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Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver
disorder worldwide and is also a significant risk factor for triggering non-alcoholic
steatohepatitis (NASH), hepatic fibrosis, and liver cirrhosis. Disorders in the
hepatic immune system constitute one of the key drivers of NAFLD
progression; thus, targeting immune dysregulation may represent an effective
strategy to delay or reverse NAFLD advancement. Meanwhile, gut microbiota
(GM) and its metabolites directly influence liver immune responses throughthe
“Gut-Liver Axis.” Dysbiosis of the GM triggers damage to the intestinal mucosal
barrier. Subsequently, substantial bacterial metabolites derived from GM can
induce overactivation of the hepatic immune response, thereby driving NAFLD
progression. Thus, targeted intervention in the GM-immune response axis
represents an effective therapeutic approach against NAFLD advancement.
Numerous current studies indicate that botanical drugs and their metabolites
can counteract NAFLD progression by intervening in GM and its metabolites to
regulate hepatic immune imbalance. This article reviews the roles of immune
cells, GM, and their metabolites in NAFLD development, while exploring the
targets and/or pathways through which botanical drugs and their metabolites
modulate GM and hepatic immune responses. This aims to provide a foundation
for utilizing botanical drugs as natural adjuvants to address immune dysregulation
during NAFLD treatment.
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1 Introduction

NAFLD is a highly prevalent chronic progressive liver disease
(Diehl and Day, 2017). It typically begins as simple hepatic steatosis,
which can progress to NASH, liver fibrosis, cirrhosis, and eventually
hepatocellular carcinoma (HCC). Immune responses not only
determine the progression from NAFLD to NASH/liver fibrosis
(Deng et al., 2022), but the retention and recruitment of immune
cells within the liver also activate hepatic stellate cells (HSCs),
thereby driving the development of cirrhosis and even HCC
(Loomba et al., 2021). Therefore, modulating immune responses
represents a promising strategy for mitigating NAFLD progression
(Martínez-Chantar et al., 2021). On the other hand, there exists
extensive crosstalk between the gut and the liver, which is referred to
as the “gut–liver axis” (Tilg et al., 2022). The anatomical and
functional connections between the gut and the liver make this
axis a crucial pathway for bidirectional communication between the
GM and the liver (Wang R. et al., 2021). As shown in Figure 1. A
balanced GM and intestinal barrier integrity are essential not only
for maintaining the homeostasis of the gut–liver axis (Schnabl,

2013), but also for ensuring hepatic immune stability in the host
(Wang J. et al., 2023). Disruption of intestinal homeostasis can alter
the immune status of the liver. Dysbiosis of the GM can compromise
the intestinal mucosal barrier. Microbial components may enter the
systemic circulation via a impaired intestinal barrier in the form of
extracellular vesicles (EVs), and bind to pathogen recognition
receptors (PRRs) in the liver as pathogen-associated molecular
patterns (PAMPs) (Wang R. et al., 2021). This interaction leads
to overactivation of immune cells, exacerbation of hepatic
inflammation, and stimulation of HSCs, thereby promoting the
development of liver fibrosis (Vajro et al., 2013). Additionally,
metabolites derived from GM can act as damage-associated
molecular patterns (DAMPs) by binding to PRRs on the surface
of liver cells such as Kupffer cells (KCs), liver sinusoidal endothelial
cells (LSECs), and cholangiocytes, thereby inducing hepatic immune
responses and aggravating inflammatory liver injury (Wang R. et al.,
2021). Thus, the GM can modulate liver immunity via the gut–liver
axis, thereby influencing the progression of NAFLD.

The pathological mechanism of NAFLD is highly complex,
making single-target therapies largely ineffective. To date, only

FIGURE 1
Immune status of the liver in a healthy condition. The liver lobules, composed of hepatocytes, are the primary structural units of the liver. The central
vein connects to the hepatic artery and the portal vein. Bile ducts transport bile secreted by hepatocytes into the intestines. The liver contains a large
number of immune cells, with the hepatic sinusoids being the primary region for their distribution. These include NK cells, LSEC, KCs, CD4+ T cells, DCs,
and iNKT cells. Among these, KCs, iNKT cells, and CD8+ T cells are highly enriched in the portal vein region. KCs serve as the cornerstone of liver
immunity and are closely connected to LSEC. HSCs primarily reside in the narrow Disse spaces between LSEC and hepatocytes. LCMs are a recently
discovered population of macrophages in the liver, primarily distributed in the liver capsule (Glisson’s capsule). Under physiological conditions, immune
cells maintain a highly organized dynamic equilibrium, simultaneously sustaining basal surveillance against pathogens while avoiding excessive
inflammatory responses to harmless antigens from the intestine. KCs, Kupffer Cells; LSECs, Liver Sinusoidal Endothelial Cells; DCs, Dendritic Cells; HSCs,
Hepatic Stellate Cells; NK cell, Natural Killer Cell; CD4+ T, CD4-Positive T Lymphocyte; CD8+ T, CD8-Positive T Lymphocyte; LCMs, Liver Capsule
Macrophages.
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Resmetirom has been approved for treating NASH patients with
moderate hepatic fibrosis (F2~F3 stages). Botanical drugs—natural
resources containing multiple bioactive compounds—possess broad
pharmacological actions, low toxicity, and high safety profiles,
demonstrating excellent potential for treating chronic progressive
diseases. Currently, botanical drugs have emerged as significant
clinical agents (Hu et al., 2023), attracting considerable research
attention. A growing body of studies (Che et al., 2022; Zhu et al.,
2023) confirms that botanical drugs can repair damaged intestinal
barriers, promote structural remodeling of GM beneficial to host
health, alter the production of GM metabolites, and consequently
regulate hepatic immune responses. Furthermore, botanical drugs
modulate autophagy to promote apoptosis (Niazpour and
Meshkani, 2025), inhibit HSC activation and hepatocyte
apoptosis to counteract hepatic fibrosis (Wang et al., 2024b), and
activate SIRT1 to reduce lipid accumulation and ferroptosis (Liu Y.
et al., 2025), and other mechanisms to inhibit NAFLD progression.
This also reveals a novel therapeutic strategy for NAFLD. Building

upon this foundation, this review synthesizes current research on
botanical drugs intervening in NAFLD development through the
GM-liver immune axis, thereby providing theoretical support and
clinical references for future botanical drug-based NAFLD
interventions.

2 Immune cells and NAFLD

As one of the core organs for immune regulation, the liver
harbors abundant immune cells that participate in immune
responses (Peiseler et al., 2022). Under immune homeostasis,
immune cells disperse throughout the liver to expel toxic
substances while phagocytosing and eliminating pathogens
(Bogdanos et al., 2013). Translocation of gut-derived immune
signals to extraintestinal sites triggers hyperactivation of the
immune system (Powell et al., 2021), promoting KCs activation
in the liver and recruitment of circulatory macrophages to hepatic

FIGURE 2
Imbalance in the liver’s immune environment can lead to liver cell death and liver fibrosis, further exacerbating liver damage. In the early stages of
NASH, neutrophils become enriched, and neutrophils exacerbate liver inflammation and liver damage by secreting NETs or through NETosis. cDC1s are
an important functional subpopulation of DCs, and their numbers significantly increase in the NASH stage, thereby exacerbating liver immune responses
and liver damage. During the progression from NAFLD to NASH, the function of macrophages shifts from “protective” (lipid clearance) to
“destructive” (inflammation-driving), with embryonic-derived macrophages differentiating into KCs and recruited monocytes differentiating into pro-
inflammatory macrophages. T lymphocytes can be divided into CD4+ T and CD8+ T cells. High levels of free fatty acids in the liver and blood of NAFLD
patients induce endoplasmic reticulum stress and oxidative stress in CD4+ T cells, ultimately leading to CD4+ T cell autophagy and downregulation of
immune suppressive capacity. Fatty acids activate quiescent CD8+ T cells and drive their differentiation into CTLs. CTLs damage hepatocytes by releasing
perforin, Fas ligand, and pro-inflammatory cytokines, exacerbating liver inflammation. NKT cells are activated by free fatty acids, releasing pro-fibrotic
cytokines and driving macrophage M1 polarization, thereby activating HSCs. The activation of numerous immune cells disrupts liver immune balance,
exacerbating liver inflammation and damage. NASH, Non-alcoholic Steatohepatitis; NAFLD, Non-alcoholic Fatty Liver Disease; NETs, Neutrophil
Extracellular Traps; cDC1s, Conventional Dendritic Cells Type 1; KCs, Kupffer Cells; CD4+ T, CD4-Positive T Lymphocyte; CD8+ T, CD8-Positive T
Lymphocyte; CTLs, Cytotoxic T Lymphocytes; NKT, Natural Killer T cell; HSCs, Hepatic Stellate Cells.
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tissue (Golabi et al., 2019), thereby intensifying the accumulation
and infiltration of inflammatory factors within hepatocytes (Nati
et al., 2016). Persistent hepatic inflammation not only induces
hepatocyte injury and necrosis, driving NAFLD progression
to NASH, but also activates HSCs to accelerate hepatic
fibrosis, cirrhosis, and HCC (Kechagias et al., 2020). Research
(Huby and Gautier, 2022) has established that NAFLD
progression is closely associated with macrophages, neutrophils,
dendritic cells (DCs), and natural killer T lymphocytes (NKTs). As
shown in Figure 2.

These immune cells synergistically interact through complex
networks of cytokines and chemokines, forming an inflammatory
cascade. During the progression of NAFLD from early simple fat
accumulation to inflammation, fibrosis, and ultimately cirrhosis, the
roles of various immune cells exhibit significant stage-dependent
changes. In the early stage of fatty liver, excessive lipid deposition in
hepatocytes triggers macrophages to initiate inflammation. During
the hepatitis phase, macrophages serve as inflammation amplifiers,
neutrophils act as executors of early liver injury, while T cells, DCs,
and NKT cells participate in amplifying the inflammatory cascade.
During the fibrotic stage, macrophages and NKT cells serve as
pivotal pro-fibrotic drivers. In the cirrhosis phase, DCs and
T cells sustain chronic immune activation while neutrophils
persistently promote inflammation, collectively maintaining
chronic low-grade inflammatory responses (Huby and
Gautier, 2022).

