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Introduction: Chronic wounds are a significant source of patient morbidity, and
ineffective treatment can lead to complications that are difficult and costly to manage.
Given the limitations of current therapies, repurposing medications with well-studied
safety and accessibility profiles offers a promising strategy for advancing wound care.
Methods: A comprehensive review of the existing literature was conducted to
evaluate the role of serotonin-modulating pharmacotherapy in wound healing.
Results: Serotonergic signaling plays a multifaceted role in wound healing and
evidence increasingly supports serotonin-modulating pharmacotherapy as having
favorable angio-regulatory, immunomodulatory, and antimicrobial wound healing
effects. Preclinical and clinical studies have demonstrated that topical administration
of serotonin-modulating pharmacotherapy may improve wound healing outcomes.
Discussion: findings of this study provide support for the use of serotonin-
modulating pharmacotherapy, with a special focus on topical application, as
an adjunctive treatment for chronic, non-healing wounds and highlight the need
for further translational clinical investigation.
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1 Introduction

Chronic non-healing wounds, such as neuropathic and vascular ulcers, cause significant
disability and increase the risk of pain, infection, sepsis, amputation, and other morbidities (Zhao
et al, 2016). In the United States, chronic wounds affect nearly 2.5% of the population and
contribute to an economic burden surpassing $50 billion annually (Sen, 2019; Sen, 2021).
Serotonin also known as 5-hyrdoxytryptamine (5-HT) is an extensively studied monoamine
neurotransmitter that is also synthesized and used by peripheral cells (Malinin et al., 2004;
Alstergren et al., 1999; Laberge et al., 1996; Nguyen et al., 2019). Tryptophan hydroxylase 1, a key
peripheral serotonin-synthesizing enzyme, is expressed in lymphocytes, macrophages, mast
cells, and T cells, while serotonin transporter (SERT) and 5-HT receptors are also present in
macrophages, dendritic cells, and lymphocytes (Shah and Amini-Nik, 2017). In response to
peripheral inflammation, both 5-HT and its receptors are upregulated, promoting key
angiogenic and cellular wound healing pathways (Malinin et al., 2004; Alstergren et al,
1999; Laberge et al,, 1996; Nguyen et al., 2019). At present, 5-HT is underappreciated in the
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Hemostasis

Serotonin promotes platelet aggregation,
recruitment and supports the formation
of a stable clot.

Proliferation

7

Serotonin enhances keratinocyte
migration and survival and increases
fibroblast activity and angiogenesis.

FIGURE 1

Inflammation

Serotonin enhances B and T-lymphocyte
recruitment, phagocytosis, and increases
TNF-a expression.
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Serotonin stabilizes new blood vessels

and supports tissue remodeling
through collagen production.

Serotonin influences wound healing stages through effects on platelets, immune cells, fibroblasts, and keratinocytes. Figure created by the authors
based on findings from Enoch and Leaper (2008), Opneja et al. (2019), and Shah and Amini-Nik (2017).

wound healing literature, but its developing multifaceted involvement
positions 5-HT signaling as a promising target for advanced wound care
therapeutics.

2 Mechanistic basis and therapeutic
rational for Serotonin/SSRls in
wound healing
2.1 Overview and clinical framing
5-HT plays regulatory roles in the four progressive, overlapping

stages of wound healing: hemostasis, inflammation, proliferation,
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and remodeling (Figure 1) (Enoch and Leaper, 2008; Eskeland et al.,
2017). Selective serotonin reuptake inhibitors (SSRIs), including
fluoxetine, citalopram, escitalopram, sertraline, and paroxetine,
inhibit 5-HT reuptake at the synaptic cleft and are increasingly
used across a broadening range of clinical applications including
dermatologic diseases such as atopic dermatitis, contact dermatitis,
their
downregulation of various proinflammatory cytokine signatures
(Brody and Gu, 2020; Eskeland et al, 2017; Kiecka and
2022; Shah and Amini-Nik, 2017).
evidence supports the use of SSRIs to improve wound healing
angio-regulatory,
antimicrobial mechanisms, which remain under-characterized

and psoriasis, partially due to well-documented

Szczepanik, Emerging

outcomes  via immunomodulatory, and
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and have not yet been comprehensively contextualized for
cutaneous wound healing (Eskeland et al., 2017).

