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The sodium-glucose cotransporter (SGLT)2 inhibitor empagliflozin (EMPA) is a
hypoglycemic drug for patients with type 2 diabetes mellitus and cardiovascular
disease. The mechanisms underlying the beneficial effects of EMPA in
counteracting Metabolic Associated Fatty Liver Disease (MAFLD) are poorly
understood. Our study aimed to evaluate the therapeutic mechanisms of
EMPA treatment (30 mg/kg/day in drinking water for 6 weeks) on hepatic
dysfunction observed in diabetic obese Zucker Diabetic Fatty (ZDF) rats. EMPA
activated hepatic insulin signaling, increasing the phosphorylation of insulin
receptor, AKT and AMP-activated protein kinase, and downregulated the
expression of gluconeogenesis-related genes (glucose-6-phosphatase and
phosphoenolpyruvate carboxykinase). In the liver of EMPA-treated rats, no
difference in SGLT2 and SGLT1 expression was found, while a significant
upregulation of GLUT2 protein levels suggested other converging
mechanisms on hepatoprotective effects of EMPA. Moreover, EMPA improved
hepatic lipid metabolism in ZDF rats, modulating key mediators of fatty acid
metabolism and catabolism (cluster of differentiation 36, forkhead box protein
O1, fatty acid binding protein 1) and mitochondrial function (uncoupling protein
2 and the mitochondrial transporter ATP-binding cassette 1). Then, we
demonstrated EMPA effect against hepatic inflammation and fibrosis,
associated with insulin resistance, and, for the first time, its potential as pro-
resolving agent increasing immune cell recruitment along with the induction of
resolvins (annexin A1 and IL-10). Taken together, our study provides new
perspectives for EMPA as a multifaceted approach to counteract MAFLD in
obesity and diabetes.
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1 Introduction

Obesity and type 2 diabetes mellitus (T2DM) are major public
health challenges and key drivers of metabolic dysfunction-
associated fatty liver disease (MAFLD) (Eslam et al., 2020).
MAFLD was recently introduced as a broader and clinically
relevant concept to replace non-alcoholic fatty liver disease
(NAFLD). Unlike NAFLD, MAFLD does not require the
exclusion of alcohol consumption or other liver diseases. Instead,
it is inclusion-based, meaning it is diagnosed when hepatic steatosis
is present along with at least one metabolic risk factor (e.g., obesity,
type 2 diabetes, or metabolic syndrome), better reflecting real-world
patient profiles. Insulin resistance (IR), lipotoxicity, and chronic
low-grade inflammation play critical roles in the progression of
MAFLD, increasing the risk of hepatic steatosis, fibrosis, and even
hepatocellular carcinoma (Mantovani and Dalbeni, 2021). Given the
rising prevalence of obesity-related liver disorders, identifying
effective pharmacological interventions with metabolic and
hepatoprotective properties is of paramount importance.

Empagliflozin (EMPA), a sodium-glucose cotransporter (SGLT)
2 inhibitor, is widely used as an anti-hyperglycemic agent. Large-
scale clinical trials have demonstrated a lower incidence of the
primary merged cardiovascular outcome and of death from any
cause when added to standard therapy in patients with T2DM at
high cardiovascular risk (Zinman et al., 2015). Beyond its canonical
role in glycemic control, experimental studies support the beneficial
effects of EMPA in liver of mice feeding a high fat diet, improving
lipogenesis, beta-oxidation, and endoplasmic reticulum stress
pathways (Petito-da-Silva et al., 2019). Preclinical and clinical
studies confirmed that SGLT2 inhibitors reduce hepatic steatosis,
fibrosis, and inflammation through lipid metabolism, enhance
mitochondrial function, and reduce endoplasmic reticulum stress
(Taheri et al., 2020; Sattar et al., 2021).

