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Cancer is a global health threat, with its treatment modalities transitioning from
single therapies to integrated treatments. This paper systematically explores the
key technological systems in modern cancer treatment and their application
value. Modern cancer treatment relies on four core technological pillars: omics,
bioinformatics, network pharmacology (NP), and molecular dynamics (MD)
simulation. Omics technologies integrate various biological molecular
information, such as genomics, proteomics and metabolomics, providing
foundational data support for drug research. But the differences in data and
the challenges of integrating it often lead to biased predictions, and that’s a big
limitation for this technology. Bioinformatics utilizes computer science and
statistical methods to process and analyze biological data, aiding in the
identification of drug targets and the elucidation of mechanisms of action. It is
important to note that the prediction accuracy largely depends on the algorithm
chosen. Consequently, this dependence may affect the reliability of the research
results. NP, based on systems biology, studies drug-target-disease networks,
revealing the potential for multitargeted therapies. That said, this method may
overlook important aspects of biological complexity, such as variations in protein
expression. This oversight can lead to overestimating the effectiveness of multi-
targeted therapies, resulting in false positives in efficacy assessments, which
somewhat limits its practical usefulness. MD simulation examines how drugs
interact with target proteins by tracking atomic movements, thus enhancing the
precision of drug design and optimization. Nevertheless, this technology faces
practical challenges, such as high computational costs and sensitivity of model
accuracy to the parameters of the force field. The synergistic application of these
technologies significantly shortens the drug development cycle and promotes
precision and personalization in cancer therapy, bringing newhope to patients for
successful treatment. However, researchers still face challenges like the variability
of data. Future efforts need to use Artificial Intelligence (AI) to establish
standardized data integration platforms, develop multimodal analysis
algorithms, and strengthen preclinical-clinical translational research to drive
breakthrough advancements in cancer treatment. With the ongoing
technological improvements, the vision of personalized medicine—tailored
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treatments based on individual patient characteristics—will gradually be realized,
significantly enhancing treatment efficacy and improving patients’ quality of life.
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1 Introduction

Cancer is a major global health threat, and the development of
effective treatment methods is a core issue in the medical field
(Zaimy et al., 2017). Currently, cancer treatment faces three main
challenges: limitations of traditional drug development models,
inherent flaws of single-target drugs, and the complexity of
tumor mechanisms. Regarding traditional drug development,
existing models struggle to address tumor complexity.
Specifically, single-target drugs are often limited by insufficient
efficacy, rapid development of resistance, and significant side
effects (Han Li and Chen, 2015; Colonna, 2025). These
limitations underscore the urgency of developing new therapeutic
strategies. The drug discovery and development (DDD) process
encounters significant challenges. It is complex and resource-
intensive, requiring meticulous monitoring and detailed data
analysis at each stage. This leads to lengthy development cycles
and high costs (Wu et al., 2025). To overcome these difficulties,
multidisciplinary strategies have recently shown significant promise.
By integrating the latest technologies such as omics, bioinformatics,
NP, and MD simulation, this approach offers a novel method for
cancer drug development and promises to drive breakthroughs in
anti-cancer treatment.

Omics technologies (such as genomics and proteomics) reveal
disease-related molecular characteristics through high-throughput
data, but using them is challenging due to data heterogeneity and a
lack of standardization (Liu X. et al., 2024). For example, while
compound screening based on the Chemical Entities of Biological
Interest (ChEBI) database identified targets like TREM1 and
MAPK1, incomplete data made it harder to validate the results
(Alibakhshi et al., 2023). Bioinformatics utilizes omics data via
algorithms, aiding target identification and elucidation of
mechanisms (Mallick et al., 2017; Gudivada and Amajala, 2025).
For instance, a Clustered Regularly Interspaced Short Palindromic
Repeats–CRISPR-associated protein 9 (CRISPR–Cas9) functional
genomics screen of 324 cancer cell lines prioritized targets by
integrating genomic biomarkers, including microsatellite
instability (MSI). However, algorithms struggle to fully grasp the
complexity of biological systems, which can lead to prediction errors
(Behan et al., 2019). Building on these insights, NP constructs drug-
target-disease networks through systems biology methods,
facilitating the development of multi-target therapeutic strategies.
Research indicates that multi-target xanthine oxidase inhibitors can
synergistically lower uric acid production and reduce adverse
reactions (Yi et al., 2023). Meanwhile, natural multi-target
neuraminidase inhibitors exert antiviral effects by regulating
pathways such as Toll-like receptor 4 (TLR4) and Interleukin-6
(IL-6), significantly broadening the understanding of drug action
mechanisms (Cao et al., 2024). However, their predictive
performance heavily depends on experimental validation. For
example, verifying how parthenolide (PTL) affects breast cancer

(BC) pathways requires molecular docking, MD simulation, and
both in vivo and in vitro experiments; without such validation, false-
positive results may occur (Shi et al., 2024). The final stage involves
molecular docking and MD simulation to improve the accuracy of
drug design through atomic-level interaction analysis. For instance,
Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/
PBSA) calculations show that phytochemicals have a binding free
energy of −18.359 kcal/mol with Asialoglycoprotein receptor 1
(ASGR1), indicating strong binding affinity (Gao et al., 2023).
Additionally, optimization methods for tankyrase inhibitors can
guide structural improvements of new anti-cancer drugs (Kamal
et al., 2014). However, simulations can be sensitive to force field
settings and are difficult to replicate under real-life conditions,
limiting their clinical translation potential (Chen et al., 2024).
Therefore, more in vivo and in vitro experiments are still needed
(Figure 1). The research by the Bao team is a typical case. They used
NP to screen the action targets of Formononetin (FM). Then, they
calculated the network contribution index through mathematical
formulas to determine the core components. They also analyzed
differentially expressed genes in liver cancer using the Cancer
Genome Atlas (TCGA) database. Subsequently, they evaluated
how well FM binds to its targets using molecular docking. They
confirmed the stability of FM binding to glutathione peroxidase 4
(GPX4) through metabolomics analysis and MD simulation using
ultra-performance liquid chromatography–tandem mass
spectrometry (UPLC-MS/MS). Finally, laboratory and animal
tests showed that FM causes DNA damage, which stops the cell
cycle and regulates glutathione metabolism to inhibit the p53/xCT/
GPX4 pathway, thereby inducing ferroptosis and suppressing liver
cancer progression (Bao et al., 2025).

The development of cancer therapeutic drugs is entering a new
era of precision and personalization. By integrating omics strategies,
bioinformatics analysis, NP, and MD simulation, researchers can
systematically reveal the molecular mechanisms of cancer
occurrence and development. This multidisciplinary research
approach has three main advantages: firstly, it can efficiently
identify potential novel therapeutic targets (Choubey and
Jeyaraman, 2016; Khan and Khan, 2025; Yanzhang et al., 2025);
secondly, it can optimize and improve existing drugs at the
molecular level (Duan et al., 2023); finally, it provides a scientific
basis for developing personalized treatment plans (Matchett et al.,
2017). These breakthroughs not only bring new treatment hope to
cancer patients but also open innovative pathways for future medical
research. As research continues to deepen, the vision of personalized
medicine is gradually being transformed into reality, promising to
significantly enhance treatment efficacy and improve the quality of
life of cancer patients. The future outlook focuses on multimodal
data integration, AI-driven high-throughput screening (HTS), and
the development of standardized platforms. By developing
algorithm-based methods to optimize multi-targeted drug design
and enhancing translational research from preclinical to clinical
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stages, we will aim to address challenges—such as genomic,
proteomic, and clinical data diversity and off-target effects
(Alibakhshi et al., 2023). Only through interdisciplinary
collaboration and technological innovation can we overcome
current hurdles and advance cancer treatment to be more precise
and personalized.

2 Technologies

2.1 Omics strategies

Omics data, the product of high-throughput technologies,
originate from various fields such as genomics, proteomics and
metabolomics, and holds significant value in drug research (Zhang
et al., 2024). Specifically, genomics helps to identify disease-related
genes by analyzing massive data, promoting targeted drug
development and personalized medicine (Schmidt et al., 2022).
Meanwhile, proteomics elucidates the role of proteins in diseases
by analyzing protein structures, providing a basis for drug design
(Lee et al., 2011; Gomase et al., 2025). Metabolomics studies small

molecule metabolites, offering key clues for discovering cancer
treatment targets (Schmidt et al., 2021). There are significant
differences in the predictive capabilities and application value of
different omics in the field of oncology, but there’s still not enough
evidence to directly compare the predictive abilities of different
cancer types. Right now, research is focusing on the need for multi-
omics integration to help speed up drug development by working
with other fields (He et al., 2023; Pan et al., 2025).