2.2 Hemostasis and angiogenesis

Within minutes of cutaneous injury in the hemostasis stage,
thrombin triggers 5-HT release from platelets and endothelial cells,
activating 5-HT receptors on the same cell types and initiating
G-protein-mediated extracellular signal-regulated kinases 1 and
2 phosphorylation in the mitogen-activated protein kinase
signaling pathway (Iwabayashi et al, 2012; Raote et al, 2007;
Machida et al,, 2013; Qin et al., 2013; Olszewska-Pazdrak and
Carney, 2013; Gonzalez de Valdivia et al., 2017; Guo et al., 2022;
Flaumenhaft and De Ceunynck, 2017; Huang et al, 2015;
Tsopanoglou and Maragoudakis, 1999; Duerschmied et al., 2013).
This early 5-HT autocrine signaling amplifies downstream pro-
angiogenic cascades by upregulating vascular endothelial growth
factor (VEGF) receptors and promoting release of VEGF, CXCL12,
and matrix metalloproteinases, to sustain VEGF and nitric
oxide-driven neovascularization (Almalki and Agrawal, 2017; Lin
et al., 2023; Olszewska-Pazdrak and Carney, 2013; Guo et al., 2022;
Flaumenhaft and De Ceunynck, 2017; Yang et al., 2005; Ceradini
etal., 2004). SSRIs may be leveraged to attenuate dysregulated 5-HT
signaling and to modulate the aberrant platelet and vascular
responses in pathologic chronic wounds. For example, systemic
SSRIs block SERT on platelets, preventing 5-HT uptake and causing
a dose-dependent decrease, often exceeding 80%, in platelet 5-HT
with greater effects seen after 6-12 weeks (Maguire et al., 1993;
Kubera et al., 2001; Serebruany et al., 2001). Additionally, SSRIs
lower plasma 5-HT, reduce key aggregation glycoproteins, and
inhibit
mobilization release, which is a key step in platelet activation
(Maguire et al., 1993; Kubera et al., 2001; Serebruany et al., 2001;
Malinin et al, 2004). In contrast to CNS neurons which can

platelet ~signaling proteins involved in calcium

synthesize 5-HT de novo via tryptophan hydroxylase, an enzyme
which has enhanced expression in response to SSRIs, platelets
5-HT and experience a depletion of
intracellular stores to less than 2% of baseline after SSRI
treatment (Shah and Amini-Nik, 2017). Relevant for poorly
perfusing wounds, preliminary animal model studies have shown

cannot synthesize

SSRIs may increase endothelial nitric oxide synthase activity and
nitric oxide bioavailability (Pereira et al., 2015; Ofek et al., 2012). The
platelet-inhibitory SSRI effects may also be particularly useful for
targeting venous stasis ulcer disease processes as all classes of
chronic venous insufficiency are linked to pathogenic platelet
hyperactivity and increased platelet-monocyte and platelet-
neutrophil aggregates, independent of whether a wound is
present (Malinin et al., 2004).

2.3 Inflammation phase immunomodulation

The downregulatory effects of SSRIs on platelet 5-HT signaling
may also modulate the inflammatory stage of wound healing where
platelet-secreted 5-HT enhances recruitment and activation of
neutrophils unfavorable

and macrophages, leading to

upregulation of key pro-inflammatory cytokines including tumor
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necrosis factor alpha (TNF-a) and interleukin-12 (IL-12) in chronic
wounds (Maguire et al., 1993; Kubera et al., 2001; Serebruany et al.,
2001; Shah and Amini-Nik, 2017). Synergistically, in vitro SSRI
exposure has been shown to increase natural killer cell, a negative
regulator of wound-microenvironment pro-inflammatory signaling,
activity thereby reducing inflammation via two converging,
complementary mechanisms (Frank et al., 1999; Brubaker et al.,
2011). Dendritic cells are also involved in the inflammatory stage
and sequester 5-HT via SERT from activated T lymphocytes,
subsequently presenting it to naive T cells to promote their
activation and adaptive immune response (Shah and Amini-Nik,
2017). In pathologic nonhealing wounds, T lymphocytes are
elevated and exhibit dysfunctional signaling unresponsive to
stimulation (Raziyeva et al, 2021; Havran and Jameson, 2010;
Shah and Amini-Nik, 2017). SSRIs may reduce T lymphocyte
proliferation, cytokine production, and induce apoptosis in
activated T
preferentially compared to mature naive T lymphocytes (Shenoy
et al,, 2013; Di Rosso et al., 2016; Pallinger and Csaba, 2007; Gobin
etal,, 2013). A persistent inflammatory phase may be associated with