A pivotal step in the progression from simple steatosis to
MAFLD with clinically relevant outcomes is the persistence of
hepatic inflammation, namely, steatohepatitis, when steatosis is
associated with inflammatory cell infiltration and progressive
fibrosis (Loomba and Sanyal, 2013). This process is strongly
influenced by macrophage polarization. Evidence indicates that
chronic low-grade inflammation is a cause of hepatic and
systemic IR, in which tissue macrophages are central players (Lee
and Olefsky, 2021; Puschel et al., 2022). In the inflamed liver,
macrophages predominantly exhibit an M1 pro-inflammatory
phenotype, releasing cytokines such as tumor necrosis factor
(TNF)-α and interleukin (IL)-6, which contribute to hepatocyte
injury and fibrosis (Kazankov et al., 2019). Conversely,
M2 macrophages exhibit an anti-inflammatory and pro-resolving
phenotype, secreting cytokines such as interleukin (IL)-10 and
transforming growth factor (TGF)-β, promoting tissue repair and
fibrosis resolution (Wang et al., 2021). Promoting the shift of
macrophages from the pro-inflammatory M1 to the anti-
inflammatory M2 phenotype could be crucial for resolving
hepatic inflammation and preventing disease progression (Cheng
et al., 2021). Specialized pro-resolving mediators (SPMs) represent
an emerging class of endogenous molecules that actively drive the
resolution of inflammation. Resolvins, in particular, enhance
macrophage polarization toward the M2 phenotype, reduce
chronic inflammatory signaling, and promote tissue repair and

fibrosis resolution (Titos et al., 2011; Musso et al., 2018; Serhan
et al., 2018). Given the emerging evidence suggesting that
SGLT2 inhibitors can modulate inflammation and oxidative
stress (Winiarska et al., 2021; Schonberger and Tchorz, 2023;
Zheng et al., 2025), their potential role in macrophage
polarization and resolvin-mediated hepatic protection requires
further investigation.

The Zucker Diabetic Fatty (ZDF) rat, developing obesity,
hyperinsulinemia, hyperglycemia, IR, and hyperlipidemia, is a
valuable animal model for studying key aspects of human
metabolic syndrome and evaluating the efficacy and mechanisms
of potential therapeutic agents (Forcheron et al., 2009; Wang et al.,
2014; Zhou et al., 2020).

Here, we investigated the hepatoprotective effects of EMPA in
ZDF rats, focusing on its ability to improve hepatic glucose and lipid
metabolism and to promote inflammation resolution through
endogenous pro-resolving mediators. Our findings provide novel
insights into the therapeutic potential of EMPA for the treatment
of MAFLD.

2 Materials and methods

2.1 Animal care

ZDF rats (ZDF-Leprfa/fa) are used as a model for early-stage
T2DM, characterized by high insulin levels and glucose intolerance
in the liver and skeletal muscle (Shiota and Printz, 2012). Male
ZDF rats weighing between 200 and 250 g were sourced from
Charles River Laboratories (United States). To induce
programmed and consistent development of T2DM, the rats
were fed ad libitum with the diabetogenic Formulab 5008 diet
(LabDiet, United States) following the supplier’s instructions,
starting at 7 weeks of age. Characteristics of the male ZDF rat
maintained on Formulab 5008 diet include hyperinsulinemia and
hyperglycemia, T2DM, insulin resistance and obesity. The animals
were housed in the Animal House of the CiMUS (Centro Singular
de Investigación en Medicina Molecular y Enfermedades Crónicas,
Santiago de Compostela, Spain) under controlled conditions,
including a room temperature of 22 °C ± 2 °C, relative humidity
of 40%–50%, and a 12-h light/12-h dark cycle, with unrestricted
access to chow and water. This work is a complementary
examination of the hepatic effects of empagliflozin from our
previous studies in heart, liver and adipose tissue (Aragon-
Herrera et al., 2019; Aragon-Herrera et al., 2022; Aragon-
Herrera et al., 2023).