Genomics technology, as one of the core pillars of modern
biomedical research, plays an increasingly prominent role in the
development of cancer drug targets. It systematically studies the
complete genetic information of organisms to reveal the structures,
functions and mechanisms of genes in disease occurrence and
development (Martínez-Jiménez et al., 2020). With the rapid
development of high-throughput sequencing technology,
genomics has gradually transitioned from basic research to
clinical applications, providing strong technical support for the
precise diagnosis and targeted treatment of cancer (Mukherjee,
2019). Among its core technologies, mainly including DNA
microarrays and next-generation sequencing (NGS) methods
(Dong et al., 2015), the former is a high-throughput technology

FIGURE 1
A concise overview of the drug development process utilizing cutting-edge technology. Initially, omics and database data are integrated and
analyzed to construct a PPI network using NP approaches. Subsequently, KEGG pathway and GO enrichment analyses are performed. Drug design and
screening are then executed via molecular docking, VS techniques and MD simulation. Finally, experimental validation is conducted, followed by the
submission of new drug applications to relevant regulatory authorities. The general steps in drug development include target identification and
validation, drug design and optimization, preclinical development, clinical development, and post marketing surveillance.
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based on the principle of nucleic acid complementary pairing, where
known DNA probes are fixed on a support to form an array (Dang
et al., 2014). The sample to be tested is labeled and hybridized with
the probes, determining the presence and expression levels of DNA/
RNA in the sample through signal detection (Zhu et al., 2006). This
technology can be used for gene expression profiling, genotyping
and disease research. It is characterized by high throughput,
sensitivity and specificity, whereas it requires high sample quality
and data analysis and is relatively costly (Liu Y. et al., 2024). NGS
technology integrates whole genome sequencing (WGS), whole
exome sequencing (WES) (Enko et al., 2023)and genome-wide
association studies (GWAS) (Jiang et al., 2014). In WGS can
cover the entire genome, providing the most comprehensive
information on genetic variations, such as single nucleotide
variations (SNVs), insertions/deletions (INDELs), copy number
variations (CNVs), and structural variations (SVs) (Li et al.,
2021). In cancer research, WGS helps discover driver mutations,
tumor heterogeneity and clonal evolution patterns, providing key
clues for targeted drug development (Egan et al., 2012). In contrast,
WES focuses on the exonic regions that encode proteins (Georget
and Pisan, 2023). Although its coverage is smaller, it is more cost-
effective and the data volume is more controllable, thus it is widely
applied in clinical research. Through WES, researchers can
efficiently identify functionally relevant mutations associated with
cancer, such as variations in key genes like tumor protein 53 (TP53),
epidermal growth factor receptor (EGFR) and KRAS, which are
often important targets for targeted drug development (Witkiewicz
et al., 2015). GWAS analyzes a large number of single nucleotide
polymorphisms (SNPs) in the genome to determine whether these
SNPs are associated with specific traits or diseases, thus locating
genes or genomic regions that may be related to diseases (Chang
et al., 2018). In addition, the continuous development of genomics
technologies, such as CRISPR gene editing (Cruz and Freedman,
2018), induced pluripotent stem cells, and organoids, is constantly
expanding the range of available tools for drug discovery (Boreström
et al., 2018). It is important to note that while these genetic
technologies can identify how genetic variations relate to drug
responses, drug responses are influenced by a bunch of other
factors, such as protein expression, how the body metabolizes
drugs, and epigenetic regulation. Just relying on genomic data
might not really show how complex drug responses can be
(Doble et al., 2013).

Proteomics, as an important research field in the post-genomic
era, plays an irreplaceable role in elucidating disease mechanisms
and drug development (Li et al., 2014). Compared to genomics, it
can more directly reflect the dynamic changes in cellular life
activities. However, the high cost of protein testing technology
and its broad dynamic range present unique challenges.
Additionally, accurately quantifying low-abundance proteins is
particularly difficult (Fall et al., 2025). Proteomics research
mainly includes three key stages: sample preparation, technology
application and data analysis (Bose et al., 2019). This field aims to
achieve systematic identification and quantification of the entire
proteome, elucidating the biological functions of proteins, providing
a broad application value in biological target discovery and drug
development (He and Chiu, 2003; Savino et al., 2012). In terms of
technology, proteomics research faces a dual choice between
traditional methods and emerging technologies. Traditional

protein detection methods, such as enzyme-linked
immunosorbent assay (ELISA) (Aydin, 2015), chemiluminescence
immunoassay (CLIA) (Hayrapetyan et al., 2023), and
immunohistochemistry (IHC) (Ramos-Vara, 2005), have
significant limitations when processing complex proteomes.
Modern high-throughput proteomics technologies mainly include
MS-based techniques, antibody/antigen arrays, and aptamer-based
detection (Liu Y. et al., 2024). MS-based techniques involve sample
preprocessing and the liquid chromatography analysis of proteins
and their modifications, making them the preferred method for
biomarker discovery (Wei and Li, 2009). Common subtypes include
liquid chromatography-mass spectrometry (LC-MS), matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) (Yang and Chien, 2000),
matrix-assisted laser desorption/ionization immunohistochemistry
mass spectrometry (MALDI-IH-MS) (Taylor et al., 2025), and
evaporative light scattering detection-assisted liquid
chromatography-mass spectrometry (ELSD-LC-MS) (Cao et al.,
2018). Antibody/antigen array methods utilize immobilized
antibodies to detect proteins, which are widely applied but have a
limited dynamic range. Aptamer-based detection has high affinity
and specificity but is limited by the difficulty of developing high-
quality aptamers (Liu Y. et al., 2024). These technologies
demonstrate significant application value in cancer mechanism
research, immunotherapy evaluation, target discovery, and new
drug development (Sanchez-Carbayo, 2006; Sanchez-Carbayo
et al., 2006; Uemura and Kondo, 2015; Kwon et al., 2021).

Metabolomics, as an important component of systems biology,
was first proposed by Steven Oliver in 1998 and has since become a
key method for studying the interactions between genes and the
environment (Rochfort, 2005). This discipline focuses on high-
throughput studies of all small molecules (50–1,500 Da) in cells,
biological fluids, tissues, or organisms, collectively referred to as
metabolites, which have diverse physicochemical characteristics and
dynamic abundance ranges (Johnson et al., 2016). Metabolites can
track real-time changes in metabolic products, which makes it easier
to see health and disease states. They have distinct benefits in
assessing drug metabolism kinetics. They also help in evaluating
toxic responses. However, metabolomics data can be easily affected
by factors such as the environment, diet, and individual
physiological states, so just be careful when interpreting the data
(Doble et al., 2013; Martinez-Lozano Sinues et al., 2014). With the
development of omics technologies, metabolomics plays an
increasingly important role in the pharmaceutical industry and
clinical applications, especially in drug development and
treatment. Metabolomics research mainly relies on two major
technological platforms: data acquisition platforms and data
analysis platforms (Chen et al., 2013). The core technologies of
data acquisition platforms include nuclear magnetic resonance
(NMR) (Gowda and Djukovic, 2014) and MS (Liu and Wen,
2024) related technologies. NMR technology (such as LC-NMR
and gas chromatography (GC)-NMR) can perform the structural
identification and quantitative analysis of metabolites, providing
detailed molecular structure information (Gebregiworgis and
Powers, 2012; Aminov, 2022). While MS-related technologies are
characterized by high sensitivity and throughput that allow the
simultaneous analysis of various metabolite components (Liu Y.
et al., 2024). These include LC-MS (Chen et al., 2023), GC-MS (Ren
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TABLE 1 Commonly used repositories related to human diseases, drug targets, omics data, and biological networks.

Types Database name Description Web link Ref.

Diseases OMIM An exhaustive, credible, and current
compendium of human genes and genetic
disorders

http://www.omim.org/ Hamosh et al. (2021)

PALGA A repository containing histopathological and
cytopathological data was established

https://www.palga.nl Becherer et al. (2019)

DisGeNET A comprehensive database integrating
information on human genetic associations with
disease

https://disgenet.com/ Hu et al. (2025)

CIViC A community-driven database for clinical
interpretation of cancer mutations that facilitates
precision cancer medicine

https://civicdb.org/ Krysiak et al. (2023)

Drug Targets DrugBank A comprehensive web-based database of
molecular information about drugs, drug
mechanisms, drug interactions, and drug targets

https://www.drugbank.ca/ Knox et al. (2024)

TTD A database offering details on known therapeutic
protein and nucleic acid targets, as well as
associated targeted diseases

http://db.idrblab.net/ttd/ Zhou et al. (2024b)

PubChem An open database containing chemical structures
and their bioassay results

http://pubchem.ncbi.nlm.
nih.gov

Wang et al. (2017)

ChEMBL An open database containing functional and
ADMET information on bioactive compounds of
many classes of drugs

https://www.ebi.ac.uk/
chembldb

Zdrazil et al. (2024)

Drug Targets GDSC A large public database focused on providing
data on the sensitivity of cancer cells to drugs as
well as information on molecular markers

https://www.cancerrxgene.org/ Yang et al. (2013)

PharmGKB A comprehensive pharmacogenomics database
focused on collecting and collating the effects of
genetic variants on drug response

https://www.pharmgkb.org/ Barbarino et al. (2018)

LINCS A database for studying disease mechanisms and
driving drug discovery

https://lincsproject.org/ Evangelista et al. (2022)

BindingDB A publicly available database focused on
collecting data on the interaction of drug target
proteins with small molecules and their affinity

https://www.bindingdb.org/ Evangelista et al. (2022)

CellPhoneDB A database specifically designed to infer
communication between cells by analyzing
ligand-receptor interactions using
transcriptomic data from single-cell RNA
sequencing or spatial transcriptomic sources

https://www.cellphonedb.org/ Efremova et al. (2020)

IUPHAR/BPS Guid to
PHARMACOLOGY

An open database providing pharmacological,
chemical, genetic, functional, and
pathophysiological data on approved and
experimental drug targets

https://www.
guidetopharmacology.org/

Harding et al. (2024)

PDSP Ki Database A public database that provides data on the
affinity (Ki) of drugs to a variety of molecular
targets

https://pdspdb.unc.edu/kidb2/
kidb/web/

Baker et al. (2015)

DrugCentral An open drug resource that provides drug
structure, biological activity, regulatory
information, pharmacological actions, and
indications

https://drugcentral.org/ Ursu et al. (2019)

Omics Data GEO A public database for storing and sharing high-
throughput genomic data

https://www.ncbi.nlm.nih.gov/
geo/

Barrett et al. (2013)

TCGA A database containing clinical data, genomic
mutations, mRNA expression, miRNA
expression, methylation, and more for a variety
of human tumors

https://cancergenome.nih.gov/ Colaprico et al. (2016)

(Continued on following page)
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TABLE 1 (Continued) Commonly used repositories related to human diseases, drug targets, omics data, and biological networks.