2.1 Macrophages

Hepatic macrophages can be categorized into resident KCs (Res-
KCs) and monocyte-derived macrophages (MDMs) based on their
cellular origins (Guilliams and Scott, 2022). Lipotoxicity suppresses
self-renewal of Res-KCs and induces their apoptosis (Tran et al.,
2020; Daemen et al., 2021), thereby inducing monocyte recruitment
to the liver and their differentiation into MDMs to replenish the
macrophage pool (Guilliams and Scott, 2022). Res-KCs promote
liver regeneration by clearing cellular debris and extracellular matrix
(Crespo et al., 2023); whereas MDMs typically exhibit high
expression of inflammation-related genes, exacerbating liver
injury (Tran et al., 2020). Notably, TREM2 expressed in MDMs
can reverse their pro-fibrotic function, exerting protective effects
through facilitating the clearance of apoptotic hepatocytes and
reducing inflammatory factor production (Wang X. et al., 2023).
Based on inflammatory phenotypes, macrophages are classified into
M1 andM2 subtypes. M1 macrophages drive fibrosis progression by
secreting IL-6, TNF-α, various interleukins, and chemokines
(CXCL9–11, CCL15/20) (Trinchieri, 2003; Mantovani et al., 2004;
Martinez et al., 2006). Conversely, M2 macrophages exert anti-
inflammatory effects by expressing TGF-β and IL-10, thereby
inhibiting NAFLD progression (Hesse et al., 2001). Studies
demonstrate that depleting KCs and MDMs alleviates hepatocyte
steatosis, inflammation, and fibrosis, indicating their critical role in
NASH pathogenesis (Bartneck et al., 2015; Cynthia and Frank,
2016). Macrophages exhibit dual regulatory functions in NAFLD
(Jd and Bl, 2021), offering novel insights for targeted therapies,
though challenges persist (Ginhoux et al., 2022). First, macrophage
phenotype classification lacks standardization. Second, specific

subtypes demonstrate functional complexity and pleiotropy. For
instance, while M1 macrophages promote inflammation, they also
exert anti-fibrotic effects by phagocytizing debris and secreting
MMP-9 to degrade ECM (Heymann et al., 2009). Therefore,
clarifying macrophage subtypes and their functions is crucial for
developing precise therapeutic strategies.

2.2 Neutrophils

Neutrophils are among the earliest responding immune cells in
hepatic inflammation (Rawat and Shrivastava, 2022). In NASH,
significant neutrophil infiltration around hepatocytes not only
characterizes the disease but also correlates closely with disease
progression (Nati et al., 2016). The neutrophil-to-lymphocyte ratio
(NLR), as a non-invasive indicator, shows positive correlation with
both the NAFLD Activity Score (NAS) and fibrosis staging (Peng
et al., 2018). Neutrophils drive hepatic inflammation and directly
promote fibrosis through the release of Reactive Oxygen Species
(ROS), proteases, Neutrophil Extracellular Traps (NETs), and
inflammatory factors (Shrestha and Hong, 2023), among which
NETs play a particularly prominent role (Fa et al., 2023).
Neutrophils release NETs via a death mechanism known as
NETosis (Brinkmann et al., 2004). NETs not only directly cause
cellular damage but also induce autoantibody production through
immune complex formation, triggering secondary tissue injury
(Branzk et al., 2014). Studies have demonstrated that inhibiting
NET formation alleviates hepatic inflammation and fibrosis in
NASH mouse models while delaying their progression to liver
cancer (Zhao et al., 2020). Mechanistically, NETs activate HSCs
by triggering the cyclooxygenase-2/prostaglandin E2 pathway
through TLR3 signaling, thereby promoting fibrogenesis (Xia
et al., 2025). Neutrophil depletion also effectively ameliorates
hepatic inflammation and injury in NASH mouse models (Zang
et al., 2015). Furthermore, neutrophils indirectly drive NET
formation via Notch signaling, exacerbating hepatocyte
senescence and lipotoxicity (Xu et al., 2025). NETs can induce
intrahepatic microthrombus formation, accelerating the
progression from NASH to hepatic fibrosis (Tripodi et al., 2011;
Du et al., 2022). This process is associated with their promotion of
thrombin and fibrin generation, upregulation of tissue factor
expression, and activation of coagulation factor XII (Folco et al.,
2018; Shi et al., 2021). Currently, whether NETs-mediated
coagulation abnormalities can serve as therapeutic targets for
alleviating NASH fibrosis remains understudied and warrants
further investigation.

2.3 Dendritic cells

DCs are specialized antigen-presenting cells that sense immune
microenvironment changes, recognize pathogens, and detect
inflammatory signals (Jenne and Kubes, 2013; Arrese et al.,
2016). By transporting phagocytosed antigens to lymphoid
organs and activating naive T cells, they bridge innate and
adaptive immune responses (Wang H. et al., 2021). In the liver,
DCs not only participate in inducing immune tolerance and
regulating T cell responses (Bernsmeier and Albano, 2017; Tong
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et al., 2023), but also modulate intrahepatic homeostasis and the
fibrotic process (Connolly et al., 2009).

In healthy livers, DCs are relatively sparse and exhibit limited
capabilities in antigen phagocytosis and T cell stimulation. They
primarily maintain tolerance to self-antigens by secreting IL-10 and
IL-27 to promote regulatory T cell differentiation (Bernsmeier and
Albano, 2017; Méndez-Sánchez et al., 2020). During NASH
development, the number of hepatic DCs increases significantly,
accompanied by an expansion of classical DC (cDC) progenitor cells
in the bone marrow and bloodstream (Deczkowska et al., 2021).
Notably, patients exhibit a substantial accumulation of XCR1-
expressing cDC1s, whose abundance positively correlates with
NASH severity (Deczkowska et al., 2021). Depletion of cDC1s
alleviates hepatic inflammation in murine NASH models
(Deczkowska et al., 2021). Activated DCs exhibit pro-
inflammatory characteristics, releasing inflammatory factors and
activating antigen-specific T cells, thereby exacerbating hepatic
inflammation (Henning et al., 2013; Deczkowska et al., 2021).
Furthermore, lipid accumulation within DCs triggers
autoimmune responses, shifting DCs from a tolerogenic state to
an immunogenic phenotype (Nati et al., 2016). Accumulated lipids
provide precursors for eicosanoid synthesis (e.g., prostaglandins and
leukotrienes) (Saka and Valdivia, 2012), while enhancing antigen-
presenting function (Anderson and Roche, 2015).

Conversely, some studies report that DCs may also ameliorate
NASH-related hepatic inflammation and fibrosis (Henning et al.,
2013). For instance, depletion of DCs instead accelerated the
progression of hepatic fibrosis (Lukacs-Kornek and Schuppan,
2013), with research indicating that DCs can reverse chemically-
induced liver fibrosis through MMP-9 secretion. Specific clearance
of DCs delayed fibrosis resolution (Jiao et al., 2012). Therefore, the
role of DCs in NASH pathogenesis remains controversial, as DC
depletion exhibits opposing effects across different studies. The
precise mechanisms by which DCs intervene in NASH require
further in-depth investigation.

2.4 T lymphocytes

T lymphocytes originate from hematopoietic multipotent stem
cells in the bone marrow and can be classified into two subsets: CD4+

T lymphocytes and CD8+ T lymphocytes. Upon binding to MHC-II,
CD4+ T lymphocytes differentiate into multiple subsets including
helper T cell 1 (Th1), Th2, Th17, and regulatory T cells (Tregs);
while CD8+ T lymphocytes are also termed cytotoxic T cells (CTLs)
(Nati et al., 2016). Dysregulation of CD4+ T lymphocytes represents
one characteristic feature in the progression of chronic liver diseases
(Ficht and Iannacone, 2020). Th17 and Tregs constitute crucial
CD4+ T lymphocyte subsets involved in NASH pathogenesis
regulation. Under physiological conditions, Th17 and Tregs
maintain a balanced state (Świderska et al., 2017). Th17/Treg
imbalance leads to deterioration of NAFLD/NASH (Josefowicz
et al., 2012; Chackelevicius et al., 2016). Inflammatory CXCR3+

Th17 cells accumulate in the liver, driving NAFLD progression
to NASH through cytokine release and macrophage activation
(Moreno-Fernandez et al., 2021). Studies indicate that the
intrahepatic and peripheral Th17/Treg ratio in NAFLD patients
reflects disease severity and progression risk (He et al., 2017).

However, the role of Treg in NASH remains controversial, with
traditional views emphasizing its anti-inflammatory function
(Wachtendorf et al., 2024), yet research (Dywicki et al., 2022)
conversely demonstrates that Treg supplementation exacerbates
hepatic inflammation in murine NASH models and activates
HSCs via the amphiregulin (Areg)-epidermal growth factor
receptor (EGFR) pathway (Savage et al., 2024).

CD8+ T cells predominantly exert pro-inflammatory effects in
NASH by secreting cytotoxic molecules such as IFN-γ, TNF-α, and
perforin to induce target cell apoptosis (Wong and Pamer, 2003).
NASH patients exhibit increased numbers of activated CD8+ T cells
in both hepatic tissues and systemic circulation (Bhattacharjee et al.,
2017). Notably, CXCR6+ CD8+ T cells exacerbate hepatic
inflammation through an acetate-driven gut-liver axis (Dudek
et al., 2021). Depletion of CD8+ T cells reduces the risk of
NASH-associated HCC development (Pfister et al., 2021).
However, some studies indicate that specific CD8+ tissue-resident
memory T cells (CD8+ Trm) can alleviate fibrosis by inducing
apoptosis in activated HSCs (Koda et al., 2021). Furthermore,
CD8+ T cell function is regulated by the metabolic environment:
it activates HSCs in high-fat diet (HFD) models but does not
significantly alter liver injury or fibrosis levels in choline-deficient
high-fat diet (CD-HFD) models (Breuer et al., 2020). Evidently,
T cells and their subsets play diverse and sometimes opposite roles in
NASH, which involves a complex immunoregulatory network.
Developing strategies targeting specific T cell subsets to inhibit
NAFLD may offer novel therapeutic approaches for NASH.

2.5 Natural killer T lymphocytes

Natural killer T (NKT) cells are a specialized T cell
subpopulation that co-express T cell receptors (TCR) and NK
cell receptors (Zhang and Zhang, 2020), capable of recognizing
lipid antigens (such as endogenous sphingolipids or exogenous α-
galactosylceramide) presented by CD1d molecules through semi-
invariant TCRs (Hung et al., 2017). NKT cells can be categorized
into two main subtypes: invariant (iNKT) and diverse (dNKT), with
the former typically dominating pro-inflammatory responses while
the latter exhibits anti-inflammatory regulatory functions (Tang
et al., 2022).

During NAFLD progression, NKT cells demonstrate distinct
stage-specific and context-dependent characteristics. During the
simple fatty liver stage, iNKT cells suppress macrophage
M1 polarization by producing anti-inflammatory factors such as
IL-4 and IL-10. When the disease progresses to NASH, the lipotoxic
microenvironment (e.g., free fatty acids and oxidized lipids) induces
upregulation of CD1d expression in hepatocytes, thereby activating
NKT cells (Tajiri and Shimizu, 2012). Activated NKT cells
explosively secrete pro-inflammatory factors including IFN-γ,
TNF-α, and IL-17, while recruiting neutrophils and monocytes
via chemokine pathways, thereby exacerbating hepatic
inflammation. (Arrenberg et al., 2011; Maricic et al., 2015;
Mathews et al., 2016). Moreover, iNKT cells can directly activate
HSCs through the Hedgehog signaling pathway (Nimmerjahn et al.,
2005), and promote fibrogenesis via mediators such as osteopontin
(OPN) (Marrero et al., 2015). Notably, IL-4 derived from NKT cells
induces GARP protein expression on HSCs, thereby activating TGF-
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β signaling and driving hepatic fibrosis. Traj18 gene knockout in
mice leads to NKT cell deficiency, consequently suppressing GARP
expression on HSCs and ultimately delaying NASH progression
(Zhang et al., 2023).