2.2 Empagliflozin in vivo treatment

When the ZDF rats, fed a diabetogenic diet, reached fasting
glucose levels of 350.75 ± 18.59 mg/dL at 12 weeks of age, they were
randomly divided into two groups: a control group receiving
vehicle (mineral drinking water, ZDF, n = 6) and a treated
group receiving 30 mg/kg/day of EMPA (Boehringer Ingelheim
Pharma GmbH and Co. KG, DEU) in the drinking water (ZDF +
EMPA, n = 6) (Aragon-Herrera et al., 2019). After 6 weeks of
treatment, blood samples were collected from all experimental
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groups. Then, the animals were euthanized, and the livers were
collected between 9:00 and 11:00 a.m., quickly frozen in liquid
nitrogen, and stored at −80 °C. Livers employed in this study were
the same employed in our previous research at the hepatic level
(Aragon-Herrera et al., 2022).

2.3 Biochemical determinations

Fasting glucose was measured employing a glucometer GlucoDr
auto™ (All Medicus Co. Ltd. KOR). Plasma was obtained by
centrifugation at 2000 rpm for 10 min at room temperature and
subsequently stored at −80 °C until analysis. Plasma insulin
concentration was determined using the Ultra Sensitive Rat
Insulin ELISA Kit (#90060) (Crystal Chem, NL) following the
manufacturer’s instructions. The Homeostasis Model Assessment
of Insulin Resistance (HOMA-IR) was calculated using the formula:
HOMA-IR = [fasting glucose (mmol/L) × fasting insulin
(μU/mL)]/22.

2.4 Western blot analysis

Total protein lysates from liver tissues were processed by SDS-
PAGE, as previously described (Pirozzi et al., 2023). Proteins were
transferred onto membranes using the Trans-Blot Turbo Transfer
System (Bio-Rad Laboratories, Segrate, Milan, Italy) for 60 min at
240 mA at room temperature. Membranes were blocked for 60 min
at room temperature in 1X phosphate-buffered saline (PBS)
containing 5% non-fat dry milk. Subsequently, membranes were
incubated with the following primary antibodies: anti-phospho-
insulin receptor (InsR)β mouse polyclonal antibody (#44809G,
dilution 1:1000) (Thermo Fisher Scientific Inc., Segrate, Milan,
Italy), anti-InsRβ rabbit monoclonal antibody (#3025, dilution 1:
1000), anti-phospho-AKT (Ser473) rabbit monoclonal antibody
(#4060, dilution 1:1000), anti-AKT (pan) mouse monoclonal
antibody (#4691, dilution 1:1000), anti-phospho-AMPKα rabbit
monoclonal antibody (#2535, dilution 1:1000), and anti-AMPKα
mouse monoclonal antibody (#2793, dilution 1:1000) (Cell
Signaling Technology, Inc., Beverly, MA, United States), anti-
GLUT2 mouse monoclonal antibody (#sc518022, dilution 1:
500), anti-SGLT2 (#sc-393350, dilution 1:500) (Santa Cruz
Biotechnology, Heidelberg, Germany), and anti-SLC5A1
(SGLT1, #DFT2022, dilution 1:500) (Affinity Biosciences).
GAPDH rabbit polyclonal antibody (MAB374, dilution 1:8000)
(Merk Life Science S. r.l., Milan, Italy) was used as housekeeping.
Signal detection was performed using an enhanced
chemiluminescence (ECL) system (Pierce, Thermo Fisher
Scientific, #32109, Rodano (MI), Italy) and visualized with the
ChemiDoc Imaging System (#12003153, Bio-Rad Laboratories,
Segrate, Milan, Italy).

2.5 Semi-quantitative real-time PCR analysis

Total RNA from livers was extracted using the PureZOL™
RNA Isolation Reagent (#7326890, Bio-Rad Laboratories, Segrate,
Milan, Italy) according to the protocol provided by the RNA

extraction kit (#740955.250, NucleoSpin®, Macherey-Nagel
GmbH and Co., Düren, Germany). cDNA was synthesized from
8 μg of total RNA using the High-Capacity cDNA Reverse
Transcription Kit (#4374966, Applied Biosystems, Foster City,
CA, United States).

