; Peng et al., 2023).

5.3 Suppression of neuroinflammation and
structural preservation

Surgical trauma and anesthetic exposure can elicit systemic
inflammatory cascades that extend to the central nervous system,
resulting in neuroinflammation, blood–brain barrier disruption,
and impaired glymphatic transport. These processes promote
microglial and astrocytic activation, increase the permeability of
the blood–brain barrier, and lead to depolarization of AQP4, all of
which compromise the convective clearance of interstitial waste.
Dysregulated cytokine release, including elevated levels of tumor
necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and
interleukin-6 (IL-6), exacerbates neuronal injury and cognitive
impairment. Dex has been shown to exert potent anti-
inflammatory effects by inhibiting the nuclear factor-kappa B
(NF-κB) pathway and reducing the production of these
proinflammatory cytokines (Hu et al., 2022). Furthermore, Dex
attenuates the activation of microglia and astrocytes, thereby
dampening glial-driven neurotoxicity and preserving the
quiescent astrocytic phenotype necessary for glymphatic
function. By maintaining AQP4 polarization and reducing
blood–brain barrier permeability, Dex helps preserve the
structural integrity of the glymphatic pathway, supporting
efficient cerebrospinal fluid–interstitial fluid exchange. In

TABLE 1 Summary of animal studies evaluating the effects of dexmedetomidine on glymphatic function.

Author
(year)

Animal model Dex dose
& route

Mechanistic focus Glymphatic
outcome

Conclusion

Wang et al.
(2024)

Young mice (sevoflurane-
induced glymphatic dysfunction)

25 μg/kg, i.p. PI3K/AKT/ΔFosB/AQP4 ↑ CSF flow, ↑ AQP4 polarity Dex restored glymphatic
circulation via PI3K/AKT/AQP4.

Wang S. et al.
(2024)

C57BL/6 mice under sevoflurane
anesthesia

25 μg/kg, i.p. AQP4 depolarization,
CSF flow

↑ glymphatic perfusion, ↓
ΔFosB

Dex reversed anesthesia-induced
AQP4 mislocalization.

Xie et al. (2021) Aged mice (laparotomy-induced
POCD)

30 μg/kg, i.p. Microglia, AQP4, synapse
integrity

↓ inflammation, ↑ AQP4, ↑
cognition

Dex preserved AQP4 and reduced
POCD in aged mice.

Zeng et al.
(2021)

LPS-treated hippocampal
neurons

1 μM, in vitro AKT/GSK-3β/CRMP2, AQP4 ↑ CRMP2, ↑ neuronal
viability, ↑ AQP4

Dex activated CRMP2 signaling,
improved AQP4 integrity.

Persson et al.
(2024)

Mechanically ventilated rats 15 μg/kg/h, i.v. CSF responsiveness to CO2,
glymphatic flux

↑ glymphatic clearance
under Dex

Dex reduced CO2-linked
glymphatic reactivity.

Chen et al.
(2025)

Mice with collagenase-
induced ICH

30 μg/kg, i.p. ×
3 days

AQP4 activation, CSF tracer
clearance

↑ CSF tracer influx, ↑
AQP4 polarization

Dex restored post-ICH AQP4-
dependent clearance.

Zhu et al. (2019) LPS-induced neuroinflammatory
mouse model

25 μg/kg, i.p. JNK pathway, inflammation,
AQP4

↓ neuroinflammation, ↑
AQP4 integrity

Dex modulated JNK to preserve
AQP4 and glymphatic flow.

Zhai et al.
(2019)

Mice with focal cerebral ischemia 20 μg/kg, i.p. ×
3 days

σ1R-mediated
AQP4 polarization

↑ AQP4 localization, ↓
infarct volume

Dex activated σ1R to restore
AQP4 and protect brain tissue.

This table summarizes preclinical studies that investigated how dexmedetomidine (Dex) modulates glymphatic function through various pathways. Included models span sevoflurane-induced

glymphatic dysfunction, postoperative cognitive impairment, and inflammatory injury. Most studies demonstrate that Dex enhances glymphatic transport by restoring AQP4 polarity, reducing

neuroinflammatory signaling, or improving cerebrospinal fluid dynamics.
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animal models of surgical stress and neuroinflammation, Dex
treatment resulted in reduced perivascular inflammatory
infiltration, stabilized blood–brain barrier tight junction
proteins such as claudin-5 and occludin, and prevented
dislocation of AQP4 from astrocytic endfeet. These effects are
critical for sustaining glymphatic transport under perioperative
stress. Collectively, these findings suggest that the anti-
inflammatory and structural-preserving properties of Dex
constitute a central mechanism for its neuroprotective actions
and highlight its potential role in mitigating POCD via glymphatic
restoration.