unresponsive,  constitutively lymphocytes

dysregulated  monopoiesis and  sustained elevation of
proinflammatory macrophages, a key cell-type for transition to
the proliferative stage which has upregulated phagocytosis and
TNF-a in response to 5-HT (Li et al., 2021; Malinin et al., 2004).
In an ex-vivo study, SSRIs significantly reduced the expression of
CXCR4, CD4, and CCR5 on both monocyte-derived macrophages
(MDM) and peripheral blood mononuclear cells compared to
control, suggesting an inhibitory role of SSRIs for macrophage
proinflammatory signaling (Greeson et al.,, 2016). Other studies
MDM

proinflammatory cytokines, reactive oxygen species, and antigen

have demonstrated SSRI-associated reductions in
presentation to immune cells, which may be dysregulated in

pathologic wound healing (Nazimek et al., 2017).

2.4 Proliferation: keratinocyte and
fibroblast responses

In regard to proliferative phase keratinocytes, topical 5-HT has
been shown to enhance survival, migration, and wound area
reduction in a dose-dependent manner, accelerating closure in
both in vitro and in vivo models (Polanski et al., 1995; Sternberg
et al., 1987; Nguyen et al., 2019; Sadiq et al., 2018; Lenz et al., 2001;
Malinin et al., 2004; Seuwen et al., 1988; Rodriguez-Barucg et al.,
2024). Improved keratinocyte scratch closure rates due to increased
proliferation were reversed following treatment with ketanserin, a 5-
HT receptor antagonist, supporting SSRI dependance on 5-HT
keratinocyte signaling (Rodriguez-Barucg et al.,, 2024). This study
identified
350 differentially expressed genes in SSRI-treated keratinocytes

also improved  phosphorylation  profiles and
with reactome analysis suggesting altered mitochondrial and
ribonucleotide metabolism and thermogenesis (Rodriguez-Barucg
et al, 2024). In fibroblasts, 5-HT promotes survival, activity,
proliferation, and collagen production, while also synergizing
with FGF-2 to enhance tissue proliferation (Polanski et al., 1995;
Sternberg et al., 1987; Nguyen et al., 2019; Sadiq et al., 2018; Lenz
et al., 2001; Malinin et al., 2004; Seuwen et al., 1988). These effects
involve active transport, increased oxygen formation, protein
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and 5-HT
adhesion, and multiplication in culture (Polanski et al., 1995;
Sternberg et al., 1987; Nguyen et al, 2019; Sadiq et al, 2018;
Lenz et al.,, 2001; Malinin et al., 2004; Seuwen et al., 1988). The
effects of SSRIs on certain chronic wound mechanism which have

phosphorylation, receptor-mediated mitogenesis,

implicated 5-HT signaling remain unassessed; these include 5-HT-

induced B-lymphocyte proliferation, afferent nerve ending
stimulation and pain response and the potential of SSRIs to alter
B-receptor function in wound cells, similar to SSRI-induced
postsynaptic B-receptor downregulation in the brain (Malinin

et al., 2004).

2.5 Selective serotonin reuptake inhibitors
and wound microbiome

Recurrent or chronic infection is a known contributor to
impaired wound healing and, in a retrospective analysis of
2963 patients, it was found that the predominant bacterial
species in chronic wounds were S. epidermidis, S. aureus,
Corynebacterium,  and (Kiecka  and
Szczepanik, 2022). Biofilms, which hinder antibiotic treatment by

Pseudomonadaceae

using extracellular polymeric substance barriers and efflux pumps,
are associated with delayed healing and increased infection risk in
chronic wounds (Gompelman et al., 2016; Wall et al., 2019; Pereira
et al, 2021). Polymicrobial interactions, involving species like
Staphylococcus aureus and Pseudomonas aeruginosa may enhance
biofilm pathogenicity via exchange of antibiotic resistance genes, like
those producing antibiotic-degrading enzymes (Ponde et al., 2021;
Cheong et al., 2021; Orazi and O’Toole, 2019).