RT-PCR was performed using a Bio-Rad CFX96 Connect Real-
Time PCR System and its associated software (Bio-Rad Laboratories,
Milan, Italy), under conditions previously described (Lama et al.,
2021). Each reaction contained 500 ng of cDNA in 2X QuantiTect
SYBR Green PCRMaster Mix (# 204145, Qiagen, Hilden, Germany)
and specific primer pairs for amplifying the following genes:
Interleukin (Il)-1β (Il1b, QT00181657), tumor necrosis factor
(TNF)-α (Tnf, QT00178717), Il-10 (Il10, QT00177618),
peroxisome proliferator-activated receptor (PPAR)-γ (Pparg,
QT00186172), PPAR-γ coactivator (PGC)-1α (Ppargc1a,
QT00189196), Forkhead box protein O1 (FOXO-1) (Foxo1,
QT00446943), sterol regulatory element binding transcription
factor (SREBP)-1 (Srebf1, QT00432684), Fatty acid binding
protein (FABP)-1 (Fabp1, QT00188783), ATP binding cassette
subfamily G member (ABCG)-1 (Abcg1, QT00176533), glucose-
6-phosphatase (G6P) (G6pc, QT00185948), phospho-enol pyruvate
carboxykinase (PCK) (Pck1, QT01619975), transforming growth
factor (TGF)β (Tgfb1, QT00187796), type I collagen alpha 1 chain
(Col1a1, QT01081059), type III collagen alpha 1 chain (Col3a1,
QT01083537), uncoupling protein (UCP)-2 (Ucp2, QT00186508),
Il-34 (Il34, QT01574601), T Cell Immunoglobulin And Mucin
Domain Containing (TIMD)4 (Timd4, QT02546803), Cluster of
differentiation (CD) 163 (Cd163, QT02542967), annexin A (Anxa1,
QT00179361), Integrin subunit alpha X (ITGAX) (Itgax,
QT00542668), chemokine (C-C motif) ligand 2 also referred as
monocyte chemoattractant protein (MCP)1 (Ccl2, QT00183253),
Solute Carrier Family 5 Member 1 (SGLT1) (Slc5a1, QT00177247),
Solute Carrier Family 5 Member 2 (SGLT2) (Slc5a2, QT00180852)
(Qiagen, Hilden, Germany), in a final volume of 50 μL. The relative
mRNA levels were normalized to Actin (Actb, QT00193473)
(Qiagen, Hilden, Germany) as the housekeeping gene, and the
data were analyzed using the 2−ΔΔCT method.

2.6 Statistical analysis

All data are presented as mean value ± Standard Error of the
Mean (S.E.M.). Statistical analysis was performed by Student’s t-test.
Differences between groups were considered significant at values of
p < 0.05. Analyses were performed using GraphPad Prism 10
(GraphPad Software, San Diego, CA, United States).

3 Results

3.1 EMPA improves insulin resistance and
hepatic insulin sensitivity in ZDF rats

The beneficial effect of EMPA in limiting IR in diabetic obese
rats, in our experimental conditions (Figure 1A), is primarily shown
by the reduction of fasting glucose (Figure 1B) and the increase of
insulinemia (Figure 1C), and confirmed by reduction of HOMA-IR
index (Figure 1D).
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In the liver, EMPA treatment improved insulin sensitivity by
activating key pathways of the insulin signaling. Indeed, EMPA
increased the phosphorylation of InsR (Figure 2A) and activated
the downstream AKT pathway (Figure 2B). Concomitantly,
EMPA also increased AMPK phosphorylation in the liver of
ZDF rats (Figure 2C). This kinase represents a key regulator of
cellular and tissue energy homeostasis, involved in both lipid and
glucose metabolism, restoring liver insulin sensitivity. Finally,
EMPA significantly reduced G6P and PEPCK gene expression,
two crucial hepatic enzymes involved in gluconeogenesis
(Figures 2D,E).

3.2 Effect of EMPA on hepatic SGLTs and
GLUT2 expression in ZDF animals

The mRNA and protein expression of co-transporter
SGLT1 and SGLT2 in the liver of ZDF rats treated or not with
EMPA were examined. No difference was found in the
transcriptional and protein expression of both SGLT2 (Figures
3A,B) and SGLT1 (Figures 3C,D) between EMPA-treated and
untreated rats. Notably, although EMPA did not modulate the
expression of SGLT co-transporters, drug treatment increased
hepatic GLUT2 protein expression (Figure 5E) suggesting a

regulatory role of EMPA on insulin-mediated glucose transport
in the liver, that is consistent with its hypoglycemic effect.