NKT cell functionality is also modulated by GM: Bacteroides-
derived lipid antigens regulate their activation state (Wieland Brown
et al., 2013; An et al., 2014). Fecal microbiota transplantation
experiments demonstrate that GM from alcoholic hepatitis
patients can induce liver injury in mice, while restructuring the
GM prevents alcohol-induced liver injury (Llopis et al., 2016).
However, the specific mechanisms underlying
microbiota–NKT cell interactions remain to be elucidated
(Marrero et al., 2018). Notably, NKT cells constitute 20%–30% of
lymphocytes in mouse livers, but account for less than 5% in human
livers (Exley and Koziel, 2004). Therefore, extrapolating pathological
significance from mouse models to humans requires particular
caution. Future research should prioritize validation with human-
derived samples and conduct in-depth analyses of regulatory

mechanisms among different NKT cell subsets within disease
microenvironments.

3 Crosstalk between gut microbiota
and immunity in NAFLD

GM participates in the onset and progression of NAFLD
through the Gut-Liver Axis (Wu et al., 2021). GM dysbiosis
and intestinal barrier damage facilitate the entry of microbial
metabolites into systemic circulation, including LPS,
peptidoglycan, bacterial DNA, EVs, and trimethylamine
N-oxide (TMAO), which activate hepatic immunity and
promote inflammation (Song and Zhang, 2022). Certain
metabolites, including SCFAs, bile acids (BAs), and tryptophan
metabolites, exhibit anti-inflammatory and hepatoprotective
effects (Stiglund et al., 2019). Intervention targeting GM has
become a crucial strategy for NAFLD treatment (Agus et al.,

FIGURE 3
Different states of the GM can influence liver immune balance, thereby interfering with the progression of NAFLD to NASH. When the GM is in a
balanced state or when the number of probiotics exceeds that of harmful bacteria, it releases various beneficial metabolites, which are crucial for
maintaining liver immune balance. However, disruptions in theGMand itsmetabolites (where harmful bacteria outnumber beneficial bacteria) can induce
liver immune imbalance, ultimately driving the progression of NAFLD to NASH. GM, gut microbiota; NAFLD, non-alcoholic fatty liver disease; NASH,
non-alcoholic steatohepatitis.
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2021), and their interaction mechanisms with immunity offer new
directions for future therapies. As shown in Figure 3.

3.1 Alterations in gut microbiota
composition and abundance in non-
alcoholic fatty liver disease

GM exhibits significant inter-individual variations, which are
closely associated with geographical regions, dietary patterns, and
other factors (Sarfraz et al., 2022; Procházková et al., 2024). For
example, a study of populations across different regions in China
revealed (Zhang J. et al., 2024) that northern residents exhibited
higher abundance of Bifidobacterium in their GM, while southern
residents showed enrichment of Blautia and Lachnospiracea incertae
sedis, potentially associated with differences in dietary habits. GM
directly influences the efficacy of botanical drugs, and its
biotransformation capabilities are crucial for the metabolites
derived from botanical drugs to exert therapeutic effects.
Variations in GM composition and metabolic functions among
individuals may lead to inconsistent therapeutic outcomes from
identical botanical drug interventions. For instance, ginsenoside
Rb1 requires transformation by specific bacterial strains into the
highly active Compound K to exert anticancer effects, the absence of
these specific bacteria compromises the efficacy of ginsenoside
intake (Wan et al., 2017). Significant differences exist in GM
composition between NAFLD patients and healthy individuals
(Quesada-Vázquez et al., 2022). The pathogenesis of NAFLD is
negatively correlated with the alpha-diversity of GM (Alferink et al.,
2021). Multiple studies indicate that NAFLD development is
associated with reduced GM diversity and alterations in specific
bacterial genera: Ruminococcaceae and Veillonellaceae show positive
correlation with hepatic fibrosis severity and demonstrate pro-
NAFLD effects in mouse models (Lee et al., 2020).

GM structure undergoes dynamic changes across different
pathological stages of NAFLD. During NAFLD progression,
Gram-negative bacteria (particularly LPS-producing genera such
as Escherichia, Prevotella) increase, while SCFA-producing Gram-
positive bacteria (e.g., Ruminococcaceae) decrease (Li F. et al., 2021).
Notably, through comparative analysis of GM between NAFLD
patients and non-NAFLD individuals, researchers proposed
Phascolarctobacterium, Slackia, and D. formicigenerans as
biological signatures of NAFLD patients (Leung et al., 2022).
However, the small sample size necessitates further validation of
these conclusions. During the NASH stage, the abundance of
Clostridium coccoides significantly increases, and hepatic fibrosis
progression exhibits a positive correlation with Ruminococcus
abundance (Boursier et al., 2016). Patients with hepatic fibrosis
show reduced abundance of Enterococcus faecalis and
Faecalibacterium prausnitzii. Butyrate produced by these bacteria
plays a crucial role in maintaining intestinal barrier integrity (Kwan
et al., 2022). Studies indicate that compositional characteristics of
GM can differentiate between early and late stages of hepatic fibrosis
(Loomba et al., 2017). Stable GM helps maintain hepatic immune
tolerance and suppresses excessive inflammation, whereas GM
dysbiosis can induce chronic hepatitis and promote the
formation of a microenvironment conducive to NAFLD
progression. Targeting GM to modulate the immune system has

become a novel strategy for NAFLD treatment. For instance,
Bifidobacterium exerts immunomodulatory effects by
upregulating regulatory T cells, enhancing intestinal barrier
function, and suppressing the activity of macrophages and
dendritic cells (Gavzy et al., 2023). GM also provides new
therapeutic targets for NAFLD-associated HCC. Modulating GM
can influence immune regulatory molecules on T cell surfaces,
thereby enhancing the efficacy of immune checkpoint inhibitors
(e.g., anti-PD-1/PD-L1 and anti-CTLA-4 therapies) in HCC
treatment (Huang M. et al., 2025). Although the mechanisms
linking GM with NAFLD remain incompletely elucidated, GM-
targeted intervention strategies undoubtedly hold broad
application prospects.

3.2 GM-derived metabolites

3.2.1 LPS
LPS plays a critical role in the onset and progression of NAFLD

(Carpino et al., 2020; Ji et al., 2020). Following intestinal barrier
damage, LPS translocates into the portal circulation. By binding to
Toll-like receptor 4 (TLR4) on HSCs and KCs, it activates the NF-κB
signaling pathway, promoting the expression of inflammatory
factors and fibrogenic factors, thereby exacerbating hepatic
inflammation and fibrosis (Reid et al., 2016). Beyond TLR4, LPS
can also bind to lipopolysaccharide-binding protein (LBP),
facilitating the formation of the CD14-TLR4 complex and further
enhancing inflammatory responses (Csak et al., 2011). Studies
demonstrate that blocking the LPS-TLR4 signaling pathway or
reducing plasma LPS levels with polymyxin B significantly
alleviates liver injury and steatosis in mice (Pappo et al., 1992;
Xu et al., 2023). LPS also accelerates hepatic fibrosis progression by
upregulating TGF-β expression, activating the small mother against
decapentaplegic (Smad) pathway, and promoting transcription of
type I and III collagen (Zhong et al., 2022). For instance, Escherichia
coli-derived LPS activates macrophages via the TLR4 pathway,
exacerbating liver injury, whereas inhibition of this pathway
markedly mitigates hepatic lesions (Carpino et al., 2020). On the
other hand, LPS also participates in immunomodulatory processes
and can induce endotoxin tolerance. Through the LPS/
TLR4 pathway, it promotes the expansion of monocyte-derived
myeloid-derived suppressor cells (mMDSCs) in the liver and
downregulates T cell populations, thereby modulating local
immune responses (Schneider et al., 2022). LPS promotes CD14+

CD8+ T cells to secrete protective cytokines such as IL-6 and IL-33,
and influences immune cell chemotaxis (Pallett et al., 2023). These
effects are closely associated with decreased TLR4 and IRAK
expression, along with altered p65/p50 ratios in NF-κB (Fan and
Cook, 2004).

3.2.2 Peptidoglycan
Peptidoglycan (PG), derived from gut bacteria in the host

intestinal tract, constitutes the core structural component of
bacterial cell walls (Meroueh et al., 2006). The diversity of GM
gives rise to various types of PG (Krueger et al., 1982). As microbe-
associated molecular patterns (MAMPs), PG can activate pattern
recognition receptors TLR2, NOD1, and NOD2, thereby eliciting
immune responses (Wagner and Cresswell, 2012; Juárez-Verdayes
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et al., 2013). NOD1 recognizes iE-DAP fragments while
NOD2 identifies MDP fragments; both receptors activate NF-
κB/MAPK signaling pathways, promote hepatic inflammation,
and contribute to NAFLD progression (Travassos et al., 2004;
Al Nabhani et al., 2017; Keestra-Gounder and Tsolis, 2017). In
immune regulation, NOD1 perceives nutritional signals and drives
neutrophil migration toward the liver, exacerbating inflammatory
reactions (Dharancy et al., 2010; Meli et al., 2014). Notably, during
advanced NAFLD stages, NOD1 promotes OX40L expression
through metabolic reprogramming, upregulates CD8+ T cell
activity, and thereby enhances immune responses to combat
HCC (Zhang F. et al., 2024). In contrast, NOD2 primarily
maintains GM balance and epithelial barrier homeostasis
(Balasubramanian and Gao, 2017). Its activation stimulates
Paneth cells to produce antimicrobial peptides (e.g., α-
defensins) and enhances mucus secretion by goblet cells,
thereby restricting bacterial translocation (Tan et al., 2015).
Furthermore, NOD2 participates in host defense by modulating
the MDP–NF-κB axis while moderately suppressing excessive
TLR2 activation, thus alleviating intestinal inflammation (De
Bruyn and Vermeire, 2017), this mechanism has been explored
for therapeutic application in Crohn’s disease (Al Nabhani et al.,
2020). Metabolically, NOD1 activation promotes metabolic
inflammation and insulin resistance, whereas NOD2 exhibits
anti-inflammatory and metabolic protective effects. This process
requires the involvement of Receptor-Interacting Serine/
Threonine-Protein Kinase 2 (RIPK2) (Cavallari et al., 2020).
Therefore, targeting the PG–NOD1/NOD2 signaling pathways
may offer novel therapeutic strategies for NAFLD.

3.2.3 Bacterial DNA
As PAMPs, bacterial DNA enters host endosomes through

various endocytic pathways. Within endosomes, TLR9 recognizes
bacterial DNA-derived CpG oligonucleotides, initiating the MAPK/
NF-κB pathway and triggering inflammatory factor secretion
(Gomes et al., 2016; Mridha et al., 2017). Moreover,
TLR9 signaling can interfere with IRF7 phosphorylation through
the IKKα–LC3 pathway, thereby inducing the production of Type I
interferon (Hayashi et al., 2018). Additionally, the cyclic GMP–AMP
synthase (cGAS)–stimulator of interferon genes (STING) pathway
can also recognize bacterial DNA (Zhang and Zhang, 2025).
Bacterial DNA triggers dsDNA formation, which then activates
cGAS by forming a complex. This activation generates the
second messenger cGAMP, which binds to STING to activate
TBK1. TBK1 phosphorylates both STING and the
IRF3 transcription factor. Phosphorylated IRF3 induces Type I
interferon synthesis, while STING accelerates NF-κB activation
through IκBα phosphorylation (Zhang and Zhang, 2025). This
collectively indicates that bacterial DNA can activate innate
immune responses through multiple signaling pathways, playing
a significant driving role in the onset and progression of NAFLD.