Types Database name Description Web link Ref.

CCLE A compilation database of gene expression,
chromosome copy number, and massively
parallel sequencing data from 947 human cancer
cell lines

https://sites.broadinstitute.org/
ccle

Dutil et al. (2019)

ENCODE A database containing regions such as
transcription, transcription factor association,
chromatin structure, and histone modifications

https://www.encodeproject.org/ Jou et al. (2019)

GWAS Catalog A publicly available database that includes the
results of genomic association studies (GWAS)
worldwide

https://www.ebi.ac.uk/gwas/ Sollis et al. (2023)

COSMIC A database that manages comprehensive
information on somatic mutations in human
cancers

http://www.sangerac.uk/cosmic Dutil et al. (2019)

ICGC A detailed genomic database of more than
50 cancers

https://dcc.icgc.org The ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes
Consortium (2020)

Omics Data cBioPortal An open database that supports the browsing
and analysis of multidimensional cancer
genomic data

https://www.cbioportal.org Cerami et al. (2012)

UCSC Xena A database that integrates multiple large cancer
research projects and supports visualization,
analysis, and downloading of data

https://xena.ucsc.edu Wang et al. (2022b)

GEPIA2 A web server for large-scale expression analysis
and interaction analysis

http://gepia2.cancer-pku.cn Tang et al. (2019)

GSCA A gene set cancer analysis platform integrating
TCGA, GTEx, GDSC, and CTRP.

https://guolab.wchscu.cn/GSCA Liu et al. (2023a)

GDAC Firehose A tool for analyzing large-scale genome and
proteome data from TCGA.

https://gdac.broadinstitute.org Rau et al. (2019)

CPTAC A clinical proteomics tumor analysis database https://proteomics.cancer.gov/
programs/cptac

Li et al. (2023)

CVCDAP A web-based cancer virtual cohort data analysis
platform that integrates TCGA and CPTAC data

https://omics.bicancer.org/
cvcdap/home.do

Guan et al. (2020)

UALCAN An interactive web-based resource platform for
analyzing cancer omics data

http://ualcan.path.uab.edu Chandrashekar et al. (2022)

TCPA A resource for acquiring and analyzing
functional proteomics in cancer

http://tcpaportal.org/tcpa Chen et al. (2019b)

Omics Data CancerProteome A resource to functionally decipher the proteome
landscape of cancer

http://biobigdata.hrbmu.edu.
cn/CancerPro-teome

Lv et al. (2024)

SPOKE A multi-layer network integration, biomedical
knowledge map repository

https://spoke.ucsf.edu/ Morris et al. (2023)

Tri©DB An open source cancer precision medicine
knowledge base based on the gene-disease-
treatment relationship

http://www.biomeddb.org/ Jiang et al. (2023)

GTEx A database for studying genetic variation and
gene expression

https://www.gtexportal.org/
home/

(2013)

HMDB A database and analysis tool that provides
metabolites of humans and other species

http://www.hmdb.ca/ Wishart et al. (2009)

METLIN-CCS One contains more than 960,000 compounds
and is currently the largest secondary mass
spectrometry database

https://metlin.scripps.edu/ Baker et al. (2024)

mzCloud A mass spectrometry database that provides high
quality multistage mass spectrograms covering a
wide range of compound information

https://www.mzcloud.org/ Shi et al. (2022)

(Continued on following page)
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et al., 2013; Beale et al., 2018), and capillary electrophosis (CE)-MS
(Seyfinejad and Jouyban, 2022), etc. Currently, metabolomics
mainly employs four basic techniques: LC-MS, GC-MS, CE-MS
and NMR. Statistics show that LC-MS has the highest usage rate
(83%), followed by GC-MS (30%) and NMR (26%) (Weber et al.,
2017). These technologies show great potential in phenotypic
classification, physiological state monitoring, disease diagnosis,
treatment response evaluation, as well as biomarker discovery
(Naz et al., 2013). However, each technology has its advantages
and limitations: LC-MS is suitable for analyzing most metabolites;
GC-MS excels in detecting volatile compounds; NMR can provide
structural information without destroying samples; and CE-MS is
suitable for the separation and analysis of charged metabolites (Liu
Y. et al., 2024). Therefore, in practical research, the selection of
technology should be based on specific needs, considering factors
such as the physicochemical properties and concentration ranges of
target metabolites.

In addition, advanced spatial transcriptomics platforms (such as
Visium and Xenium) allow for high-throughput detection of gene
expression while retaining spatial information. These platforms
overcome the limitations of traditional single-cell sequencing
methods, which often lose spatial structure (Quan et al., 2023;
Liu Q. et al., 2024). By using bioinformatics tools like Seurat,
researchers can normalize data, perform dimensionality

reduction, identify spatial patterns of gene expression, and
integrate with single-cell data. This approach helps systematically
analyze complex biological processes, such as the tumor
microenvironment, thereby offering new insights for cancer drug
development (Satija et al., 2015).

2.2 Bioinformatics analysis

Bioinformatics is an interdisciplinary field that integrates
methods and technologies from computer science,
mathematics and statistics to acquire, store, manage, analyze,
and interpret biological data from genomics, transcriptomics,
proteomics, etc., thereby revealing the complexity and functional
mechanisms of biological systems and addressing related issues
in biology and medicine (Merrick et al., 2011; Simonian, 2021;
Shahjahan et al., 2024). The rapid development of this discipline
began with the proposal of the Human Genome Project by
American scientist Robert Sinsheimer and its subsequent
completion, marking the increasing importance of
bioinformatics in life sciences (Templeton, 1998). In cancer
treatment, bioinformatics helps researchers to accurately
identify potential drug targets and prognostic biomarkers by
integrating multi-omics data, deeply analyzing and validating

TABLE 1 (Continued) Commonly used repositories related to human diseases, drug targets, omics data, and biological networks.

Types Database name Description Web link Ref.

MassBank A database that provides mass spectra of
metabolites and small molecule compounds

http://www.massbank.jp/ Horai et al. (2010)

UniProt A comprehensive protein database that provides
information on the known sequence and
function of proteins on a global scale

https://www.uniprot.org/ UniProt Consortium (2021)

Omics Data PDB A database that stores the 3D structures of
proteins

https://www.rcsb.org/ Berman et al. (2000)

InterPro A database that provides information on the
classification of protein families and domains

https://www.ebi.ac.uk/interpro/ Paysan-Lafosse et al. (2023)

SMART An online analysis tool for protein domain
identification and annotation

http://smart.embl-heidelberg.
de/

Schultz et al. (2000)

Human Protein Atlas A database that maps all human proteins using
multiple omics techniques

https://www.proteinatlas.org/ Digre and Lindskog (2023)

Biological
Networks

STRING A repository of established and forecasted
protein interactions

http://string-db.org/ Szklarczyk et al. (2023)

GO A comprehensive database of gene functions http://www.geneontology.org/ Harris et al. (2004)

KEGG A database of genomes, biological pathways,
diseases, drugs, and chemicals

http://www.genome,jp/kegg/ Kanehisa and Goto (2000)

BioGRID A repository of genetic and protein interaction
biomedical interactions that archives multiple
model organisms and humans

http://thebiogrid.org/ Oughtred et al. (2019)

Reactome A database of free biomolecular pathway
knowledge

https://reactome.org Rothfels et al. (2023)

SIGNOR 3.0 A database containing causal relationships in
signal transduction, pathway visualization

https://signor.uniroma2.it/ Lo Surdo et al. (2023)

OmniPath An integrated multi-source database of PTM
relationships, protein complexes, and
intercellular communication

https://omnipathdb.org/ Türei et al. (2016)
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the mechanisms of action of drugs and predicting drug
resistance, which can significantly improve the precision and
effectiveness of treatments (Dong et al., 2019; Rehman et al.,
2020; Fang et al., 2022). The bioinformatics tools and
technologies in drug discovery mainly include biological
databases (Table 1), computer-aided drug design (CADD) and
omics technologies (see the omics strategies section) (Zhang
et al., 2025).