3.3 EMPA ameliorated lipid metabolism and
mitochondrial function altered in ZDF rats

EMPA treatment counteracted lipid dysmetabolism of ZDF rats.
It reduced the gene expression of CD36 and FoxO1, two key markers
of steatosis involved in de novo lipogenesis (Figures 4A,B), and
increased FABP1, a regulator of fatty acid trafficking contributing to
prevent hepatic lipotoxicity (Figure 4C). No change in the
transcription of SREBP-1c between experimental groups was
found (Figure 4D). Furthermore, EMPA significantly increased
the expression of hepatic PPARγ and its coactivator PGC1α
(Figures 4E,F), as well as UCP2 and ABCG1 (Figures 4G,H), all
regulatory components of mitochondrial energetic adaptations.

3.4 Hepatic anti-inflammatory and pro-
resolving effects of EMPA in ZDF rats

EMPA showed beneficial effect against the hepatic
inflammation mainly associated with IR and concurrent

FIGURE 1
Effects of EMPA on hyperglycemia and insulin resistance in ZDF rats. Schematic representation of the experimental design created in BioRender
https://BioRender.com/qn3bexw (A), Fasting glucose (B) and insulin (C) levels were measured in the plasma of all mice. Insulin resistance was evaluated
ex vivo by HOMA-IR index (D) (n = 4-5 per group). Data are presented as mean ± S.E.M. *p < 0.05, **p < 0.01, and ****p < 0.0001 vs. ZDF group.
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hyperglycemia characterizing this animal model. Specifically,
EMPA markedly reduced the gene expression of pro-
inflammatory mediators, such as TNF-α and IL-1β
(Figure 5A), and increased the expression of IL-34, TIMD4,
and CD163 (Figure 5A), all markers of M2 macrophage
polarization. Moreover, EMPA treatment limited the hepatic
fibrotic progression in diabetic obese rats, reducing
significantly the mRNAs of pro-fibrotic factors such as TGFβ
and type III collagen, without modifying type I collagen
(Figure 5B). Notably, EMPA exerted a pro-resolving effect as
demonstrated by the significant increase in hepatic monocyte
recruitment (MCP-1 mRNA) (Figure 5C) and the so-called
resolvin AnxA1, as well as the anti-inflammatory cytokine IL-
10 (Figure 5C). AnxA1 is an important factor involved in the
resolution of inflammation in different disorders including
diabetes, obesity and steatohepatitis. Finally, a trend of change
was observed for the chemokine Cd11c (or Itgax) (Figure 5C).

4 Discussion

The present study provides novel insights into the
hepatoprotective effects of EMPA in the Zucker obese rat as
well-established and translationally relevant preclinical model
for investigating MAFLD-related hepatic diseases (Wang et al.,
2014; Zhou et al., 2020; Tovar et al., 2024). ZDF rats exhibit key
metabolic features of human T2DM, such as hyperinsulinemia,
glucose intolerance, and lipid dysregulation, making them an
ideal model for studying the impact of pharmacological
interventions on liver dysfunction (Shiota and Printz, 2012).
Furthermore, the chronic inflammatory state observed in this

model closely resembles the pathophysiology of human MAFLD,
reinforcing its utility in assessing the anti-inflammatory and pro-
resolving effects of EMPA.

A key finding of our study is that EMPA treatment enhances
insulin sensitivity of ZDF rats, as shown by the reduction of HOMA-
IR index and the increased hepatic phosphorylation of the insulin
receptor and AKT along with AMPK activation. The increase in the
hepatic pAKT/AKT ratio observed after EMPA treatment reflects
the restoration of insulin signal transduction in ZDF rats. This effect
is likely mediated by enhanced insulin receptor phosphorylation,
reduced gluconeogenic drive, alleviation of lipotoxic and
inflammatory stress, and the upregulation of GLUT2, which
together favor AKT activation. These findings are consistent with
previous reports showing that SGLT2 inhibitors re-establish hepatic
AKT signaling and improve insulin sensitivity in metabolic disease
models and patients (Xu et al., 2017; Taheri et al., 2020; Sattar et al.,
2021; Yu et al., 2022).