3.2.4 Extracellular vesicles
GM-derived EVs are bilayer membrane-structured

nanoparticles released by bacteria, carrying substantial amounts
of toxic microbial molecules. These particles can traverse the
compromised intestinal barrier into circulation, target the liver,
and participate in NAFLD pathogenesis by activating immune-

inflammatory responses (Yáñez-Mó et al., 2015). Components
such as LPS carried by EVs can enter the cytoplasm via the
TLR4–TRIF–GBP3 pathway, activate Caspase-11, and induce
inflammation through receptors including TLR2 and NOD1/2
(Bielig et al., 2011; Gu et al., 2019). Furthermore, EVs can
promote hepatic inflammation and fibrosis through the
TLR4 and NLRP3–GSDMD signaling pathways (Dorner et al.,
2024). EVs derived from feces of NASH patients (NASH-fEVs)
disrupt intestinal barrier integrity, increase permeability, and
activate HSCs via the TLR/LPS pathway, thereby upregulating
fibrosis-related protein expression (Fizanne et al., 2023). Notably,
the impact of EVs on the liver is context-dependent: for instance,
miRNA (miR-129-2-3p) derived from Fusobacterium nucleatum
can exacerbate intestinal inflammation by promoting cellular
senescence (Wei et al., 2023). Conversely, remodeling GM using
the PPARα inhibitor GW6471—which increases the abundance of
probiotics (e.g., Bacteroides) while reducing harmful bacterial
populations—alleviates hepatic lipid accumulation, ferroptosis,
and oxidative stress, thereby improving NAFLD (Yang X. et al.,
2025). In summary, EVs exhibit dual roles in NAFLD, where their
specific effects are contingent upon both their microbial origin and
the host microenvironment. Further investigation into the immune-
regulatory mechanisms of active components within EVs will help
elucidate their pathological significance and therapeutic potential
in NAFLD.

3.2.5 Indole and its derivatives
Intestinal tract commensal bacteria metabolize tryptophan

(Trp) into various indole derivatives, including indole-3-acetic
acid (IAA), indole-3-propionic acid (IPA), indole-3-aldehyde
(IAld), indole-3-lactic acid (ILA), and tryptamine (Su et al.,
2022). Different bacteria possess distinct tryptophan enzymes
that produce specific indole derivatives (Dodd et al., 2017).
Indole derivatives accumulate in the intestinal tract and activate
the Aryl Hydrocarbon Receptor (AhR) on innate lymphoid cells,
thereby promoting goblet cell differentiation and mucus secretion
(Powell et al., 2020), and induce tight junction protein expression
(Shimada et al., 2013), enhancing the integrity and functionality of
the intestinal barrier. On the other hand, AhR is widely expressed in
various immune cells, such as DCs, T cells, and lymphocytes
(Nguyen et al., 2010; Rothhammer and Quintana, 2019),
mediating the regulation of the immune system by indole
derivatives, including promoting Treg differentiation (Goettel
et al., 2016), inducing T cell apoptosis (Landfried et al., 2011),
and suppressing the inflammatory activity of Th17 cells
(Rothhammer and Quintana, 2019), thereby alleviating hepatic
inflammation. Furthermore, indole derivatives (e.g., IAA and
IPA) produced by specific strains (e.g., probiotics) inhibit the
NF-κB pathway, reduce levels of pro-inflammatory factors (IL-8),
and promote the release of anti-inflammatory factors (IL-10)
(Bansal et al., 2010). Clinical studies have revealed decreased
levels of IPA and IAA in the feces of NAFLD patients. Increasing
the abundance of Bifidobacterium bifidum—the primary source of
these metabolites—significantly ameliorates hepatic steatosis and
inflammation in mice (Min et al., 2024). Furthermore, indole
derivatives promote the proliferation of intestinal crypt epithelial-
tubular cells in mice, which plays a critical role in maintaining
intestinal immune homeostasis (Powell et al., 2020).
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3.2.6 Bile acids
BAs are important signaling molecules generated through

enzymatic conversion of cholesterol in the liver. By activating
specific receptors, they regulate hepatic lipid metabolism and
suppress the transcription of inflammatory factors, thereby
influencing NAFLD progression. Among these, Farnesoid X
Receptor (FXR) and Takeda G-protein Receptor 5 (TGR5)
represent two critical BAs receptors (Chávez-Talavera et al.,
2017). FXR plays a pivotal role in anti-inflammatory and
immunomodulatory processes, BAs activate FXR to suppress
NF-κB signaling, thereby reducing its induction of
inflammatory mediators such as IFNγ and COX-2 (Wang
et al., 2008). This downregulates monocyte chemoattractant
protein-1 (MCP-1) expression, diminishing macrophage
infiltration into the liver (Li et al., 2015). Simultaneously,
FXR activation restores the intestinal vascular barrier by
triggering the endothelial Wnt/β-catenin pathway, which
blocks bacterial translocation and alleviates hepatic
inflammation (Mouries et al., 2019). FXR signaling also acts
on macrophages, NK cells, and DCs, restricting the production
of pro-inflammatory factors and suppressing inflammasome
activation (Sun et al., 2021; Fiorucci et al., 2022). Since
TGR5 is widely distributed in cell types including HSCs,
LSECs, and macrophages (Keitel et al., 2007). TGR5 activated
by BAs promotes macrophage M2 polarization (Shao et al.,
2022), inhibits the TLR4–NF-κB pathway (Biagioli et al., 2017;
Hosseinkhani et al., 2021), suppresses NLRP3 inflammasome
activation and IL-1β secretion through the cAMP–PKA
signaling axis (Pols et al., 2011; Guo C. et al., 2016), and
induces endothelial nitric oxide synthase (eNOS) expression
to exert anti-inflammatory effects (Keitel et al., 2007).
Additionally, TGR5 promotes the release of glucagon-like
peptide-1 (GLP-1) in the intestinal tract, thereby improving
insulin sensitivity and lipid metabolism (Thomas et al., 2009).
Notably, BAs with different structures exhibit distinct effects,
for example, 12α-hydroxylated BAs (12α-OH BAs)
paradoxically promote HSCs proliferation by binding to
TGR5. Simultaneously, they upregulate hepatic fibrosis-
related proteins (α-SMA, TGF-ß, COL I, PDGF) and
exacerbate fibrosis progression through activation of ERK1/
2 and p38 MAPK signaling pathways (Xie et al., 2021).

3.2.7 Short-Chain fatty acids
SCFAs modulate immune and metabolic responses through

multiple pathways, thereby influencing the progression of
NAFLD. SCFAs promote proliferation of intestinal epithelial
cells, enhance expression of tight junction proteins (e.g., ZO-1,
occludin, claudin-1, and claudin-2), and activate hypoxia-
inducible factor (HIF) to maintain intestinal barrier integrity
(Nicolas and Chang, 2019). Butyrate also induces expression of
the antimicrobial peptide β-defensin-1, reducing levels of LPS-
carrying bacteria and LPS (Beisner et al., 2021). Furthermore, it
inhibits the increase in intestinal permeability mediated
through the TLR4/myeloid differentiation factor (MyD88)
signaling pathway (Nighot et al., 2017). SCFAs deficiency
impairs barrier function by causing inadequate energy supply
to intestinal epithelium and disrupting mucosal immune
homeostasis (Matsumoto et al., 2017).

Secondly, SCFAs regulate immune cell function through G
protein-coupled receptors (GPRs) and Toll-like receptors (TLRs)
(Canfora et al., 2015). For instance, butyrate promotes anti-
inflammatory factor IL-10 secretion and Treg differentiation via
GPR109a, while suppressing release of inflammatory factors such
as IL-1β, IL-6, and TNF-α through TLR4 (Feingold et al., 2014;
Sam et al., 2021). SCFAs also promote Treg differentiation via
epigenetic mechanisms including HDAC inhibition and enhanced
histone H3 acetylation in the Foxp3 promoter region, thereby
ameliorating hepatic inflammation (Furusawa et al., 2013; Park
et al., 2015). Supplementation of butyrate-producing Clostridium
butyricum B1 (CB) in the NASH mouse model reversed HFD-
induced hepatic steatosis, suppressed hepatic MCP-1 and TNF-α
expression, reduced pro-inflammatory factors (IFN-γ and IL-17)
in both liver and intestinal tract, and increased anti-inflammatory
factors (FOXP3+, IL-4, and IL-22). These findings were
corroborated by in vitro experiments (Zhou et al., 2017).

Additionally, SCFAs intervene in NAFLD through energy
metabolism regulation. SCFA supplementation ameliorated hepatic
steatosis in mice (Shimizu et al., 2019). Acetate and propionate
stimulate peptide YY (PYY) and insulin-like growth factor-1 (IGF-1)
release via GPR41/43, thereby suppressing appetite and energy intake.
Concurrently activates AMP-activated protein kinase (AMPK) to reduce
lipid accumulation (Deng et al., 2020). Sodium butyrate regulates hepatic
lipid metabolism by promoting GLP-1 secretion from intestinal L cells
(Zhou et al., 2018). Clostridium butyricum capsules combined with
rosuvastatin demonstrate superior efficacy over monotherapy in lipid
regulation, anti-fibrotic effects, and liver function improvement (Zhu
et al., 2022). Notably, acetate promotes liver regeneration by inducing
SCD1 expression (Yin et al., 2023), providing novel directions for
NAFLD treatment.

3.2.8 TMAO
Circulating TMAO levels exhibit positive correlations with

NAFLD incidence risk, disease severity, and all-cause mortality
(Flores-Guerrero et al., 2021). TMAO promotes NAFLD
progression through multiple mechanisms. TMAO elevates
mitochondrial ROS levels, activates the NF-κB signaling pathway,
thereby promoting NLRP3 inflammasome assembly and the release of
inflammatory factors such as IL-1β. It also disrupts calcium
homeostasis in pancreatic β-cells, leading to dysfunction (Kong
et al., 2024). Secondly, TMAO impairs intestinal barrier function
by suppressing the Wnt/β-catenin pathway and activating TLR4/
MyD88/NF-κB signaling. Simultaneously, it induces LSEC
dysfunction and capillarization, while promoting macrophage
M1 polarization (Nian et al., 2024). Research reveals that TMAO
activates the PERK signaling pathway in zebrafish liver and
HepG2 cells, inducing pathological alterations including lipid
accumulation, inflammation, and fibrosis (Yang et al., 2024).
TMAO triggers endoplasmic reticulum stress (ERS), activates
macrophages via the TLR pathway, and exacerbates inflammatory
responses (Hakhamaneshi et al., 2021). Concurrently, TMAO
suppresses BAs synthesis, disrupts cholesterol metabolism,
aggravates intrahepatic lipid accumulation, promotes foam cell
formation, and inhibits reverse cholesterol transport (RCT),
thereby further compromising hepatic lipid homeostasis (Janeiro
et al., 2018). Reduced TMAO synthesis can lower the risk of
NAFLD onset and progression (Corbin and Zeisel, 2012).
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TABLE 1 The mechanism of botanical drugs in treating NAFLD by targeting GM-immune response.