Among SSRIs, fluoxetine and sertraline have the strongest
antimicrobial effects; these SSRIs are more hydrophobic than
others and may diffuse more easily across the phospholipid
membrane to interact with cellular machinery (Kiecka and
Szczepanik, 2022). These SSRIs, at sub-minimum inhibitory
biofilm
production via ALS3 protein-binding and reduce mature
biofilm metabolism (Oliveira et al., 2018; Costa Silva et al,,
2017; Rodrigues et al., 2023). Fluoxetine has been shown to
have in vitro effect against multi-resistant S. aureus, E.

concentrations, have been shown to prevent

faecalis, S. epidermidis, E. coli and P. aeruginosa and decreases
biofilm formation of S. aureus clinical isolate UAMS-1 (Dafinone
et al, 2025). There is also evidence suggesting fluoxetine
synergizes polymyxin B bactericidal effects in 80% of gram-
negative isolates, outperforming fosfomycin and meropenem
(Ahmed et al., 2024). topical
application to infected wounds may also decrease purulence

combinations Fluoxetine

and hinder hematogenous bacterial invasion (Dafinone et al.,
2025).
fluconazole-resistant Candida strains, and its administration

Fluoxetine has also shown effectiveness against
leads to significant dose-dependent reductions in biofilm
metabolism, 96% for C. krusei, and biomass, 82% for C.
glabrata (Costa Silva et al, 2017). Sertraline inhibits the
growth of S. aureus, E. coli, P. aeruginosa, and other Gram-
positive bacteria such as S. epidermidis and E. faecalis, and shows
synergy with antibiotics, including reductions in mimimum
inhibitory concentration of tetracycline and ciprofloxacin
urealyticum strains

against C. and quinolone-resistant
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(Dafinone et al., 2025). While generally less effective against
Gram-negative species, it demonstrates activity against H.
influenzae, M. catarrhalis, C. jejuni, Acinetobacter spp., and
can inhibit biofilm production in coagulase-negative
staphylococci (Dafinone et al, 2025). In addition to the
immunomodulatory properties of SSRIs, the antimicrobial
properties of SSRIs make them promising adjuncts for
difficult-to-treat wound bacterial and fungal infection.

3 Topical selective serotonin reuptake
inhibitors and wound healing studies

3.1 Pre-clinical studies

Evidence from preclinical studies suggest topical SSRI
application may improve wound healing. An in vivo study of
diabetic mouse wound models revealed topical fluoxetine
with
decreases in wound area and exudate. Topical fluoxetine

treatment promoted re-epithelialization, significant
treatment also increased angiogenesis, suggested by higher
CD31" endothelial cell counts and visible small vessels, while
their

phenotype towards a pro-reparative state (Nguyen et al,

reducing inflammatory macrophages and shifting
2019). In another study where wounds were created in rats,
chronic topical fluoxetine administration improved mean
wound lengths compared to acute administration in the initial
4 days; wounds in both chronic and acute fluoxetine treatment
groups healed completely by day 10, while the placebo group did
not fully heal by the study’s conclusion (Farahani et al., 2007) In
rats subjected to stress which decreased wound healing rate,
topical fluoxetine treatment increased healing rate, leukocyte
healing response, and normalized epithelialization and
epithelial cell structure (Farahani et al., 2007). Bioelectronic
delivery of topical fluoxetine in a murine punch wound model
increased re-epithelialization by nearly 40% compared to control;
this was accompanied by anti-inflammatory M2 macrophage
infiltration without pro-inflammatory M1 presence, leading to
a reduced M1/M2 ratio over time, indicative of accelerated
transition to the reparative phase of wound healing (Li et al,,
2024; Asefifeyzabadi et al., 2024). In a porcine model also using
bioelectronic delivery, topical fluoxetine produced similar re-
with
improvements in the wound macrophage and cytokine profile

epithelialization improvements, also corresponding
(Li et al.,, 2025).There is an advantage to topical, as opposed to
systemic, administration: preclinical data indicate that topical
fluoxetine application leads to plasma fluoxetine concentrations
that are twofold lower than those achieved with oral fluoxetine at
therapeutic neurological doses. Importantly, topical fluoxetine
treatment does not affect plasma levels of 5-HT, highlighting its
potential for localized therapy with minimal systemic impact

(Nguyen et al., 2019).

3.2 Clinical studies

In view of the pro-reparative outcomes noted with agonists of
the 5-HT receptors, it may be counterintuitive to propose that
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TABLE 1 Clinical studies investigating topical serotonin-modulating medications and chronic wound healing.