Preclinical studies reported that EMPA treatment protects
against hepatic steatosis and IR by increasing energy
expenditure, adipose tissue browning and improving muscle
mitochondrial morphology or favorably modulating intestinal
bacteria composition in nutritional rodent models
independently of diet type (Xu et al., 2019; Radlinger et al.,
2023; Huang et al., 2024). In the liver, insulin stimulates
aerobic and anaerobic glucose metabolism and its storage as
glycogen, inhibits glucose production directly by inactivating
glycogen phosphorylase and by suppressing gluconeogenic
enzymes (Puschel et al., 2022). Here, EMPA reduced G6P and
PEPCK transcription, two crucial hepatic enzymes involved in
gluconeogenesis, undoubtedly linked to the improvement of
insulin sensitivity in liver (Yu et al., 2021; Tan et al., 2025).

FIGURE 2
Impact of EMPA on hepatic insulin signaling in diabetic obese rats. Western blot images showing the phosphorylation levels of InsR (A), AKT (B), and
AMPK (C) in the liver. HepaticmRNA expression levels ofG6pc (D) and Pck1 (E)were quantified by RT-PCR. Data (n = 6 per group) are presented asmean±
S.E.M. *p < 0.05, **p < 0.01, and ****p < 0.0001 vs. ZDF group.
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These findings align with previous data in db/db mice, where
EMPA maintained glucose homeostasis by suppressing
gluconeogenesis and enhancing glycogenesis via activation of
AMPK/CREB/GSK3β signaling pathway (Yu et al., 2022).

An additional and noteworthy finding was the modulation of
hepatic glucose transporters following EMPA treatment.
Although EMPA is primarily known as a selective renal

SGLT2 inhibitor, our data revealed no significant changes in
hepatic SGLT2 or SGLT1 mRNA and protein expression between
EMPA-treated and untreated Zucker rats. Interestingly, this lack
of change was accompanied by a significant upregulation of
GLUT2 protein levels in the liver of EMPA-treated animals.
Our observations imply a potential regulatory effect of EMPA
on insulin-mediated glucose transport in hepatocytes, consistent

FIGURE 3
EMPA modulation of glucose transporters in the liver of treated animals. Hepatic gene expression of Slc5a2 (SGLT2) (A) and Slc5a1 (SGLT1) (C).
Immunoblots of hepatic protein levels of SGLT2 (B) and SGLT1 (D), and GLUT2 (E) in mice. Data (n = 6 per group) are presented as mean ± S.E.M. *p <
0.05 vs. ZDF group.
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with its insulin-sensitizing and hypoglycemic effects.
Interestingly, the same upregulation of GLUT2 by EMPA was
found in pancreatic β-cells (Guler et al., 2023). While the
underlying mechanisms of this selective glucose transporter
modulation are yet to be fully understood, our findings
suggest that EMPA modulates hepatic glucose metabolism
through pathways that go beyond its established glycosuric
action, highlighting its potential as a multifaceted regulator of
glucose homeostasis.