Metabolites Botanical
drug

Experimental
model

Regulation of GM and its metabolism Targeting immune Refs

Berberine
(BBR)

Coptis chinensis
Franch

C57BL/6J mice Bifidobacterium ↑,
Bacteroidetes/Firmicutes ↑

IL-1 ↓, IL-6 ↓,
TNF-α ↓, CD14 ↓

Cao
et al.
(2016)

Six-week-old SD male
rats

Faecalibacterium prausnitzii ↓; Bacteroides ↑ BBR increases the
expression level of occludin,
improves intestinal mucosal
damage, and reduces the
level of inflammatory
factors in serum

Li et al.
(2017)

SD male rats Atopobiaceae ↓, Rikenellaceae ↓, Christensenellaceae ↑;
Coriobacteriales ↓; Brevibacterium ↑, Papillibacter↓; gut

microbiota diversity ↑

Reduce damage to the
intestinal barrier, decrease
the translocation of LPS
from the intestines to the
liver, thereby alleviating
liver inflammation

Chen
et al.

(2023a)

C57BL/6J mice No specific mechanism Inhibits JNK1 signaling and
downregulates NF-KB
pathway activity

Guo
et al.

(2016b)

Resveratrol, (RSV) Polygonum
cuspidatum Sieb. et

Zucc

C57BL/6J mice No specific mechanism Activate the AMPKα-SIRT1
signaling pathway to inhibit
the NF-κB inflammatory
pathway

Tian
et al.
(2016)

SD male rats Ruminococcaceae↑, Lachnospiraceae↑, Desulfovibrio↓ Enhance the expression
occludin, ZO1, and claudin-
1 to improve intestinal
barrier function and reduce
liver inflammation

Chen
et al.
(2020)

SD male rats Desulfovibrio↓,Lachnospiraceae_NK4A316_group↓,
Alistipes↓, Allobaculum↑, Bacteroides↑, Blautia↑;

SCFAs ↑

Improved intestinal barrier
integrity, inhibited the
migration of LPS from the
intestine to the liver, and
alleviated low-grade
inflammation in the liver

Wang
et al.

(2020b)

Curcumin
(Cur)

Curcuma longa L Male C57BL/6J mice Firmicutes/Bacteroidetes ↓, Akkermansia ↑ Increasing the expression
levels of occludin and ZO1,
inhibiting the activation of
the TLR4/NF-κB signaling
pathway in the liver, and
reducing the suppression of
LPS-induced immune
responses in the liver

Hong
et al.
(2022)

Male C57BL/6J mice Firmicutes/Bacteroidetes ↓, Desulfovibrio ↓
Akkermansia ↑, Bacteroides ↑, Parabacteroides ↑,Alistipes

↑, Alloprevotella ↑

Reduce HFD-induced
hepatic steatosis and serum
LPS concentration in mice,
and alleviate LPS-induced
hepatic inflammation

Li et al.
(2021b)

Male C57BL/6J mice No specific mechanism Cur effectively inhibits
lipopolysaccharide and
IFN-γ-induced
M1 macrophage activation
and reduces IL-1β and
TNF-α

Tong
et al.
(2021)

Quercetin (QUE) Scutellaria baicalensis
Georgi

Male C57BL/6J mice Firmicutes/Bacteroidetes ↓, Helicobacter ↓ Inhibits LPS synthesis,
suppresses activation of the
TLR4/NF-κB signaling
pathway, and inhibits
inflammasome activation

Porras
et al.
(2017)

C57BL/6J mice No specific mechanism Increase the expression of
SOD and GPX1 to enhance
antioxidant capacity, and

Jiang
et al.
(2025)

(Continued on following page)
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TABLE 1 (Continued) The mechanism of botanical drugs in treating NAFLD by targeting GM-immune response.

Metabolites Botanical
drug

Experimental
model

Regulation of GM and its metabolism Targeting immune Refs

block the phosphorylation
of IκBα and NF-κB p65 to
inhibit excessive activation
of the immune response

Lycium barbarum
polysaccharides

(LBPs)

Lycium chinense Mill SD male rats Verrucomicrobia ↓, Enterococcaceae ↓ Reduce intestinal LPS
synthesis and LPS
migration to the liver, and
block LPS activation of KCs
in the liver

Hu et al.
(2020)

SD male rats Butyricicoccus ↑, Butyricimonas ↑ Promote butyrate secretion,
thereby increasing intestinal
mucus and the expression of
ZO-1 and occludin, and
inhibiting LPS-induced
liver inflammation

Gao
et al.
(2021)

Human Bacteroides↑, Bifidobacterium ↑, Phascollarctobacterium ↑,
Prevotella ↑, Collinsella ↑, SCFAs ↑

No specific mechanism Ding
et al.
(2019)

Poria cocos
Polysaccharide (PCP)

Wolfiporia cocos (F.
A. Wolf) Ryvarden &

Gilb

C57BL/6J mice Faecalibaculum ↑, gut microbiota diversity ↑,
LPS ↓

Inhibiting the NF-κB/
CCL3/CCR1 signaling
pathway to reduce immune
responses in the liver

Tan
et al.
(2022)

C57BL/6J mice No specific mechanism Improving liver cell
apoptosis and repairing the
intestinal barrier by
inhibiting the CYP2E1/
ROS/MAPKs signaling
pathway to reduce liver
immune response

Jiang
et al.
(2022)

Ginsenoside Panax ginseng C.
A. Mey

C57BL/6J mice Akkermansia ↑,Oscillospira ↑,Phascolarctobacterium ↑,
Bacteroides ↑, Dehalobacterium↑, Allobaculum ↓,

Olsenla ↓

Increase the expression of
ZO-1, Occludin, and
Claudin-1 to maintain
intestinal barrier function
and reduce the risk of liver
inflammation driven by
enteric LPS.

Shi et al.
(2024)

C57BL/6J mice No specific mechanism Inhibiting SIRT1 and
FOXO1 in the liver to
interfere with NF-κB
signaling and oxidative
stress, thereby alleviating
liver inflammation

Wu
et al.
(2025)

pachymic acid (Pac) Wolfiporia cocos (F.
A. Wolf) Ryvarden &

Gilb

C57BL/6J mice Firmicutes/Bacteroidetes ↓,
Akkermansia ↑, Desulfovibrio ↓, Streptococcus ↓, gut

microbiota diversity ↑

Inhibiting the LPS/TLR4/
MYD88/NFκB signaling
pathway to reduce liver
inflammation. Pac
downregulates the
expression of FASN,
SREBP1c, and SCD1 to
reduce lipid synthesis, while
promoting the expression of
PPARα and CPT1α to
enhance fatty acid
oxidation, ultimately
reducing liver inflammation
induced by lipid
accumulation

Ren
et al.

(2025a)
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4 Botanical drugs and their metabolites
alleviate the progression of non-
alcoholic fatty liver disease by
modulating the gut microbiota-
immune responses axis

Currently, botanical drugs and their metabolites are receiving
increasing attention as adjuvant therapies. Through synergistic
effects, they regulate multiple interconnected targets and pathways
within the disease network, promoting the restoration of immune
system balance and thereby reducing hepatic inflammation (Zhi
et al., 2025). Numerous studies indicate they can intervene in
NAFLD progression via the GM-immune responses axis.As shown
in Tables 1, 2.

4.1 Metabolites originating from botanical
drugs

4.1.1 Berberine
Berberine (BBR), a natural metabolite derived from Coptis

chinensis Franch., alleviates hepatic inflammation by targeting
GM. Administration of BBR (40 mg/kg) to NAFLD mouse
models increased the relative abundance of Akkermansia and
Bacteroides at the genus level, while decreasing the relative
abundance of Lactobacillus and Romboutsia (Yang et al., 2022).
BBR supplementation elevated intestinal Bifidobacterium
abundance and Bacteroidetes/Firmicutes ratio in NASH mouse
models, concurrently reducing serum concentrations of
inflammatory factors including IL-1, IL-6, TNF-α, and CD14

TABLE 2 Researches on the treatment of NAFLD by targeting the GM-immune response with botanical drugs formulae.

Botanical drugs
formulae

Botanical drugs Model Regulation of GM and its
metabolism

Targeting immune and
inflammatory responses

Refs

Yinzhihuang granule
(YZHG)

Artemisia capillaris Thunb
Gardenia jasminoides J.Ellis;Scutellaria
baicalensis Georgi; Lonicera japonica

Thunb

C57BL/6J
mice

Firmicutes↓, Proteobacteria↓,
Patescibacteria↑, Tenericutes↑
RuminococcaceAE_UCG-014↑,
Lactobacillus↑, Desulfovibrio↑

ZO1 ↑, Occludin ↑, Claudin 1 ↑;
ACC1↓, FASN ↓, CD36 ↓

Tan et al.
(2023)

Xie Zhuo Tiao Zhi
formula (XZTZ)

Alisma plantago-aquatica L;
Atractylodes macrocephala Koidz
Wolfiporia cocos (F. A. Wolf)

Ryvarden & Gilb
Citrus × aurantium Siebold & Zucc. ex
Engl.; Crataegus pinnatifida Bunge

Nelumbo nucifera Gaertn

C57BL/6J
mice

Ileibacterium valens↑, Bifidobacterium
pseudolongum ↑

Inosine inhibits the expression of
focal death-associated proteins
NLPR3, GSDMD, Nek7, Caspase
1 and ASC, and reduces the levels of
inflammatory factors IL-1, IL-6 and
TNFα

Qiu et al.
(2023)

Yinchen-Gancao
decoction (YG)

Artemisia capillaris Thunb;Glycyrrhiza
uralensis Fisch

C57BL/6J
mice

No special changes Reduces fatty acid synthesis and
uptake, increases fatty acid
oxidation, and reduces
inflammatory factors and
chemokines to suppress hepatic
inflammation and endoplasmic
reticulum stress

(J et al.,
2025)

Si-Wu-Tang (SWT) Rehmannia glutinosa (Gaertn.)
Libosch. ex Fisch. & C. A. Mey;
Paeonia lactiflora Pall; Angelica

sinensis (Oliv.) Diels
Ligusticum chuanxiong Hort

C57BL/6J
mice

Bacteroides↑, Lachnoclostridium↑;
Alistipes↓, Rikenellaceae↓

Regulation of bile acid metabolism
to treat liver fibrosis

Xue et al.
(2021)

Lingguizhugan
decoction (LGZG)

Wolfiporia cocos (F. A. Wolf)
Ryvarden & Gilb;Cinnamomum
cassia (L.) D. Don; Atractylodes
macrocephala Koidz.; Glycyrrhiza

uralensis Fisch

C57BL/6J
mice

Bacteroides↑, Lachnoclostridium↑;
Alistipes↓, Rikenellaceae↓

Reduction of hepatic mitochondrial
damage and oxidative stress and
inhibition of inflammatory factor
release via STING-TBK1-NF-κB
signaling pathway

Cao et al.
(2022)

Yindanxinnaotong
formula (YDX)

Ginkgo biloba Leaf; Salvia
miltiorrhiza Bunge; Asarum

heterotropoides F. Schmidt; Panax
notoginseng (Burkill) F. H. Chen ex C.