CADD can be divided into structure-based drug design (SBDD)
and ligand-based drug design (LBDD). The core of SBDD lies in
utilizing the three-dimensional structure of target proteins and the
characteristics of their binding sites to promote drug discovery and
design through steps such as target preparation, binding site
identification, molecular docking, virtual screening (VS), and MD
simulation (Vemula et al., 2023). In the absence of knowledge of the
three-dimensional structure of the receptor, LBDD targets known
ligands, establishing the structure-activity relationship between their
physicochemical properties and activity to facilitate drug
repurposing (Hirokawa, 2022). Quantitative structure-activity
relationship (QSAR) and pharmacophore methods are two main
techniques of LBDD (Yu and MacKerell, 2017). Additionally, due to
the high cost of HTS, techniques such as molecular docking and VS
provide efficient supplementary means for experimental processes,

further accelerating drug development (Kontoyianni, 2017). These
tools and technologies in bioinformatics lay a solid foundation for
modern drug development and precision medicine.

VS serves as an important complementary tool to experimental
HTS, efficiently screening large compound databases and
significantly enhancing the efficiency of drug discovery. Its core
advantages are mainly reflected in three aspects: first, VS can
efficiently process massive compound databases, screening far
more compounds than traditional methods; second, computer
pre-screening can significantly reduce the number of compounds
that need to be validated later, significantly cutting the costs of
developing complex HTS testing methods; finally, VS only requires a
computer representation of the compounds, removing the need to
synthesize them beforehand, giving a unique edge in exploring
uncharted chemical territories (Watson et al., 2003; Banegas-
Luna et al., 2018). Its process integrates target structure
preparation, compound library construction, molecular docking
to calculate binding energies and rank compounds, chemical
structure clustering, and visual filtering to select representative
compounds for experimental validation (Figure 2; Subramaniam
et al., 2008; Stumpfe et al., 2012; Kontoyianni, 2017). Currently, tools
such as BRUSELAS, ChemDes and ACFIS are widely used in VS
(Singh et al., 2021). VS has two significant advantages over HTS:

FIGURE 2
The fundamental procedures of molecular docking, VS and MD simulation involve several key stages that are essential for accurate
computational modeling.
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first, the number of compounds that can be screened far exceeds that
of experimental methods; second, only a small number of
compounds need to undergo low-throughput experimental
analysis, greatly reducing the cost of developing complex HTS
detection methods (Lyu et al., 2023). The unique value of VS lies
in its ability to discover novel ligands, thereby avoiding off-target
side effects of known ligands and expanding the functional diversity
of drugs and chemical probes (Stein et al., 2020; Fink et al., 2022;
Singh et al., 2023). In addition, the VS library only requires
computer representation and does not need to be synthesized in
advance, providing flexibility for exploring unknown chemical
spaces (Manglik et al., 2016; Lyu et al., 2019; Sadybekov et al.,
2020). In the drug discovery process, VS and HTS collaborate in the
target selection and hit identification stages: HTS tests compound
activity through experiments, while VS prioritizes potential active
molecules through theoretical calculations, significantly narrowing
the scale of subsequent experiments (Kontoyianni, 2017; Yan et al.,
2020). Structure-based VS has become a core means of drug design,
with parameters flexibly adjusted according to target characteristics,
while the core protocol always revolves around docking and scoring.
By predicting the interactions between ligands and protein binding
pockets, VS can quickly identify candidate compounds, laying a
solid foundation for subsequent optimization and clinical research
(Hou and Xu, 2004; Houston and Walkinshaw, 2013; Yu et al.,
2023). It is worth noting that the quality of VS results primarily
depends on three key factors: the diversity of the compound library,
drug-likeness, and synthetic feasibility. Although similarity-based
screening methods are reliable, they may miss lead compounds with
entirely new mechanisms of action. Additionally, compounds from
initial screening typically need further refinement through
molecular docking. They must ultimately be validated through
in vitro experiments to rule out false positives and ensure the
screening’s reliability (Li et al., 2011; Chen M. et al., 2019;
Puniani et al., 2025).

Molecular docking is a prediction technology for biomolecular
interactions based on the lock-and-key principle and induced fit
theory, which quickly predicts the binding conformations of ligands
and receptors through geometric matching and energy optimization
algorithms (Patel et al., 2024). This technology originated in the
1970s, was initially used to study the interactions between proteins
and small molecules, and has now expanded to complex systems
such as protein-protein and nucleic acid-ligand interactions, even
applicable to larger molecules like short peptides and macrocyclic
compounds (Agrawal et al., 2019; Porter et al., 2019; Martin et al.,
2020). Depending on the flexibility of the receptor conformation,
molecular docking can be divided into rigid docking (where the
receptor is fixed and only the ligand is flexible) (Amaro et al., 2018;
Kamenik et al., 2021) and flexible docking (where both the receptor
and ligand can undergo conformational changes), with the latter
being closer to the real biological environment but having higher
computational costs (Ding and Dokholyan, 2013; Park et al., 2021).
Ensemble docking integrates the docking results from multiple
receptor conformations, achieving a balance between efficiency
and accuracy (Cavasotto, 2012). Its basic process involves three
key steps: structure preparation, binding site determination, and
docking analysis (Figure 2; Paggi et al., 2024). Currently, there are
over a hundred docking tools, such as AutoDock (Morris et al.,
2009), Vina (Trott and Olson, 2010) and Discovery studio (Jiang and

Gao, 2019), which evaluate binding energies through scoring
functions and select optimal binding modes using sampling
programs. This technology can accurately predict the interaction
forces (such as hydrogen bonds and hydrophobic interactions)
between small molecule compounds and the active pockets of
target proteins, accurately obtain binding conformations and
binding energy data, and provide direct guidance for subsequent
structural optimization. For example, previous studies have
confirmed the direct binding of components such as
hypaconitine in sini decoction to tumor necrosis factor-α (TNF-
α) protein through molecular docking (Chen et al., 2016). Molecular
docking plays an important role in the drug development process.
After potential targets are initially screened from analyses such as
NP, molecular docking can serve as a key virtual validation method,
which is used to preliminarily assess how likely and reasonable the
binding is. Molecular docking is commonly used to measure the
binding affinity. Lower (more negative) values mean stronger
binding (Ralte et al., 2024). Furthermore, this technology works
well withMD simulation: molecular docking provides initial binding
conformations, while MD reveals dynamic interaction mechanisms,
and together they promote the deeper development of drug design
and biomolecular research (Lei et al., 2020; Kelly et al., 2021; El
Daibani et al., 2023). However, molecular docking technology still
has several limitations. First, the reliability of its results greatly
depends on the quality of the three-dimensional structure of the
target; if there are any missing parts or flexible loops in the protein
structure, it may lead to deviations in docking results. Second,
compared to the initial screening of VS, detailed molecular
docking (especially docking that considers protein flexibility)
requires a lot of computational power and is usually not suitable
for the preliminary screening of ultra-large compound libraries. In
addition, the docking scoring function mainly evaluates static
binding affinity, which makes it tough to accurately simulate the
complex physiological environment in living organisms (such as
solvation effects, entropy changes, etc.), which might result in false
positives in experiments for molecules that are predicted to bind well
(Gioia et al., 2017; Kochnev et al., 2024; Puniani et al., 2025).

2.3 Network pharmacology

NP is a research method based on the principles of systems
biology, emphasizing the interactions between drugs, targets,
diseases, and biological networks. Its core idea is to link drugs
with molecules in biological networks (such as proteins, genes, and
metabolites) to reveal the mechanisms of action of a drug and its
potential side effects. In relation to traditional targeted screening,
NP not only focuses on the action of single targets but also considers
the interactions of multiple targets and complex pathways, thereby
achieving multitargeted therapy (Hao da and Xiao, 2014; Chandran
et al., 2015; Zhai et al., 2025). Conventional methods might be
limited because they overlook the network’s overall regulatory
effects. In the screening and development of cancer drugs, NP
provides an effective strategy for integrating various data
resources and computational methods. By combining machine
learning (such as Bayesian inference modeling) and
computational tools (such as PharmMapper and DRAR-CPI), we
can efficiently process large-scale compound-target data, predict
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potential targets, and screen key proteins (such as mitogen-activated
protein kinase 14 (MAPK14)), and identify candidate molecules
with therapeutic potential. This strategy significantly reduces the
guesswork in experimental screening while greatly minimizing the
use of resources, offering a smart and budget-friendly solution for
drug development (Guo et al., 2023; Noor et al., 2023; Puniani et al.,
2025). By constructing disease-drug-pathway-target networks,
researchers can identify potential drugs and their mechanisms of
action. The use of omics technologies and bioinformatics further
accelerates the discovery and development of new drugs (Li and
Zhang, 2013).