Here, beyond glucose metabolism, EMPA positively modulates
hepatic lipid homeostasis and markers of mitochondrial function.
Indeed, EMPA treatment was associated with reduced expression of
CD36 and FoxO1, two key regulators of hepatic steatosis and lipogenesis
(Hu et al., 2024). Concurrently, it enhanced the expression of FABP1,
PPAR-γ, and its coactivator PGC-1α, indicating a shift toward enhanced
fatty acid oxidation and improved mitochondrial energetic adaptation.
This metabolic reprogramming was further supported by the
upregulation of UCP2 and ABCG1, which play critical roles in
mitochondrial function and lipid metabolism (Dikalov et al., 2024).
Other experimental and clinical studies have similarly reported that
SGLT2 inhibitors reduced hepatic steatosis and improved energy
homeostasis by reducing lipid accumulation and enhancing
mitochondrial efficiency in metabolic disorders (Jojima et al., 2016;
Szekeres et al., 2021; Wei et al., 2021; Androutsakos et al., 2022; Luna-
Marco et al., 2024). Notably, the unchanged SREBP1 transcription in
liver was consistent with the unmodified cholesterol level following
EMPA treatment in this animal model, as previously shown (Aragon-
Herrera et al., 2019). Furthermore, our previous data demonstrated that
EMPA modified the hepatic metabolome of ZDF rats towards a
protective profile by modulating other types of lipids (i.e., increased
monounsaturated and polyunsaturated glycerides, phosphatidylcholines,

phosphatidylethanolamines, lysophosphatidylinositols and
lysophosphatidylcholines) (Aragon-Herrera et al., 2022). Consistently,
other authors described that EMPA affects many upregulated and
downregulated genes, closely related to hepatic glucose and lipid
metabolism, in rodent models of T2DM and NAFLD, by performing
RNA-sequencing in liver (Lv et al., 2020; Ma et al., 2021).

Recent studies further support the hepatoprotective effect of
EMPA protecting against bile duct ligation-induced liver injury in
rats through its antioxidant and anti-inflammatory properties
(Shakerinasab et al., 2022). Additionally, EMPA promotes
autophagy, reduces endoplasmic reticulum stress, and inhibits
hepatocyte apoptosis, slowing the progression of NAFLD in mice
(Nasiri-Ansari et al., 2021).

In the liver of EMPA-treated rats, we observed a significant
reduction in pro-inflammatory cytokines TNF-α and IL-1β,
accompanied by increased expression of M2 macrophage markers
such as IL-34, TIMD4, and CD163. These findings highlight EMPA’s
capability tomodulate hepatic immune responses by promoting a shift
from pro-inflammatory M1 to anti-inflammatory M2 macrophages.

Similar effects have been observed in other studies investigating the
immunomodulatory properties of EMPA, where it has been shown to
modulate macrophage polarization and reduce inflammation in other
tissues (Xu et al., 2017; Lu et al., 2022; Xie et al., 2022). Indeed, IL-34 has
been implicated in obesity, diabetes and their related disorders including
inflammation and IR, contributing to macrophage differentiation and
inflammatory response regulation in metabolic tissues, including the
liver (Al-Shaebi et al., 2020), and potentially facilitating tissue repair
(Chang et al., 2014; Lelios et al., 2020). Moreover, TIMD4 has been
associated with enhanced efferocytosis and anti-inflammatory
macrophage polarization, which are crucial for resolving obesity-
associated chronic inflammation and MASH (Guha Ray et al., 2023;

FIGURE 4
Effects of EMPA treatment on hepatic lipid metabolism of ZDF rats. Evaluation of hepatic mRNA expression levels of Cd36 (A), Foxo1 (B), Fabp1 (C),
and Srebf1 (D), quantified by RT-PCR. mRNA levels of mitochondrial biogenesis and function markers Pparg (E), Ppargc1a (F), Ucp2 (G), and Abcg1 (H)
were also assessed. Data (n = 6 per group) are presented as mean ± S.E.M. *p < 0.05 and **p < 0.01 vs. ZDF group.
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Cao et al., 2024). Meanwhile, CD163, a scavenger receptor primarily
expressed on M2 macrophages, has been linked to the resolution of
inflammation and metabolic homeostasis (Skytthe et al., 2020).
Increased CD163 expression in metabolic tissues has been shown to
correlate with improved insulin sensitivity and reduced systemic
inflammation in obese animals and patients with MAFLD (Rosso
et al., 2019; Schleh et al., 2024). The upregulation of IL-34, TIMD4,

and CD163 by EMPA in ZDF rats may influence immune cell
recruitment and function, adding another layer to its
immunomodulatory properties. Overall, these data indicate that
EMPA fosters an anti-inflammatory hepatic microenvironment,
which is crucial for resolving chronic inflammation and preventing
the progression of MAFLD into fibrosis (Tacke and Zimmermann,
2014; Kazankov et al., 2019).