H. Chow; Crataegus
pinnatifida Bunge; Gynostemma
pentaphyllum (Thunb.) Makino;
Borneolum Syntheticum; Allium

sativum Bulb

C57BL/6J
mice

Firmicutes/Bacteroidetes ↑; Odoribacter
↑, Alistipes↑, Flavonifractor↑,

Oscillibacter↑, Pseudoflavonifractor ↑,
Desulfovibrio ↑, Mucispirillum↑,

Acetatifactor ↑, Clostridium cluster
XIVa ↓, Barmesiella↓; SCFA ↑

Protecting the intestinal barrier as
well as lowering LPS levels, which
can help reduce the risk of liver
exposure

Huang
et al.
(2024)

Frontiers in Pharmacology frontiersin.org12

Zhang et al. 10.3389/fphar.2025.1653372

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1653372


(Cao et al., 2016). The study also found that BBR supplementation
reduced the abundance of F. prausnitzii (Li et al., 2017). Regarding
intestinal barrier function, BBR promotes the expression of tight
junction proteins (ZO-1 and Occludin), increases the number of
colonic glands and mucus secretion by goblet cells, reduces
translocation of Gut-Derived LPS to the liver, and alleviates
hepatic inflammation (Chen D. et al., 2023; Chen et al., 2023 Y.).
Beyond regulating GM, BBR exerts effects through direct anti-
inflammatory and anti-fibrotic mechanisms, including inhibition
of JNK1 signal transduction (Guo T. et al., 2016) and
downregulation of TLR4/MyD88/NF-κB pathway activity (Wang
L. et al., 2020), reducing the expression and activity of neutrophil
elastase (NE), upregulating α1-antitrypsin (α1-AT), and inhibiting
the CXCR4/CXCL12 axis (Yang et al., 2017), as well as inducing
apoptosis of HSCs and suppressing their proliferation (Eissa et al.,
2018). Animal studies demonstrate that BBR supplementation
(200 mg/kg/d) significantly alleviates hepatic inflammation and
steatosis in HFD-induced NASH mouse models, with these
effects closely linked to GM modulation and intestinal barrier
repair. (Cao et al., 2016). A clinical trial involving 184 NAFLD
patients further confirmed that oral BBR administration (1.5 g/d for
16 weeks) significantly reduced hepatic fat content, lipid parameters
(TG, TC), and liver enzyme levels (ALT, AST), while exhibiting a
favorable safety profile (Yan et al., 2015). BBR demonstrates
promising therapeutic potential for NAFLD/NASH prevention
and treatment through multi-target modulation of GM,
enhancement of barrier function, and suppression of
inflammatory signaling pathways and fibrotic progression.

4.1.2 Resveratrol
Resveratrol (RSV), a natural polyphenolic metabolite primarily

extracted from Reynoutria japonica Houtt., exhibits antioxidant,
anti-apoptotic, and anti-inflammatory properties (Tian and Liu,
2020). As a natural agonist of silent information regulator 1 (SIRT1),
RSV ameliorates hepatic lesions by exerting anti-inflammatory and
anti-fibrotic effects through multiple pathways. In hepatocytes, RSV
significantly alleviates hepatic inflammation by activating the
AMPKα–SIRT1 signaling pathway to inhibit the NF-κB
inflammatory pathway (Tian et al., 2016). Simultaneously, RSV
induces apoptosis of activated HSCs and suppresses their
activation in a dose-dependent manner via the SIRT1 and JNK
signaling pathways, thereby reversing hepatic fibrosis (Zhang et al.,
2022). On the other hand, RSV also exerts significant regulatory
effects on immune cells. It interferes with interferon-gamma (IFN-
γ)-mediated macrophage activation by inhibiting the JAK/STAT-
1 pathway, consequently reducing the production of inflammatory
mediators such as nitric oxide (NO), IP-10, and MIG, while
downregulating the expression of inducible nitric oxide synthase
(Chung et al., 2011). Additionally, RSV promotes macrophage
polarization toward the M2 anti-inflammatory phenotype and
upregulates IL-10 synthesis, thereby alleviating fibrosis (Yu et al.,
2019; Jin et al., 2025). Furthermore, RSV inhibits NF-κB nuclear
translocation and reduces inflammatory factor release by disrupting
crosstalk between the TLR2/MyD88/ERK and NF-κB/
NLRP3 inflammasome pathways, thereby delaying the
progression of hepatic fibrosis (Lei et al., 2025). Regarding
intestinal effects, RSV not only remodels GM and enhances
microbial diversity but also strengthens intestinal mucosal barrier

function by upregulating tight junction proteins (Occludin, ZO-1,
and Claudin1). It concurrently suppresses mRNA expression of
cannabinoid receptor type 1 (CB1), further consolidating its
protective effects along the gut-liver axis (Chen et al., 2020).

Supplementation with RSV (50/75/100 mg/kg/d) significantly
reduced hepatic steatosis and fibrosis in HFD-induced NASH rats,
with the ameliorative effect demonstrating dose dependency. RSV
restructured the GM composition in NASH rats. At the species level,
the abundance of Akkermansia muciniphila increased; at the genus
level, Bacteroides abundance increased while Desulfovibrio
abundance decreased; at the family level, Ruminococcaceae and
Lachnospiraceae abundances increased. However, these GM
alterations were not observed in the low-dose RSV group
(50 mg/kg/d) (Campbell et al., 2019). The study also found that
RSV supplementation reduced the abundance of harmful bacteria
Desulfovibrio, Lachnospiraceae_NK4A316_group, and Alistipes in
the intestinal tract, while increasing the abundance of SCFA-
producing bacteria Allobaculum, Bacteroides, and Blautia (Wang
P. et al., 2020). An RCT involving 60 NAFLD patients demonstrated
that 3 months of RSV supplementation (300 mg/d) significantly
reduced serum levels of ALT, AST, TC, and TNF-α (Chen
et al., 2015).

4.1.3 Curcumin
Curcumin (Cur), a natural metabolite extracted from Curcuma

longa L., exhibits multiple biological activities including antioxidant,
anti-inflammatory, and antitumor effects. Cur intervenes in NAFLD
progression through multiple mechanisms, including anti-
inflammatory effects, regulation of lipid metabolism,
improvement of insulin resistance, and modulation of fibrotic
processes (Li X. et al., 2024). In recent years, its role in
modulating GM has garnered increasing attention. Studies
demonstrate that Cur significantly increases Bacteroides
abundance and ameliorates hepatic lipid accumulation through
microbiota-dependent BAs metabolism (He et al., 2024). In
NAFLD models, Cur reverses the elevated Firmicutes/
Bacteroidetes ratio and reduced Akkermansia abundance (Hong
et al., 2022), while concurrently upregulating expression of tight
junction proteins Occludin and ZO-1, suppressing TLR4/NF-κB
pathway activation, and reducing LPS exposure, thereby alleviating
hepatic inflammation (Hong et al., 2022). Further studies (Li S. et al.,
2021; Hong et al., 2022) confirmed that Cur effectively ameliorated
hepatic steatosis and reduced serum LPS levels in HFD-fed mice.
This protective mechanism correlates with modulation of GM
composition, specifically manifested through: decreased
Firmicutes/Bacteroidetes ratio and reduced Desulfovibrio
abundance, alongside elevated abundance of Akkermansia and
multiple SCFA-producing genera including Bacteroides,
Parabacteroides, Alistipes, and Alloprevotella. Cur
supplementation (200 mg/kg/d for 16 weeks) significantly
alleviated hepatic steatosis and oxidative stress in HFD-fed mice,
mediated through multiple pathways (Yang J. et al., 2025). Cur
enhanced the alpha-diversity of the GM. At the family taxonomic
level, a significant increase in the abundance of Coriobacteriaceae
was observed. At the genus level, the abundance of Mailhella and
Parabacteroides increased, while that of Alistipes decreased. At the
species level, the abundance of Phocaeicola vulgatus and Bacteroides
intestinalis rose, whereas Acutalibacter muris abundance declined,
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thereby reducing the synthesis of enterogenic toxins.
Simultaneously, Cur inhibits the JNK2/FOXO1/Bcl6 signaling
axis to alleviate lipid accumulation (Yang J. et al., 2025).
Moreover, Cur suppresses M1 polarization of macrophages and
reduces the secretion of IL-1β and TNF-α (Tong et al., 2021). By
promoting PPARα mRNA m6A methylation through inhibition of
FTO protein, it activates the PPARα/CPT1α pathway to enhance
fatty acid β-oxidation (Fan et al., 2025b), regulates AMPK, ChREBP,
and SREBP1-c expression to ameliorate lipid metabolism (Guariglia
et al., 2023), downregulates CYP2E1 and C/EBPβ, reduces ROS
generation, and alleviates oxidative stress (Afrin et al., 2017). A
meta-analysis encompassing 1,028 NAFLD patients also
demonstrated that curcumin effectively ameliorates hepatic
steatosis (Ngu et al., 2022).

4.1.4 Quercetin
Quercetin (QUE), a metabolite isolated from Scutellaria

baicalensis Georgi, intervenes in NAFLD through multiple
pathways. QUE reverses HFD-induced GM dysbiosis,
significantly lowering the Firmicutes/Bacteroidetes ratio and
reducing the abundance of Gram-negative bacteria such as
Helicobacter. This diminishes endotoxemia occurrence, ultimately
suppressing TLR4/NF-κB signaling pathway activation and
inflammasome initiation, thereby ameliorating hepatic
inflammation (Porras et al., 2017). QUE supplementation also
inhibits oxidative stress in hepatocytes by regulating cytochrome
P450 2E1 (CYP2E1), thereby conferring hepatoprotective effects
against NAFLD (Porras et al., 2017). Conversely, QUE inhibits the
NF-κB p65/iNOS signaling pathway in a concentration-dependent
manner and reduces serum TNF-α levels (Ying et al., 2013). It blocks
phosphorylation of IκBα and NF-κB p65 while upregulating
expression of superoxide dismutase (SOD) and glutathione
peroxidase 1 (GPX1), thus systematically alleviating hepatic
oxidative stress and excessive immune activation (Jiang et al.,
2025). Furthermore, QUE can activate the antioxidant
transcription factor Nrf2 and alleviate hepatic lipid accumulation,
mitochondrial dysfunction, and oxidative stress through the AMPK-
dependent autophagy pathway (Panchal et al., 2012; Cao
et al., 2023).

The effect of QUE on ameliorating lipid metabolism is closely
associated with its promotion of beneficial A. muciniphila
proliferation. Indole-3-lactic acid (ILA), produced by this
bacterium’s metabolism, upregulates CYP8B1 via the FTO/m6A/
YTHDF2 pathway, driving cholesterol conversion into cholic acid
(CA). The latter suppresses lipid accumulation through FXR
receptor activation (Liu J. et al., 2025). A randomized controlled
trial (n = 41) demonstrated the clinical value of QUE. NAFLD
patients supplemented with 500 mg QUE daily for 12 weeks
exhibited significant reductions in hepatic lipid content, body
weight, and body mass index (BMI), with favorable safety
profiles (Li N. et al., 2024).