Treatment Participants

(n)

Ulcer etiology

Findings Reference

2% 72 VLU, Decubitus, or = Ketanserin significantly improved granulation (p < 0.05), epithelialization, | Janssen et al. (1989)

Ketanserin BID Ischemic and reduced wound area faster than placebo, with 36% complete healing by
week 8

2% 23 VLU Ketanserin significantly improved granulation tissue formation compared to | Roelens (1989)
Ketanserin BID placebo (p < 0.05) and showed better epithelialization and healing (p < 0.01)

2% 12 DFU Ketanserin significantly reduced ulcer area by 94% (p < 0.001) and improved = Quatresooz et al.
Ketanserin BID relative wound area and healing index values from week 4 onward (p < 0.05) = (2006)

2% 140 DFU At 12 weeks, ketanserin reduced ulcer area by 87% vs. 63% for placebo, Martinez-de Jesus et al.

Ketanserin BID

significantly accelerating wound healing

(1997)

10% Iproniazid 28 Decubitus or
BID Traumatic

After 1 week, iproniazid-treated lesions healed 52% vs. 27% for saline (p <
0.05), and differences remained significant after 2 weeks

Goldstein et al. (1962)

antagonists may have a similar result. However, existing clinical
studies have investigated ketanserin. Although ketanserin does
not increase serotonin levels, its wound healing effects are
thought to result from its antiplatelet properties and ability to
improve microvascular perfusion, rather than through direct
serotonergic signaling (Malinin et al., 2004; Hedner and
1988).
monoamine oxidase inhibitor that limits the breakdown of

Persson, Separately, iproniazid (an irreversible
serotonin) may promote reparative effects by increasing
5-HT receptor

activation (Gillman, 2005). There are no ongoing or previous

extracellular and enhancing downstream
clinical trials investigating topical SSRIs for the treatment of
chronic wounds (ClinicalTrials.gov).

In a double-blind placebo-controlled clinical trial of various
chronic wounds, topical ketanserin 2% BID application was
associated with greater re-epithelialization, granulation tissue
formation, and wound area reduction rate (Janssen et al,
1989). Other studies of topical ketanserin 2% BID for VLUs
and DFUs showed similar improvements in wound healing
measures in addition to reductions in transudate and
erythema (Roelens, 1989). In a double-blind intra-individual
comparative study, diabetic participants with >2 chronic leg
ulcers were randomized to receive topical 2% ketanserin BID
on one ulcer and placebo on another ulcer for 8 weeks, in adjunct
to SOC. The mean weekly reduction in wound area was
significantly greater for ketanserin-treated ulcers (10.25%)
compared to placebo-treated ulcers (2.5%) (Quatresooz et al.,
2006). One trial investigating topical 10% iproniazid BID for
2 weeks for the treatment of chronic ulcers showed significantly
increased rates of healing throughout the trial compared to
placebo control (Goldstein et al., 1962). These studies are
summarized in Table 1.

4 Selective serotonin reuptake
inhibitor-associated cutaneous adverse
drug reactions

Oral SSRI-associated cutaneous adverse drug reactions
(CADRs) have been reported in the literature. One systematic

Frontiers in Pharmacology

review of 173 cases found fluoxetine is the most commonly
reported SSRI with CADRs, followed by sertraline and
paroxetine. CADRs were frequently petechiae, ecchymoses,
alopecia, and photo-dermatoses (Masuka et al., 2022). SSRI-
related petechiae and ecchymoses may be attributed to SSRI-
induced platelet inhibition; however, a study of oral fluoxetine
found no significant difference in cutaneous microcirculation
compared to control (Andrade et al., 2010; Edinoff et al., 2022;
Miick-Weymann and Rechlin, 1996). Notably, there are no
drug topical  SSRI
administration. Therefore, topical delivery of SSRIs for the

reports of adverse reactions  for
treatment of chronic wounds or wound infections is preferred,
to maximize concentrations of the drug at the wound while
minimizing systemic absorption. Indeed, these approaches are
hydrogels,
microparticles, nano capsules, or bioelectronic delivery devices
(Josino et al., 2021; Dos Santos et al., 2020). Topical use would be

expected to minimize serotonergic effects; although, patients on

under investigation, including delivery via

dual antiplatelet therapy or anticoagulation should still be
monitored clinically.

5 Conclusion

With  their
properties, repurposing 5-HT modulating pharmacotherapy,
including SSRIs, for
significant benefits in treating chronic wounds, as supported

immunomodulatory and  antimicrobial

topical administration may offer
by both preclinical and clinical evidence. Further clinical
research and pharmacokinetic studies are essential to fully
evaluate the potential of SSRIs in improving wound healing
outcomes and to establish their role as a viable adjunctive
therapeutic option in chronic wound care.
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