FIGURE 5
Anti-inflammatory and pro-resolving actions of EMPA in the liver of ZDF rats. RT-PCR analysis of Il1b, Tnfa, Il34, Timd4, Cd163 (A)mRNA expression
in liver tissue. mRNA levels of fibrotic genes Tgfb, Col1a1, and Col3a1 (B), as well as pro-resolving factors Ccl2, Anxa1, Il10, and Itgax (C) were also
evaluated. Data (n = 6 per group) are presented as mean ± S.E.M. *p < 0.05 and ***p < 0.001 vs. ZDF group.
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Consistently, we observed a significant hepatic antifibrotic effect
of EMPA, evidenced by reduced levels of TGF-β and type III
collagen, confirming previous and recent data from metabolic
and/or inflammatory animal models (Abdalla et al., 2023;
Elseweidy et al., 2024).

A particularly compelling aspect of our study is the identification
of EMPA as a pro-resolving agent in hepatic inflammation. Notably,
EMPA treatment led to increased expression of IL-10 and AnxA1,
two key mediators of the resolution phase of inflammation and
tissue repair (Locatelli et al., 2014; Lurje et al., 2023). These
molecules play central roles in dampening chronic inflammation
and restoring tissue homeostasis in obesity, diabetes, and other
inflammation-driven disorders (Sugimoto et al., 2016; Pietrani et al.,
2018; Pitchai et al., 2024). Indeed, IL-10 is a potent anti-
inflammatory cytokine known to suppress chronic inflammatory
responses and promote tissue repair in metabolic diseases. It
improves insulin sensitivity by reducing the production of pro-
inflammatory cytokines and limiting macrophage infiltration in
adipose tissue, liver, and skeletal muscle (Cintra et al., 2008;
Hong et al., 2009; Toita et al., 2016).

Similarly, AnxA1 is a pivotal mediator in the resolution of
inflammation, with growing evidence supporting its role in
obesity-related IR and MASH (Locatelli et al., 2014; Pietrani
et al., 2018). AnxA1 exerts protective effects by inhibiting pro-
inflammatory signaling pathways, enhancing macrophage
polarization towards the anti-inflammatory M2 phenotype, and
mitigating oxidative stress in metabolic tissues (Pietrani et al., 2018).

Our findings reinforce the emerging hypothesis that EMPA,
beyond its glucose-lowering effects, actively plays an active role in
restoring immune homeostasis within the liver. By modulating
macrophage polarization and enhancing specialized pro-resolving
mediators, EMPA engages a distinct pro-resolving mechanism that
complements its glucose-lowering action. While other oral
hypoglycemic agents, such as metformin, exert anti-inflammatory
effects primarily via AMPK activation and NF-κB signaling
inhibition (Pantazopoulos et al., 2025), EMPA appears to actively
promote immune resolution and tissue repair.

5 Conclusion

Taken together, our findings provide compelling evidence that
EMPA exerts hepatoprotective effects in the context of metabolic
syndrome by improving insulin sensitivity, restoring lipid
metabolism, enhancing mitochondrial function, and promoting
the resolution of inflammation. Through these coordinated
actions, EMPA disrupts the vicious cycle triggered by pro-
inflammatory macrophage activation, tissue IR and
hyperinsulinemia, which are interconnected processes that sustain
and amplify metabolic and hepatic dysfunction.

Based on its distinct immunometabolic profile, EMPA should be
recognized as a pro-resolving agent in hepatic inflammation, adding
a novel dimension to its pharmacological action and positioning it as
a promising therapeutic candidate for inflammatory liver diseases
associated with metabolic dysfunction. Future studies are needed to
elucidate the translational relevance of these findings in clinical
MAFLD settings. Furthermore, redefining MAFLD as a systemic
metabolic disorder rather than a liver-centric condition, and

focusing on novel multifunctional metabolic therapies, such as
EMPA, may result more effective in halting MAFLD progression
and associated complications.
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