4.1.5 Lycium barbarum polysaccharides
Lycium barbarum polysaccharides (LBPs) constitute a key active

metabolite in Lycium chinenseMill. LBPs delay NAFLD progression
by modulating GM and enhancing barrier function. In NAFLD
mouse models, LBPs reduce the relative abundance of
Verrucomicrobia and Enterococcaceae (Gao et al., 2021), and the

latter serves as the primary source of gut-derived LPS. This helps
reduce the risk of LPS translocation and hepatic inflammation (Hu
et al., 2020), while simultaneously increasing the abundance of
Deferribacteres and butyrate-producing bacteria (such as
Butyricicoccus and Butyricimonas) (Gao et al., 2021). Butyrate
enhances the expression of intestinal mucus and tight junction
proteins (ZO-1, occludin), thereby improving intestinal barrier
function (Peng et al., 2007). The study (Ding et al., 2019) further
confirmed that LBPs promote the proliferation of Bacteroides,
Bifidobacterium, and SCFA-producing bacteria such as
Phascolarctobacterium, Prevotella, and Collinsella. LBPs play a
crucial role in inhibiting the progression of NAFLD.

Notably, the effects of LBPs on modulating GM are not solely
determined by their metabolites; the structural domains of LBPs also
exert influence. This structure-function relationship is particularly
evident in Bacteroidetes and Parabacteroides. RG-I and its neutral
sugar side chains increase the abundance of beneficial bacterial
families such as Comamonadaceae; whereas linear
homogalacturonan (HG) promotes the proliferation of potentially
harmful bacterial families including Pseudomonadaceae,
Xanthomonadaceae, Caulobacteraceae, and Oxalobacteraceae
(Wei et al., 2025).

LBPs also stimulate putrescine secretion by murine GM, which
subsequently inhibits the JAK2-STAT3 pathway via TRAF6-
mediated suppression, thereby reducing Th17 cell differentiation
and inflammatory factor release (Wang et al., 2025). Moreover,
Th17 differentiation drives the progression from NASH to HCC,
rendering the inhibition of this differentiation a crucial intervention
strategy for NASH (Huang Y. et al., 2025). Supplementation with
LBPs (100 mg/kg, 10 weeks) significantly alleviated liver injury,
dyslipidemia, and inflammation in NASH rats. This effect was
achieved by activating the AMPK/PPARα/PGC-1α pathway to
promote hepatic lipid consumption (Li et al., 2022). LBP
inhibited caspase-9/3 activity and TNF-α levels in CCl4-induced
hepatic fibrosis mice, thereby mitigating hepatic inflammation and
fibrosis (Chiang and Chao, 2018). A pre-post study also
demonstrated that LBP supplementation (300 mg/day, 12 weeks)
improved both GM diversity and liver function in NAFLD patients
(Fan et al., 2025a).

4.1.6 Poria cocos polysaccharide
Poria cocos polysaccharide (PCP) is a botanical drug-derived

metabolite (Zhao et al., 2023). PCP increases the relative abundance
of Faecalibaculum, reduces gut-derived LPS levels, thereby
inhibiting the NF-κB/CCL3/CCR1 signaling pathway, alleviates
hepatic inflammation, and delays NASH progression (Tan et al.,
2022). Furthermore, PCP reduces hepatocyte apoptosis by
suppressing the CYP2E1/ROS/MAPKs signaling pathway, and
decreases the liver’s exposure risk in inflammatory environments
through restoration of intestinal barrier function (Jiang et al., 2022).
In both zebrafish and mouse NAFLD models, PCP demonstrated
efficacy in counteracting hepatic steatosis (Ye et al., 2022). This
beneficial effect stems from reducing translocation of gut-derived
LPS to the liver and suppressing PARP-1-mediated pyroptosis in
intestinal cells. Furthermore, PCP inhibited disease progression in
methionine-choline-deficient (MCD)-induced NASH mice by
downregulating expression of F4/80, CD68, IL-1β, CD11b, and
CCL5 genes (Gao et al., 2023). Simultaneously, PCP alleviated
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hepatic steatosis in NAFLD mice by modulating glucose and lipid
metabolism through upregulation of lipid transport proteins and
suppression of lipid synthesis-associated proteins (Wang et al.,
2022). PCP is even considered a prebiotic. Supplementation with
PCP (50 mg/kg/d, for 8 weeks) can alleviate insulin resistance, lipid
metabolism imbalance, and inflammation in the NASH mouse
model. This effect stems from PCP enhancing the intestinal
barrier, improving GM diversity, and increasing the relative
abundance of probiotics including Lactobacillus, Allobaculum,
and Phascolarctobacterium. These probiotics synthesize SCFAs,
which subsequently ameliorate insulin resistance through the
FGF21-PI3K/AKT signaling pathway (Liu et al., 2025b).

4.1.7 Ginsenoside
Ginsenoside (Rg) is a metabolite extracted from Panax ginseng

C. A. Mey. Rg supplementation ameliorates hepatic steatosis and
reduces hepatic inflammation in HFD-induced NAFLD mouse
models, with its therapeutic effects on NAFLD being closely
related to modulation of the GM-immune axis (Shi et al., 2024).
Studies demonstrate that Rg can restructure GM composition, and
this alteration proves beneficial to host health. At the phylum level,
Bacteroidota abundance increases while the Firmicutes/Bacteroidetes
ratio decreases; at the family level, Muribaculaceae abundance
elevates; At the genus level, the relative abundances of
Akkermansia, Parabacteroides, Lachnospiraceae_NK4A136_group,
Oscillospira, Phascolarctobacterium, Bacteroides, and
Dehalobacterium increased, while the relative abundances of
Allobaculum and Olsenella decreased (Liang et al., 2021; Shi
et al., 2024). Concurrently, Rg enhances intestinal barrier
integrity by upregulating the expression of tight junction proteins
(including ZO-1, Occludin, and Claudin-1), thereby reducing the
translocation of Gut-Derived LPS. Furthermore, Rg reduces LPS
levels and inhibits the TLR4/NF-κB signaling pathway, consequently
decreasing the production of pro-inflammatory factors and
suppressing macrophage activation and inflammatory cell
infiltration in the liver, ultimately alleviating hepatic
inflammation (Liang et al., 2021).

Beyond the intestinal tract, Rg delays NAFLD progression by
multi-target regulation of lipid metabolism. Regarding lipid
metabolism, Rg reduces lipid uptake through suppression of
CD36 expression (Wu et al., 2025) while activating the hepatic
LKB1/AMPK/mTOR signaling pathway (Shi et al., 2024). This dual
action cooperatively downregulates key lipid synthesis genes (e.g.,
SREBP-1c, FAS, ACC) and upregulates the fatty acid oxidation gene
CPT-1a, thereby significantly ameliorating hepatic lipid
accumulation (Liang et al., 2021; Shi et al., 2024). Furthermore,
activated AMPK exerts hepatoprotective effects through metabolic
and anti-inflammatory mechanisms: it inhibits mTORC1 and
SREBP-1c to reduce lipid synthesis, while suppressing NF-κB
signaling and oxidative stress via the sirtuin 1/FOXO1 pathway
(Wu et al., 2025). Notably, lipid overload can induce ferroptosis,
thereby driving the progression of NAFLD (Chen et al., 2022). Rg
effectively enhances antioxidant capacity by activating the Keap1/
Nrf2 signaling pathway and preserving mitochondrial structural and
functional integrity, consequently inhibiting ferroptosis (Liu et al.,
2025c). Significantly, the anti-ferroptosis effect of Rg markedly
diminished following antibiotic intervention, indicating its
dependence on GM involvement. This demonstrates that Rg

primarily suppresses NAFLD development through multiple
pathways by modulating the “GM–immune inflammation” axis
while synergistically improving lipid metabolism and
antioxidant pathways.

4.1.8 Pachymic acid
Pachymic acid (Pac) is a metabolite derived from Wolfiporia

cocos (F. A. Wolf) Ryvarden & Gilb. Pac supplementation alleviated
hepatic inflammation in HFD-induced NAFLD mouse models (Ren
et al., 2025a). Pac reshaped the GM structure in NAFLD mice,
reversing HFD-induced intestinal dysbiosis. At the phylum level, the
Firmicutes/Bacteroidetes ratio decreased. At the genus level, the
abundance of Akkermansia increased, while Desulfovibrio and
Streptococcus decreased. Furthermore, Pac reduced the expression
of hepatic inflammatory factors by suppressing the LPS/TLR4/
MYD88/NFκB pathway, thereby mitigating liver inflammation.
Pac inhibits the expression of lipid synthesis-related proteins
including FASN, SREBP1c, and SCD1, while promoting the
expression of fatty acid oxidation-related proteins such as PPARα
and CPT1α, thereby reducing hepatic inflammation induced by lipid
accumulation. Studies demonstrate that Pac ameliorates HFD-
induced NAFLD through synergistic multi-pathway effects. In
animal models, Pac supplementation (20/40 mg/kg for 4 weeks)
significantly alleviates hepatic steatosis, reduces serum lipid levels,
and improves liver function (Ren et al., 2025b). On one hand, Pac
upregulates the expression and activity of PPARα, thereby
promoting hepatic fatty acid oxidation to accelerate lipid
consumption. Additionally, activated PPARα upregulates
GPX4 protein expression, thus inhibiting ferroptosis. On the
other hand, Pac downregulates TFR1 protein expression by
inhibiting the MAPKs signaling pathway, consequently reducing
Fe3+ uptake and intracellular Fe2+ accumulation in hepatocytes. This
suppresses the Fenton reaction and further alleviates hepatocellular
ferroptosis. Through multiple mechanisms including promoting
lipid metabolism, inhibiting inflammation, and suppressing
ferroptosis, Pac collectively delays the progression of NAFLD.

4.2 Botanical drugs formulae

Botanical drugs formulae comprise complex systems of multiple
botanical drugs, corresponding to diverse metabolites. Their core
therapeutic mechanism lies in the synergistic effects of metabolites
through multi-target and multi-system interventions, achieving
holistic regulation of diseases.

Zexie Tang contains two botanical drugs: Alisma plantago-
aquatica L. and Atractylodes macrocephala Koidz. Researchers
discovered that Zexie Tang contains a metabolite composed of
fructose and glucose, designated as Zexie Tang Polysaccharides
(ZXTPs) (Zhang et al., 2025). ZXTPs ameliorate hepatic steatosis
in NAFLD mouse models via the gut-liver axis. ZXTPs remodeled
the GM, increasing the abundance of beneficial bacteria including
Akkermansia, Lachnospiraceae_NK4A136, and Bacteroides, while
reducing pathogenic bacteria such as Prevotella_9 and
Phascolarctobacterium. This alteration promoted the secretion of
tryptophan metabolites (including indole-3-acetic acid and
serotonin) and SCFAs. Tryptophan metabolites play a key role in
alleviating hepatic inflammation and modulating immunity by
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activating AhR. Concurrently, ZXTPs upregulate the expression of
tight junction proteins (ZO-1 and Occludin), repairing the intestinal
mucosal barrier and thereby inhibiting gut-derived LPS from entering
systemic circulation. Meanwhile, tryptophan metabolites exert crucial
effects in mitigating hepatic inflammation and modulating immunity
through activation of the AhR. Regarding lipid metabolism, SCFAs
and ZXTPs enhance hepatic AMPK phosphorylation through
regulating LKB1/AMPK and PI3K/AKT/mTOR signaling pathways
along with the autophagy pathway. This subsequently suppresses
expression of the lipogenesis key enzyme SREBP1 while upregulating
PPARα expression, ultimately leading to significant amelioration of
hepatic lipid metabolism.