In cancer drug screening, NP systematically analyzes the
complex relationships between drugs, targets and diseases by
integrating multi-source biological data (such as cancer genome
maps, drug target databases, etc.). Its core workflow includes the
following steps: first, collecting information on the chemical
structures, pharmacological effects and target information of
drugs while combining the clinical characteristics, gene
expression data and pathological mechanisms of cancer to
construct drug-target-disease interaction networks; second, using
network analysis tools (such as Cytoscape) and algorithms to
analyze the topological structure, key nodes and functional
modules of the network, revealing the potential mechanisms of
action of a drug and novel therapeutic targets; subsequently, through
gene function enrichment analysis (such as Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis), clarifying the regulatory roles of target genes in biological
processes, molecular functions and signaling pathways; finally,
combining molecular docking techniques to validate the binding
modes of drugs and targets, and further evaluating the efficacy and
safety of drugs via in vitro cell experiments and in vivo animal
experiments (Gogoi and Saikia, 2022; Li et al., 2022; Tian and Tang,
2022; Wang J. et al., 2022; An et al., 2024; Joshi et al., 2025). In
addition, the predictive performance of NP is determined by how
good the data sources are, how accurate the target analysis is, how
deep the enrichment is, and later validation with molecular docking
and MD simulation. All these factors work together to ensure the
model’s reliability and efficiency in drug development.

In NP research, Cytoscape, as a powerful network analysis tool,
provides important support for constructing and visualizing drug-
target-disease networks. Its core functions are calculating
topological properties such as node degree and clustering
coefficient through the NetworkAnalyzer plugin, identifying
closely connected gene modules using the Molecular Complex
Detection (MCODE) plugin, and screening key hub genes with
the CytoHubba plugin (Ma et al., 2021; Liu et al., 2025).
Furthermore, network analysis algorithms play a key role in
research, encompassing various types. Network construction and
analysis algorithms, such as weighted gene co-expression network
analysis (WGCNA), are used to identify gene network modules and
key genes, while Protein-protein Interaction (PPI) network analysis
algorithms construct networks based on protein interaction
information, and MCODE is used to identify dense subgraphs
within networks. The key node identification algorithms include
betweenness centrality, degree centrality, closeness centrality, and
eigenvector centrality, which help to locate the core regulatory genes
or targets within networks (Zhao et al., 2022; Nazir, 2024). Network
module analysis algorithms, such as Markov clustering (MCL) and

Louvain clustering algorithm, are used to partition functionally
related gene or protein modules (Du et al., 2014; Lim et al.,
2019). Network similarity and prediction algorithms involve
topological similarity analysis, node similarity-based network
analysis, and prediction algorithms based on machine learning or
network topology, which can be used to infer drug-target
interactions or screen potential drugs (Vella et al., 2018). In
recent years, the introduction of emerging algorithms like graph
neural networks (GNN) has further enhanced the research
capabilities of NP. For example, GNN can integrate single-cell
data, learning and inferring on complex graph structures,
providing more precise analytical tools for disease gene
prediction and drug target identification (Li et al., 2025). The
comprehensive application of these tools and algorithms not only
deepens the understanding of drug mechanisms but also provides
strong technical support for drug discovery and precision medicine.

2.4 Molecular dynamics simulation

MD simulation is a computer simulation method based on
molecular force fields (such as AMBER (Wang et al., 2004),
CHARMM (Vanommeslaeghe et al., 2010), OPLS, GLOMOS,
and coarse-grained force fields (Wang and O’Mara, 2021)),
which descrvmdibes the interaction forces between atoms
(including bond lengths, bond angles, dihedrals, van der Waals
forces, and electrostatic forces) and uses numerical integration
algorithms (such as the Verlet algorithm) to calculate atomic
motion trajectories, thereby revealing the dynamic behavior of
molecular systems (Vemula et al., 2023). The application of MD
simulation can be traced back to 1957 when Alder and Wainwright
first used it to study simple gases (Isobe, 2008). Twenty years later,
McCammon and others pioneeringly expanded MD simulation to
the field of proteins (Sinha et al., 2022). Today, with the rapid
development of computational technology, MD simulation can not
only study single proteins but also analyze complex protein-protein/
DNA/RNA complexes (Norberg and Nilsson, 2003; Martin and
Frezza, 2022). In particular, breakthroughs in supercomputers (such
as the Anton computer designed for MD simulation) and graphics
processing units (GPUs) have significantly enhanced the scale and
efficiency of simulations, making MD simulation increasingly
important in biophysics, drug design, and materials science
(Schmid et al., 2010; Vermaas et al., 2021).

The key steps of MD simulation include system construction,
energy minimization, equilibrium simulation, and production
simulation. First, in the system construction phase, the initial
structure of the target molecule (such as a protein-ligand
complex) must be determined, and environmental factors such as
solvent molecules (e.g., water) and ions must be added. This step
typically relies on existing structural information from protein
databases (such as Protein Data Bank (PDB)). If the 3D structure
of the target protein is unknown, computational methods (such as
comparative modeling (Lemer et al., 1995), fold recognition (Jones
et al., 1992), or ab initio or de novo modelling (Lesk and Chothia,
1980; Simons et al., 1997)) can be used to predict the structure from
its sequence. Next, the energy minimization step optimizes
unreasonable conformations in the initial structure to avoid
system collapse during the simulation. Subsequently, the
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equilibrium simulation gradually adjusts temperature and pressure
to bring the system to a state of thermodynamic equilibrium. Finally,
in the production simulation phase, data is collected under
equilibrium conditions for the analysis of dynamic behaviors
(such as conformational changes, binding free energy, etc.)
(Figure 2; Lei and Duan, 2008; Ulmschneider and Ulmschneider,
2018; Chen et al., 2020). To assess the stability and interactions of
protein-ligand complexes, several indicators are commonly used.
Root Mean Square Deviation (RMSD) measures the extent of
structural deviation in the protein-ligand complex; lower RMSD
values indicate greater structural stability. Root mean square
fluctuation (RMSF) measures the flexibility of residues, where
high fluctuations may destabilize the binding site. Radius of
Gyration (Rg) assesses the compactness of the complex. MM/
PBSA or MM/Generalized Born Surface Area (GBSA) calculates
the binding free energy, providing quantitative estimates of binding
affinity. For instance, the binding stability of the LRGFGNPPT
peptide with the targets AKT serine/threonine kinase 1 (AKT1),
angiotensin-converting enzyme (ACE), and renin (REN) was
confirmed by 200 ns MD simulation (Gao et al., 2023; Chen
et al., 2024; Hadi et al., 2025). Currently, common MD
simulation software (such as AMBER, CHARMM, GROMACS,
NAMD and LAMMPS) have versions released that support
GPUs computing (Table 2), significantly enhancing simulation
efficiency and providing strong support for the dynamic studies
of complex systems. Model-driven MD relies on human-established
physical formulas for calculating forces. In contrast, data-drivenMD
uses large datasets and machine learning to model potential energy.
The former is interpretable, but it is challenging to extend beyond its
predefined functional form. The latter offers high accuracy but
requires a large amount of data and validation of its
extrapolation capabilities (Jo et al., 2017; Shirts et al., 2017;
Fiorin et al., 2024; Kedir et al., 2024).

MD simulation plays a key role in drug development. Firstly, by
looking at simulation data, this method can evaluate how stable the
predicted binding modes are and give detailed dynamic information
at the atomic level. Researchers can see if key interactions stick
around in a changing environment and can also discover hydrogen
bonds that involve water or new interaction sites that were not
considered in the initial conformation. These findings are crucial for
making targeted changes to molecular structures, which helps
improve how drugs interact with their targets. Secondly, MD
simulation can precisely calculate binding free energies, helping

to pinpoint which small structural tweaks can really boost affinity.
This lets researchers focus on the most promising molecules for
synthesis and experimental testing, which really speeds up drug
optimization and helps reduce the emergence of drug resistance (Hu
et al., 2011; Zhang et al., 2020). However, this method does have its
downsides. Running simulations that last microseconds or longer
needs powerful computing clusters and substantial time, which
really limits how much can be done. Therefore, MD simulation
is usually only good for digging deep into a few top candidate
molecules rather than large-scale screening. Moreover, the reliability
of the simulation results is highly dependent on the accuracy of the
chosen force field parameters. Existing force fields might not
accurately describe non-standard residues, metal ions, or special
chemical bonds, which can mess with the accuracy of the final
predictions (Merelli et al., 2007; Klepeis et al., 2009).

3 Application of the four core
technologies in cancer drug
development

3.1 Application of omics strategies in cancer
drug development

Omics strategies hold significant application value in cancer
drug development. Furthermore, by integrating multiple omics
technologies (such as genomics, proteomics, metabolomics, etc.),
researchers can deeply analyze the molecular mechanisms of
cancer from multiple levels, thereby accelerating the discovery
of drug targets, drug screening, and the formulation of
personalized treatment plans (Dhuli et al., 2023; Nema, 2024;
Yan et al., 2025).

Omics strategies provide efficient research pathways for drug
target discovery. By analyzing 14 cancer subtypes in TCGA multi-
omics dataset, a study revealed 40 driver genes associated with the
Wnt, Notch, Hedgehog, JAK/STAT, NK-KB, and MAPK signaling
pathways. In addition, by integrating WES, WGS, RNA sequencing
(RNA-seq), miRNA, and DNA methylation analysis, along with
high-resolution mass spectrometry proteomics data, researchers
successfully classified Lung Adenocarcinoma (LUAD) into four
subtypes with different clinical and molecular characteristics,
discovering unique mutation features associated with specific
populations (Heo et al., 2021). In the field of colorectal cancer

TABLE 2 Commonly used MD simulation tools.