5.4 Comparative advantages over other
pharmacological strategies

Melatonin and Dex share several glymphatic-enhancing
properties. Both agents promote slow-wave sleep, reduce
central NE tone, and exhibit anti-inflammatory and
antioxidant activities. These shared effects expand interstitial
space and enhance CSF–ISF exchange, suggesting that both
modulate glymphatic clearance via sleep-related mechanisms.
However, Dex offers distinct advantages in the perioperative
setting. As a potent α2-adrenergic agonist, Dex provides well-
defined sedative, anxiolytic, and analgesic effects, and more
directly suppresses locus coeruleus activity and NE release. In
preclinical studies, Dex more consistently restores AQP4 polarity
and enhances glymphatic CSF influx across various pathological
conditions. Sufentanil, a synthetic opioid frequently used for
perioperative analgesia, has been reported to reduce POCD
incidence, likely through its analgesic and sedative effects.
However, its impact on glymphatic function remains unclear.
Unlike Dex or melatonin, sufentanil does not target noradrenergic
signaling or astrocytic physiology and may disrupt sleep
architecture, depending on dose and administration route. In
summary, while melatonin and sufentanil offer partial
neuroprotective effects, Dex uniquely combines sedative
potency, central noradrenergic suppression, and glymphatic
facilitation. These integrated actions make Dex a promising
pharmacological candidate for POCD prevention through brain
clearance enhancement.

6 Discussion

Dex, a widely used perioperative sedative, has been shown in
multiple high-quality clinical trials to reduce the risk of POCD.
However, its precise neuroprotective mechanisms remain
incompletely understood, which limits the development of
mechanism-based clinical applications. Emerging preclinical
evidence suggests that, beyond its well-established anti-
inflammatory, antioxidant, and anti-apoptotic effects, Dex may
also enhance glymphatic function by promoting CSF flow and
metabolic waste clearance. This mechanism aligns with the
pathophysiological context of surgery-induced metabolic
disturbances and age-related cognitive vulnerability. Several
animal studies have demonstrated that Dex can restore
AQP4polarity, suppress central noradrenergic tone, and

increase slow-wave EEG activity—key features associated with
enhanced glymphatic clearance. However, it is important to note
that these findings are largely based on animal models, and direct
clinical validation is still lacking (Sun et al., 2024; Qian
et al., 2015).

There are several challenges in elucidating the relationship
between Dex and glymphatic function. First, reliable and
repeatable clinical tools for directly assessing glymphatic activity
are currently limited. Although MRI-based diffusion tensor imaging
along perivascular spaces (DTI–ALPS index) has been used as an
indirect proxy, its sensitivity and specificity are suboptimal (Li et al.,
2024). Second, Dex-related studies vary widely in dosing regimens,
routes of administration, and timing, making cross-study
comparisons difficult and limiting translational consistency.
Moreover, current research primarily focuses on
AQP4 expression and inflammatory pathways, while glymphatic
regulation is influenced by a broader range of factors—including
sleep architecture, cerebral perfusion, arterial pulsatility, neuronal
oscillations, and even external neuromodulation (e.g., gamma-
frequency entrainment). Whether Dex-induced slow-wave activity
represents the central mechanism for glymphatic enhancement
remains to be determined. Although Dex has shown promising
neuroprotective effects for POCD prevention in non-cardiac surgery
populations, its efficacy in cardiac surgery remains uncertain (Patel
et al., 2022; Zhuang et al., 2024). This discrepancy may reflect
differences in pathophysiological mechanisms across surgical
types or patient profiles, highlighting the need for stratified
studies. Furthermore, patients at highest risk for POCD—such as
the elderly or those with diminished cognitive reserve—may already
have impaired glymphatic function, making them both vulnerable
and potentially responsive to glymphatic-modulating interventions.
Evaluating Dex’s effects in these cognitive risk subgroups could
guide more personalized, precision-based perioperative care.

Despite its generally favorable safety profile, Dex is not without
limitations. As a potent α2-adrenergic receptor agonist, it can induce
dose-dependent hypotension and bradycardia, particularly in older
adults or those with pre-existing cardiovascular conditions. Over-
sedation and respiratory depression may also occur, especially when
used concomitantly with other sedatives. Therefore, Dex should be
administered at the lowest effective dose with careful titration, and
patients should be closely monitored for hemodynamic and
respiratory changes. Caution is also warranted in populations
such as patients with severe hepatic or renal impairment,
pregnant or lactating women, and individuals with significant
cardiac disease.

In conclusion, the hypothesis that Dex mitigates POCD by
enhancing glymphatic clearance offers a novel and promising
perspective for understanding POCD pathogenesis and
developing effective interventions. However, this concept is still
in its early translational stages. Future research should prioritize: (1)
developing sensitive and reliable imaging methods for glymphatic
assessment; (2) defining dose-, time-, and route-dependent effects of
Dex; (3) elucidating its multimodal mechanisms through integrated
analysis of EEG activity, perfusion, and inflammation; and (4)
conducting stratified clinical studies based on patients’ baseline
cognitive status. These efforts are crucial for advancing Dex as a
glymphatic-targeting neuroprotective agent and enabling precision
prevention of POCD.
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7 Conclusion

Dex, beyond its established anti-inflammatory and
neuroprotective properties, may mitigate POCD through
enhancement of glymphatic clearance. Preclinical studies have
highlighted its multifaceted effects, including the restoration of
AQP4polarity, modulation of EEG slow-wave activity, and
promotion of CSF dynamics. Despite these promising findings,
clinical evidence remains limited. Future research should
prioritize the development of advanced imaging tools,
optimization of dosing strategies, and identification of high-risk
populations to facilitate the effective clinical translation of
glymphatic-targeted neuroprotective interventions.
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