Yinzhihuang granule (YZHG) contains four types of botanical drugs,
including Artemisia capillaris Thunb, Gardenia jasminoides J.Ellis, S.
baicalensisGeorgi, Lonicera japonica Thunb. The study (Tan et al., 2023)
revealed that YZHG contains 42 blood-absorbed metabolites, primarily
flavonoids, phenolic acids, iridoids. YZHG could reduce blood lipid levels
in NAFLD mouse models and decrease concentrations of LPS, TNF-α,
IL-1β, and IL-6 in liver tissues. YZHG modulated the GM structure in
mice: at the phylum level, the abundance ofFirmicutes andProteobacteria
decreased, while Patescibacteria and Tenericutes increased; At the genus
level, the abundance of Ruminococcaceae_UCG-014, Lactobacillus, and
Desulfovibrio elevated. 16S rRNA sequencing and metabolomics
demonstrated that this therapeutic effect stems from YZHG
metabolites influencing intestinal tract and lipid metabolism-related
proteins, particularly chrysin, baicalein, wogonin, hispidulin, and
negletein A.

Xie Zhuo Tiao Zhi formula (XZTZ) contains Crataegus
pinnatifida Bunge, Nelumbo nucifera Gaertn., Citrus × aurantium
Siebold & Zucc. ex Engl., A. macrocephala Koidz., W. cocos (F. A.
Wolf) Ryvarden & Gilb, A. plantago-aquatica L. These botanical
drug-derived metabolites (including naringin, neohesperidin,
atractylenolide III, 23-acetyl alisol B, pachymic acid, and ursolic
acid) elevate circulating and hepatic inosine levels by increasing the
abundance of A. muciniphila, Bifidobacterium pseudolongum, and
Ileibacterium valens in the intestinal tract of NAFLD mouse models.
This subsequently inhibits hepatocyte pyroptosis, as evidenced by
downregulation of NLRP3, GSDMD, Nek7, Caspase-1, and ASC
protein expression, while reducing inflammatory factors such as IL-
1β, IL-6, and TNF-α. Concurrently, other metabolites (such as
Inosine) effectively alleviate hepatic lipid accumulation by
regulating the expression of proteins involved in lipid synthesis,
transport, and oxidation (Qiu et al., 2023).

Yinchen-Gancao decoction (YG) consists of two botanical
drugs: A. capillaris Thunb. and Glycyrrhiza uralensis Fisch.,
which carry multiple metabolites, including Chlorogenic Acid
(CGA), Glycyrrhizic Acid (GZA), Isochlorogenic Acid (ICGA),
and glycyrrhetinic acid (GTA). YG significantly ameliorates
hepatic lipid accumulation and inflammation in the NASH
mouse model. This effect stems from CGA suppressing the fatty
acid synthesis pathway (SREBP1c-ACC/FASN) via an FXR-
dependent mechanism, downregulating the expression of the
uptake protein CD36, and enhancing lipid oxidation through the
PPARα-CPT1α pathway (Jing et al., 2025).

Si-Wu-Tang (SWT) treats CCL4-induced hepatic fibrosis by
remodeling the composition of GM and regulating BAs metabolism
(Xue et al., 2021). Twenty-two major metabolites derived from
botanical drugs in SWT, particularly paeoniflorin, ferulic acid,

verbascoside, and senkyunolide A, play crucial roles. They
regulate BAs metabolism by activating the FXR-fibroblast growth
factor 15 (FGF15) and FXR-SHP pathways, which facilitates hepatic
lipid excretion and reduces lipotoxicity-induced inflammation.
Conversely, paeoniflorin and ferulic acid synergistically improve
the intestinal microenvironment, at the phylum level, the abundance
of Bacteroides and Lachnoclostridium increases; at the genus level,
the abundance of Alistipes decreases. At the family level, reduced
abundance of Rikenellaceae suppresses gut-derived endotoxin
translocation, thereby alleviating hepatic inflammation burden.

Lingguizhugan decoction (LGZG) can alleviate hepatic
inflammation in HFD-fed mice. This effect is closely associated
with metabolites derived from botanical drugs, including Paclitaxel
(Pac), Cinnamaldehyde, Atractylenolide II, and Glycyrrhizic acid
(GZA). These metabolites inhibit TNFα and IFNβ release in a dose-
dependent manner; Notably, both Cinnamaldehyde and GZA
further block activation of the STING–TBK1–NF-κB signaling
pathway by suppressing TBK1 and NF-κB phosphorylation in
macrophages. Notably, the effects of mixed metabolites surpassed
those of single metabolites, indicating synergistic interactions
among metabolites (Cao et al., 2022). Yindanxinnaotong (YDX)
comprises eight botanical drugs containing a total of
124 metabolites. Studies demonstrate that YDX reduces gut-
derived LPS production by remodeling the GM. At the genus
level, it significantly increases the abundance of Odoribacter,
Alistipes, and Flavonifractor while decreasing Clostridium cluster
XIVa and Barmesiella. Furthermore, YDX downregulates hepatic
expression of lipid synthesis-related proteins (including SREBP-1c,
SCD-1, and CD36) and pro-inflammatory cytokines (IL-6, TNF-α),
while enhancing expression of key fatty acid β-oxidation proteins
(AMPKα, CPT-1). This effectively suppresses hepatic lipid
accumulation and inflammatory responses (Huang et al., 2024).
Although studies have observed alterations in GM alongside
improvements in hepatic lipid metabolism and inflammatory
status, the direct link between these two pathways, the primary
metabolites involved, and the specific mechanisms remain to be
elucidated, this warrants further investigation.

Shugan Xiaozhi (SG), composed of 15 botanical drugs, is
commonly employed in the treatment of NAFLD. SG ameliorates
hepatic inflammation and fibrosis in HFD-induced mice, suppresses
intrahepatic ROS generation, elevates levels of SOD, GSH, and CAT,
reduces MDA levels in murine liver in a dose-dependent manner,
and preserves the integrity of hepatic mitochondrial function and
structure. These effects depend on SG’s regulation of BNIP3/
BNIP3L-mediated mitophagy. Metabolites derived from
SG—including naringin, hesperetin 7-O-rutinoside, frangulin A,
and 3″-p-Coumaroylprunin—exhibit close interactions with key
targets regulating mitophagy, suggesting their pivotal roles in this
process (Chen M. et al., 2023).

Shugan Xiaozhi (SG), composed of 15 botanical drugs, is
commonly used to treat NAFLD. Studies demonstrate that SG
alleviates HFD-induced hepatic inflammation and fibrosis in
mice, suppresses ROS generation, enhances SOD, GSH, and CAT
activities, and reduces MDA levels in a dose-dependent manner,
thereby protecting mitochondrial structural and functional integrity
in hepatocytes. The therapeutic effect of SG on NASH is closely
associated with its regulation of BNIP3/BNIP3L-mediated
mitophagy. Metabolites in SG—including naringin, hesperetin 7-
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O-rutinoside, frangulin A, and 3″-p-Coumaroylprunin—exhibit
significant interactions with key mitophagy targets, thereby
playing a central role in this mechanism (Chen M. et al., 2023).

5 Discussion

Immune dysregulation serves as a critical driver of NAFLD
progression, making the maintenance of immune homeostasis an
essential intervention strategy. GM regulates host immune balance
through the gut-liver axis and participates in hepatic inflammation
processes. Therefore, utilizing metabolites derived from botanical
drugs to treat NAFLD through the GM-Immune Axis represents a
promising strategy. As shown in Figure 4. However, its mechanisms
remain incompletely elucidated and face multifaceted challenges.

GM is highly susceptible to environmental influences, resulting
in significant research heterogeneity. This necessitates integrating
multi-center large-sample cohorts with multi-omics data to enhance
conclusion reliability. Organoid co-culture systems (Wang et al.,
2024a) and CRISPR-based microbiota editing (Jin et al., 2022)
provide novel approaches to overcome mechanistic bottlenecks.
The former can simulate gut-liver axis immune interactions for
target screening, while the latter enables precise identification of
functional genes in GM and drug-action pathways.

The clinical efficacy evidence and translation of botanical drugs
still face dilemmas. Current research predominantly focuses on basic
mechanisms, with limited and low-quality clinical studies. These
manifest experimental design flaws (e.g., inadequate sample size,
suboptimal blinding, insufficient endpoint indicators, significant
regional variations, and short follow-up periods), lax quality
control, and lack of collaborative mechanisms, substantially

diminishing the evidence level. Future efforts should initiate pilot
experiments and observational studies to preliminarily evaluate
efficacy, identify benefiting subpopulations, and define treatment
endpoints, thereby providing foundations for subsequent large-scale
RCTs. Studies must strictly adhere to the PICOTS framework,
establish intelligent data centers, and follow international
reporting standards (e.g., CONSORT, STRICTA) to advance the
generation of high-quality clinical evidence.

The translation from basic research to clinical applications of
botanical drugs also faces challenges. The multi-target
characteristics result in unclear onset of action metabolites and
dose-response relationships, while the lack of standardized
preparation processes leads to inconsistent drug quality and
irreproducible efficacy (Hu et al., 2019). Multidisciplinary
platforms should be integrated to establish artificial intelligence-
based metabolites screening and quality control systems, evaluate
pharmacological effects using organoids/organs-on-chips, and
ultimately develop a research paradigm featuring well-defined
mechanisms, rigorous quality control, and quantifiable efficacy.

The safety of metabolites derived from botanical drugs also
requires significant attention. Toxic side effects may be associated
with exogenous contaminants (pesticides, heavy metals,
mycotoxins), endogenous factors (origin, dosage, treatment
duration, preparation processes), and individual variations (Gao
et al., 2019). Current toxicological research remains limited, with
unclear toxicity mechanisms and a lack of clinical risk warnings.
Regulatory oversight of drug quality should be enhanced, toxicity
evaluation systems improved, toxicity metabolites pre-screened
using chemical structure warning databases, pharmacokinetic-
toxicokinetic (PK-TK) models established through integrated in
vivo and in vitro experiments, and novel technologies such as

FIGURE 4
The specific targets andmechanisms of action of botanical drugs formulae andmetabolites from botanical drugs, in treating NAFLD by targeting the
GM-immune response. GM, gut microbiota; NAFLD, Non-alcoholic Fatty Liver Disease.
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microfluidic chips, high-throughput screening, and systems
toxicology introduced to develop more comprehensive safety
evaluation standards.

In summary, elucidating the interaction targets among botanical
drugs, GM, and immune dysregulation provides novel insights for
NAFLD treatment, deepening our understanding of the gut-liver
axis mechanism. Integrating mechanistic studies, clinical validation,
and safety assessment holds promise for advancing systematic,
standardized, and internationally recognized applications of
botanical drugs in NAFLD treatment.
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