Tools Description Availability Link Ref.

AMBER A force field and simulation tool focused on biological
macromolecules

Partially free http://ambermd.org/ Case et al. (2005)

CHARMM A software tool that supports multiple force fields and simulation
conditions

Commercial http://www.charmm.org/ Brooks et al. (2009)

GROMACS An open-source software with efficient parallel computing
capabilities

Free https://www.gromacs.org/ Makarewicz and Kaźmierkiewicz
(2013)

NAMD A parallel software suitable for large-scale simulation of biological
molecular systems

Free https://www.ks.uiuc.edu/
Research/namd/

Phillips et al. (2005)

LAMMPS A large-scale parallel software applicable to materials science Free https://lammps.sandia.gov/ Panwar et al. (2023)
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treatment, Surachai Maijaroen’s team discovered through
innovative research that: 1 RT2 treatment significantly inhibits
Caco-2 cell proliferation and induces apoptosis; 2 proteomics
analysis based on label-free LC-MS/MS identified
1,044 differentially expressed proteins, including
133 downregulated proteins and 79 upregulated proteins. Further
analysis showed that downregulated proteins were mainly enriched
in cancer cell proliferation pathways, while upregulated proteins
significantly participated in apoptosis regulation. By prediction
through the Search Tool for Interactions of Chemicals (STITCH)
database and validation with real-time quantitative PCR (qPCR), the
study successfully identified 39 downregulated proteins with
potential drug interactions. This research not only confirmed the
therapeutic potential of RT2 as a novel anticancer agent but also
revealed its molecular mechanism of inhibiting tumor growth
through the precise regulation of protein expression networks
(Maijaroen et al., 2022). Moreover, Wilson’s research team
systematically analyzed the regulatory network of histone lysine
demethylation by integrating transcriptomics and epigenetics data.
They found that epigenetic regulatory factors (such as KDM1A,
KDM3A, EZH2, and DOT1L) play key regulatory roles in
promoting mitosis. These factors are not only involved in tumor
occurrence and development but are also closely related to the
formation of drug resistance, thus holding significant value for
therapeutic target development (Filipp, 2017; Wilson and
Filipp, 2018).

Omics strategies play an increasingly important role in drug
screening. Research further integrates organoid drug screening with
multi-omics technologies, systematically analyzing the mechanisms
of drug action via transcriptome sequencing and proteomics analysis
of drug-treated organoid samples (Toshimitsu et al., 2022; Shin,
2023; Singh et al., 2025). For example, for the screened candidate
drugs, researchers identified key genes and protein networks related
to drug response through differential expression analysis, and
combined phosphoproteomics to reveal the dynamic regulation
of downstream signaling pathways (Toshimitsu et al., 2022).
Furthermore, single-cell RNA-sequencing (scRNA-seq)
technology (Delaney, 2021) was used to analyze the cellular
heterogeneity of organoids under drug action, discovering specific
molecular markers of resistant subpopulation, thereby guiding the
optimization of combination therapy strategies (Chen et al., 2018;
Nojima et al., 2025). This multi-omics-driven organoid platform not
only validates the effectiveness of drug targets but also predicts drug-
metabolite interaction networks through metabolomics analysis,
providing a theoretical basis for dose design in subsequent
clinical trials (Chen et al., 2018; Bigot et al., 2024). The research
team also utilized epigenomic data (such as assay for transposase-
accessible chromatin by sequencing (ATAC-seq)) to explore drug-
induced changes in chromatin accessibility (Zou et al., 2021),
discovering that epigenetic regulatory factors (such as Histone
Deacetylases) may become synergistic targets to enhance drug
sensitivity (Ramaiah et al., 2021). Ultimately, this strategy
completes the full chain of precision research from drug
screening to mechanism validation by integrating organoid
functional experiments with multi-omics molecular maps (Mao
et al., 2024).

In terms of the advancement of personalized medicine, the rapid
development of omics technologies has had a profound effect. In the

field of genomics, by analyzing key information such as individual-
specific target variations, mutation loads, complex mutation
characteristics, and tumor-specific antigens, a solid theoretical
foundation has been laid for the three pillars of precision
medicine—targeted therapy, immune checkpoint inhibitors, and
personalized anticancer vaccines (Miao and Van Allen, 2016;
Shibata et al., 2021; Song and Zhang, 2022). This technological
breakthrough has rendered the molecular defect characteristics of
tumor cells the groundwork for clinical diagnosis and treatment,
significantly enhancing the scientific and precise nature of treatment
plans. For example, the successful approval of trastuzumab for
Human Epidermal growth factor Receptor 2 (HER2)-amplified
metastatic BC and imatinib for BCR-ABL fusion-positive chronic
myeloid leukemia marks the formal entry of cancer treatment into a
new era of precision medicine (Druker et al., 2001; Slamon et al.,
2001). Meanwhile, liquid biopsy technologies based on blood or
plasma, especially by means of analyzing circulating free DNA
(cfDNA) and circulating tumor DNA (ctDNA), have shown
significant value in the diagnosis of BC, disease-free survival
(DFS) (Silva et al., 2002) prediction, and the assessment and
personalized management of triple-negative breast cancer
(TNBC) (Ortolan et al., 2021; Neagu et al., 2023). With the
iterative upgrade of high-throughput sequencing technologies, the
deep integration of RNA-seq technology with bioinformatics
methods and standardized databases has opened up new avenues
for developing novel cancer biomarkers. Among them, research on
alternative polyadenylation (APA) as a potential biomarker has
made breakthrough progress. The integration of APA biomarkers
with gene expression profiles, clinical covariates, and other
traditional prognostic indicators is expected to construct a more
precise diagnostic system, thereby promoting a qualitative leap in
personalized cancer treatment (Kandhari et al., 2021). These
technological advancements not only deepen our understanding
of the molecular mechanisms of tumors but also provide more
efficient and precise tools for clinical practice, marking the arrival of
a comprehensive intelligent medical era (Fahmi et al., 2022; Long
et al., 2023).

3.2 Application of bioinformatics in cancer
drug development

Bioinformatics as an interdisciplinary field plays a key role in
drug development. Its main contributions are reflected in three
aspects: first, by systematically integrating multidimensional
biological data, it can accurately identify potential drug targets
and prognostic biomarkers (Jiang and Zhou, 2005; Cisek et al.,
2016); second, by leveraging powerful data analysis capabilities, it
can effectively elucidate and validate drug mechanisms of action
(Gong et al., 2018); finally, it holds significant application value in
predicting drug resistance (Rosati and Giordano, 2022).

Bioinformatics can systematically integrate multidimensional
biological data, and given its powerful data analysis capabilities,
accurately identify potential drug targets and prognostic biomarkers.
Wang et al. conducted bioinformatics analysis using Oncomine, Bc-
GenExMiner v4.3, PrognoScan, and UCSC Xena, discovering that
the expression of the PITX1 gene is upregulated in BC and its low
expression is associated with good patient prognosis, suggesting it
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may be a prognostic biomarker for BC. However, the reasons and
mechanisms for its upregulation in BC require further study (Wang
et al., 2020). Hossein Hozhabri et al. used TCGA, The University of
Alabama at Birmingham Cancer (UALCAN), Kaplan–Meier plotter,
The Breast cancer Gene-Expression Miner v4.7 (bc-GenExMiner
v4.7), cBioPortal, STRING, Enrichr, MethSurv, and Tumor IMmune
Estimation Resource (TIMER) for bioinformatics analysis, to find
that high levels of CCL 4/5/14/19/21/22 were associated with better
overall survival (OS) and recurrence-free survival (RFS), while
elevated expression of CCL 24 was associated with shorter OS in
BC patients. Additionally, high levels of CXCL 9/13 indicated longer
OS, while increased expression of CXCL 12/14 was associated with
better OS and RFS in BC patients. Conversely, increased
transcription levels of CXCL 8 were associated with poorer OS
and RFS in BC patients. The study results further indicated that CCL
5, CCL 8, CCL 14, CCL 20, CCL 27, CXCL 4, and CXCL 14 were
significantly associated with clinical outcomes in BC patients. Thus,
these findings provide a new perspective that may assist in the
clinical application of CC and CXC chemokines as prognostic
biomarkers for BC (Hozhabri et al., 2022). Hu et al. utilized
various bioinformatics tools to analyze the expression of Zinc
Finger Protein 207 (ZNF 207) in various cancer samples from
the TCGA database, such as TIMER 2.0, cProSite, UALCAN, the
SangerBox analysis tool, the Gene Expression Profile Interactive
Analysis 2 (GEPIA2) tool, the Tumor-Immune System Interaction
Database (TISIDB) portal, and the Tumor ImmuneDysfunction and
Exclusion (TIDE) platform. The upregulated expression of ZNF
207 was found to be associated with poorer prognosis and play an
important role in immune evasion and the tumor
microenvironment. Notably, ZNF207 has been identified as a
potential prognostic biomarker and therapeutic target in liver
cancer; however, future studies need to further elucidate the
specific molecular mechanisms of ZNF207 to fully utilize its
potential in cancer treatment (Hu et al., 2024). By mining gene
expression profile data, mutation data and other relevant
information, differential genes and proteins closely related to
cancer occurrence and development can be screened, which may
serve as potential drug targets and prognostic biomarkers, providing
key clues for the precise treatment of cancer (Xu et al., 2021; Lin
et al., 2022).

In elucidating and validating the mechanisms of action of drugs,
bioinformatics utilizes technologies such as NP, molecular docking
and MD simulation to simulate interactions between drugs and
targets, constructing drug-target networks, predicting drug action
targets and pathways, and further analyzing mechanisms of action,
providing theoretical support for drug development and clinical
applications (Dahl et al., 2002; Rajadnya et al., 2024). At the same
time, using bioinformatics tools to dynamically monitor and analyze
gene expression changes and signaling pathway regulations during
drug action helps to further validate drug mechanisms of action and
optimize drug treatment plans (Alshabi et al., 2019). Gong et al. first
utilized bioinformatics tools such as DrugBank 5.0 to screen
11 direct protein targets (DPTs) of aspirin and deeply analyzed
the protein interaction networks and signaling pathways of these
DPTs, discovering that aspirin was associated with various cancers,
with small cell lung cancer (SCLC) being the most closely related.
Subsequently, through the cBio Portal, detailed classifications of
mutations in four aspirin DPTs (IKBKB, NFKBIA, PTGS2, and

TP53) in SCLC were performed. Meanwhile, ONCOMINE was used
to identify the top 50 overexpressed genes in SCLC, and STRING
was further utilized to identify genes related to the four aspirin DPTs
in SCLC, ultimately discovering five consistent genes that may serve
as potential therapeutic targets for aspirin in SCLC. This study
revealed that aspirin exerts antitumor effects by intervening in the
cell cycle regulatory network and activating the P53 signaling
pathway, with mechanisms involving the regulation of cyclin-
dependent serine/threonine kinase activity, thereby interfering
with the proliferation process of SCLC cells. This finding not
only provides a new perspective for elucidating the molecular
mechanisms of aspirin in SCLC but also lays a theoretical
foundation for developing combination therapy schemes based
on cell cycle targeting (Gong et al., 2018).

In terms of predicting drug resistance, bioinformatics also
demonstrates enormous application potential. By analyzing tumor
cell gene mutations, gene expression profiles, and polymorphisms of
drug metabolism-related genes, resistance prediction models can be
established to predict tumor resistance to drugs, providing important
evidence for clinicians to formulate personalized treatment plans,
thereby improving the precision and effectiveness of cancer
treatment and enhancing patient prognosis (Banerji et al., 2015;
Olivier et al., 2019). For example, Diletta Rosat et al. utilized
scRNA-seq and bioinformatics analysis to explore cancer
heterogeneity and drug resistance mechanisms, employing specific
clustering algorithms (such as k-means) to group cells and
categorizing cells with similar gene expression patterns into the
same class, thereby identifying different cell subpopulations. Tumor
cells were classified into proliferative subpopulations, quiescent
subpopulations and stem-like subpopulations on gene the basis of
the expression characteristics, with different subpopulations
potentially related to cancer resistance. Using differential expression
analysis, specific genes expressed between different cell subpopulations
can be further identified, which may play key roles in cancer resistance
mechanisms. Furthermore, gene expression differences between pre-
treatment and post-treatment or resistant and sensitive cell populations
can be established to screen for differentially expressed genes (DEGs).
These DEGs may be involved in the response of cancer cells to drugs,
such as drug uptake, metabolism, target expression, and apoptosis
regulation. Analyzing the functions and related pathways of DEGs helps
to reveal the molecular mechanisms of cancer resistance (Rosati and
Giordano, 2022). For example, in non-small cell lung cancer, the KRAS
G12D mutation is associated with resistance, and through scRNA-seq
and bioinformatics analysis, it was found that cell subpopulations with
different KRAS expression levels respond differently to drugs. Patient-
derived xenograft (PDX) cells that survived after treatment with various
anticancer drugs showed lower risk scores (RS), lower KRAS expression
levels, lower activation states of the RAS-MAPK signaling pathway, and
significantly different expressions of ion channel transport genes, which
may be related to drug resistance mechanisms (Kim et al., 2015).

3.3 Application of network pharmacology in
cancer drug target development

NP, as an emerging research approach, has the advantage of
considering multiple targets and signaling pathways simultaneously,
which aligns with the complexity and heterogeneity of cancer.
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Therefore, by constructing drug-target-pathway networks, it
provides a series of systematic strategies for cancer drug
screening, focusing on its applications in target identification,
drug repositioning and drug combinations (Azmi and
Mohammad, 2014; Wang J. et al., 2022; Fatima et al., 2024).

In NP, the key steps of screening potential drugs involve the
construction and analysis of drug-target networks. First, it is
necessary to collect information on drugs and their targets from
existing biological databases, including known drug targets and
potential targets obtained through predictions. Then, network
models are constructed using visualization tools like Cytoscape
and network topology analysis is performed. By analyzing
indicators such as node degree and betweenness centrality, key
drug and target nodes can be identified, revealing the
mechanisms of action and potential therapeutic targets of cancer
drugs (Gogoi and Saikia, 2022; Xiong et al., 2022). Following this
workflow, Liu et al. screened 11 genes related to the immune-
inflamed phenotype (IIP) prognosis of colorectal cancer patients
from the targets of Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) through
NP analysis and bioinformatics analysis (PIK3CG, C5AR1, PRF1,
CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2, and
MMP9). They found that YYFZBJS can activate the immune
response in colorectal cancer and alleviate inflammation in the
IIP microenvironment, providing new perspectives for finding
new therapeutic targets for traditional Chinese medicine and
accurate diagnostic indicators for targeting tumors (Liu Y. et al.,
2023). Bai et al. performed comprehensive pharmacological
strategies combining NP, liquid chromatography-quadrupole
time-of-flight tandem mass spectrometry (LC-Q-TOF/MS), and
experimental analysis to demonstrate that Jiawei Xiaoyao Wan
(JXW) exerts dual therapeutic effects on BC combined with
depression in mice via multiple targets (TP53, ESR1, VEGFA,
AKT1, IL6, TNF, EGFR). The potential mechanisms were found
to be related to regulating neurotransmitter (5-Hydroxytryptamine)
and inflammatory factor levels, and importantly, blocking the JAK2/
STAT3 signaling pathway effectively alleviated depressive symptoms
in BC combined with depression mice, inhibiting tumor progression
(Bai et al., 2024). Furthermore, the analysis of drug-target networks
not only facilitated drug repositioning but also revealed interactions
between different drugs, providing a basis for finding potential drug
combinations (Kumar and Roy, 2023).

Researchers can identify new uses for drugs that are already available.
They do this through in-depth analysis of drug targets and mechanisms
of action through NP (Azmi, 2013; Song et al., 2019). In BC research,
drug repositioning is considered a promising approach to enhance
clinical efficacy (Malik et al., 2022). HTS, QSAR, and NP technologies
are widely applied to discover drugs for new indications (Chen et al.,
2017; Satish et al., 2024). Recent studies have shown that drugs such as
metformin, itraconazole and pimobendan have been repositioned to
regulate metabolic and epithelial-mesenchymal transition (EMT)
pathways, effectively inhibiting BC progression (Kandasamy et al.,
2024). These studies underscore that drug repositioning can not only
expand the indications of existing drugs butmay also enhance the efficacy
of cancer treatment through multitarget approaches, reduce side effects,
and promote the development of combination therapies (Turanli et al.,
2018; Turanli et al., 2021).

Combination therapy is an important strategy for improving
anticancer efficacy and overcoming drug resistance (Kumar et al.,

2022; Tufail et al., 2022). NP can predict potential drug
combinations by analyzing the synergistic effects of drug
combinations (Liu et al., 2017). Using synergistic drug
combination prediction algorithms, such as multi-objective
evolutionary algorithms and random search algorithms,
synergistic drug combinations can be rapidly screened from
large-scale drug combination spaces (Zinner et al., 2009). In
addition, by constructing drug combination networks, the efficacy
and safety of different drug combinations can be analyzed, providing
guidance for clinical trials. For instance, combinations of paclitaxel,
docetaxel, trastuzumab, and pertuzumab can effectively treat HER2-
positive metastatic BC (Kawajiri et al., 2015; Tian et al., 2017).
Antonio Federico et al. proposed an integrated NP framework that
systematically prioritizes drug combinations with synergistic effects
while considering the molecular characteristics of diseases and the
intrinsic properties of drugs. This method is not only applicable to
cancer but can also be extended to other complex diseases, providing
new computational tools for drug repositioning and combination
therapy. The researchers found that combinations of paclitaxel with
non-cancer drugs (such as chlorpromazine) showed potential
therapeutic value across various cancer types, warranting further
experimental validation. Paclitaxel is the most commonly used drug
across cancer types, especially in BC, prostate cancer and lung
squamous cell carcinoma, and is often combined with
chlorpromazine and carboplatin. Additionally, the specific
combination of temozolomide with Aurora kinase inhibitors
provides new therapeutic strategies for liver cancer, while the
specific combination of navitoclax with psychiatric drugs (such as
pentobarbital) offers new hope for colon cancer patients (Federico
et al., 2022).

3.4 Application of molecular dynamics
simulation in cancer drug target
development

Based on the earlier technical methods, MD simulation allows
researchers to identify potential drug binding sites, analyze
conformational changes of drug molecules, and assess the
stability and activity of molecules under specific conditions,
which is crucial for optimizing drug design (Dore et al., 2017).
Furthermore, MD simulation can be combined with other
computational methods, such as molecular docking and VS, to
provide comprehensive support for drug development (Kokh
et al., 2016; Platania and Bucolo, 2021; Sharma et al., 2021;
Trezza et al., 2025).

One of the most critical aspects of the drug development process
is the interaction between drugs and targets. Through MD
simulation, researchers can gain in-depth understanding of how
drug molecules bind to their targets (such as proteins) and affect
their functions. In research targeting the c-Met receptor tyrosine
kinase (MET), two plant compounds were identified through VS
and MD simulation, that is, neogitogenin and samogenin, which
have significant binding affinity and show promising inhibitory
activity against MET (Elasbali et al., 2024). Shams Tabrez et al.
obtained the 3D structure of glutaminase (GLS) from the protein
database and minimized it, screening approximately 60,000 natural
compounds from a traditional medicine database, and prepared
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ligands using the “Prepare LigandModule” of Discovery Studio 2020
(Ehrman et al., 2007). A control compound, 6-Diazo-5-Oxo-
L-Norleucine, was retrieved from the PubChem database.
Utilizing VS and molecular docking techniques, candidate
compounds with high binding energy to GLS were identified and
their stability was verified through MD simulation. GROMACS
5.1.2 was used with 100 ns MD simulation for GLS-DON (control),
GLS-ZINC32296657 and GLS-ZINC03978829, with average RMSD
(Sticht et al., 1994) values of 0.25, 0.33 and 0.31 nm, respectively.
RMSD is an indicator of protein stability, with lower deviations
indicating more stable protein structures. The results showed that all
three formed stable complexes with GLS and exhibited hydrogen
bonding interactions, with GLS-DON and GLS-ZINC03978829
showing relatively lower average RMSD values, indicating better
binding stability and a higher abundance of hydrogen bonds. RMSF
and solvent-accessible surface area (SASA) (Broz et al., 2024)
analyses indicated that DON and ZINC03978829 interacts more
closely with GLS, reducing the fluctuation of enzyme residues and
apparent exposure. GLS-DON and GLS-ZINC03978829 formed 2-
5 hydrogen bonds with the GLS catalytic pocket, while GLS-
ZINC32296657 formed 1-2 hydrogen bonds. The energy
landscape revealed that the GLS-ZINC03978829 complex has two
distinct global energy minima basins, indicating greater stability.
ZINC03978829 and ZINC32296657 had higher binding energies to
GLS than the control compound 6-Diazo-5-Oxo-L-Norleucine, and
MD simulation suggested that they form stable complexes with GLS,
potentially serving as GLS inhibitors for cancer treatment, but the
need for further experimental optimization was prompted (Tabrez
et al., 2022).

Drug optimization, as a core aspect of drug development, aims
to enhance the three key attributes of drugs through molecular
structural modifications: biological activity, target selectivity and
clinical safety. MD simulation technology exhibits unique
advantages in this field, primarily reflected in two aspects:
1 Optimization of target binding characteristics. Through high-
precision MD simulation, researchers can dynamically analyze the
binding modes of drug-target complexes, accurately identifying key
amino acid residue networks that influence binding affinity (Shen
et al., 2013; Tripathi et al., 2016). A typical case is the development of
glycogen synthase kinase-3β (GSK-3β)/inhibitor of nuclear factor-
κB kinase-β (IKK-β) dual-target inhibitors, where the research team
combined molecular docking with 200 ns MD simulation, not only
verifying the binding stability of lead compounds but also
discovering their unique hydrogen bond networks formed with
the adenosine 5′-triphosphate (ATP) binding pockets of both
targets, ultimately achieving half maximal inhibitory
concentration (IC50) values of 12 nm and 8 nm for GSK-3β and
IKK-β, respectively (Roy Acharyya et al., 2022). 2 ADME property
prediction MD simulation can construct dynamic behavior models
of drug molecules in physiological environments, quantitatively
predicting absorption, distribution, metabolism, and excretion
characteristics by calculating parameters such as ligand-
membrane protein interactions and binding free energies of
metabolic enzymes (Zheng et al., 2021; Çakır et al., 2025). This
physics-based prediction method offers better interpretability than
traditional QSAR models. This integrated MD simulation
optimization strategy reveals structure-activity relationships at the
atomic scale, significantly improving the success rate of drug design,

which has therefore become an important paradigm in innovative
drug development (Wade and Salo-Ahen, 2019).

4 Conclusion and outlook

The development and application of cancer treatment drugs are
undergoing a revolutionary change. With the cross-integration of
fields such as omics technologies, bioinformatics, NP, and MD
simulation, personalized cancer treatment is showing incredible
potential. These technological breakthroughs not only broaden
research perspectives, but also provide innovative ideas for
clinical treatment. However, the field still faces significant
challenges, such as data heterogeneity, poor algorithm
interpretability, and issues with clinical translation efficiency.
Integrating cutting-edge technologies like AI, machine learning
(ML), and deep learning (DL) is expected to overcome the
limitations of traditional therapies, achieving more precise and
efficient treatment plans.

At the application level, omics technologies generate massive
amounts of data, but data heterogeneity restricts target identification
efficiency. AI technologies can quickly analyze multi-omics data, can
automatically extract features, and can predict drug-target
interactions. Additionally, bioinformatics relies on computational
tools to analyze biological data, while ML can optimize the
generalization ability of ML algorithms, reducing prediction bias
caused by overly simplified algorithms (Sarvepalli and Vadarevu,
2025). For example, DENVIS, a scalable algorithm that uses GNN,
has demonstrated speed and accuracy advantages in compound
screening (Krasoulis et al., 2022). NP focuses on multi-target drug
interactions; however, it relies on experimental validation to avoid
false-positive results. By applying DL technology, recent research
has successfully identified potent discoidin domain receptor tyrosin
kinase 1 (DDR1)inhibitors, illustrating how AI can accelerate the
identification and validation of specific drug targets in cancer
treatment (Zhavoronkov et al., 2019; Talevi et al., 2025). AI
predicts drug-target-disease associations by analyzing large-scale
biological networks (such as PPI networks), aiding drug repurposing
and significantly reducing research and development costs (Tran
et al., 2023;Wang et al., 2023). In drug screening, the combination of
VS and AI can accelerate drug discovery, with the AlphaFold model
enabling the prediction of protein structures that facilitated the
identification of a new candidate drug (ISM042-2-048) targeting
cyclin-dependent kinase 20 in liver cancer cells in the absence of
experimentally determined target protein structures (Ren et al.,
2023; Wang et al., 2024). Molecular docking technology
combined with AI can identify compounds that are more
effective against specific targets (Batool et al., 2019; Vamathevan
et al., 2019). Platforms like RosettaVS have been developed to
predict docking poses and binding affinities by using enhanced
force fields and flexible receptor models to improve prediction
accuracy. This method can simulate conformational changes
occurring upon ligand binding, which is crucial for accurately
predicting how different compounds interact with their targets
(Zhou G. et al., 2024). MD simulation provides atomic-level
binding details but are computationally expensive and parameter-
sensitive. AI can significantly accelerate this process and improve
accuracy. Integrated machine learning force fields (such as
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DeePMD) can reduce simulation time while maintaining accuracy.
Additionally, DL models (such as three-dimensional convolutional
neural network (3D-CNN)) can analyze trajectory data to predict
dynamic changes at binding sites, effectively lowering
computational costs and improving simulation accuracy (Peivaste
et al., 2024; Zeng et al., 2025).

Despite the significant improvements in target discovery and
drug design efficiency through the integration of multi-omics data,
bioinformatics analysis, NP, and MD simulation in cancer drug
development, the application still faces multiple limitations and
challenges. First, model performance really depends on good,
standardized multi-omics data; however, in reality, data often
suffer from incompleteness, heterogeneity, and privacy protection
restrictions; hindering cross-institutional data sharing and model
generalization capabilities. Second, AI models (especially DL)
generally face the “black box” problem, lacking interpretability
and making it difficult to meet clinical and regulatory
requirements for transparency of mechanisms and causal
inference. Furthermore, bias in algorithm training may
exacerbate health inequalities and hinder discovery of novel
targets. From an ethical perspective, patient privacy, data de-
identification, informed consent, and algorithmic bias have
become key issues. Particularly when dealing with sensitive
information such as genomics and transcriptomics, strict data
governance and access mechanisms need to be established within
the frameworks of regulations like the Health Insurance Portability
and Accountability Act (HIPAA) and the General Data Protection
Regulation (GDPR). In the future, we need to create an open,
trustworthy, and ethically sound data-sharing system and to
promote the development of explainable AI and physics-guided
models to achieve the true implementation of AI-driven precision
medicine in cancer.
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