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Neuroinflammation arises from the synergistic interplay of multiple inflammatory
mediators and is pathologically associated with various neurological disorders.
These conditions are complex, multifactorial diseases characterized by dynamic
interactions between chronic neuroinflammation, oxidative stress, and
progressive neuronal degeneration. Curcumin, a naturally occurring
polyphenolic compound, exhibits significant pharmacological activity in anti-
inflammatory processes and immune regulation. Within neuroinflammatory
pathologies, microglial cells are crucial effector cells as they can secrete
inflammatory mediators. Emerging evidence suggests that these resident
immune cells are the primary site of the biological activity of curcumin in the
central nervous system. The compound demonstrates multimodal regulatory
effects, including modulation of key signaling pathways (NF-κB,
NLRP3 inflammasome, and Nrf2) and upregulation of anti-inflammatory
cytokines (TGF-β and interleukin-10), collectively contributing to the
neuroinflammatory suppression effect of curcumin. This review
comprehensively analyzed the therapeutic potential of curcumin in
neuroinflammation and explored its clinical prospects for neurological disease
intervention.
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1 Introduction

Neuroinflammation is a sophisticated immunological response within the central
nervous system that is pivotal in neuroprotective and neurodegenerative processes
(Botella Lucena and Heneka, 2024; Lei et al., 2025; Pluta, 2025). This phenomenon is
characterized by the activation of microglia and astrocytes, accompanied by the release of
pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β
(IL-1β), and interleukin-6 (IL-6), and reactive oxygen species (ROS) (Chen et al., 2024; Du
et al., 2024; Kong et al., 2024b; Liu et al., 2024c). Acute neuroinflammation serves essential
functions in tissue repair and pathogen clearance. However, chronic neuroinflammatory
responses contribute significantly to the pathogenesis of various neurological disorders,
such as Alzheimer’s disease (AD) (Chae et al., 2024), Parkinson’s disease (PD) (Qi et al.,
2025), multiple sclerosis (MS) (Woo et al., 2024), and stroke (Guan et al., 2024). The
underlying mechanisms involve persistent microglial activation mediated by pattern
recognition receptors, including Toll-like receptors (TLRs) and the
NLRP3 inflammasome, leading to neuronal damage through excessive cytokine

OPEN ACCESS

EDITED BY

Ashish Mehta,
Garvan Institute of Medical Research, Australia

REVIEWED BY

Swaran J.S. Flora,
National Institute of Pharmaceutical Education
and Research, India
Danial Khayatan,
Columbia University Irving Medical Center,
United States

*CORRESPONDENCE

Binbin Hu,
hubinbin0924@163.com

RECEIVED 02 July 2025
ACCEPTED 23 September 2025
PUBLISHED 08 October 2025

CITATION

Zhou B and Hu B (2025) Anti-inflammatory
effect of curcumin on neurological disorders: a
narrative review.
Front. Pharmacol. 16:1658115.
doi: 10.3389/fphar.2025.1658115

COPYRIGHT

© 2025 Zhou and Hu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 08 October 2025
DOI 10.3389/fphar.2025.1658115

https://www.frontiersin.org/articles/10.3389/fphar.2025.1658115/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1658115/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1658115/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1658115&domain=pdf&date_stamp=2025-10-08
mailto:hubinbin0924@163.com
mailto:hubinbin0924@163.com
https://doi.org/10.3389/fphar.2025.1658115
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1658115


production and oxidative stress (Zhang et al., 2021; Hou et al., 2024;
Xu et al., 2025a). Furthermore, disruption of the blood-brain barrier
facilitates the infiltration of peripheral immune cells, exacerbating
neuroinflammatory conditions (Takata et al., 2021; Hou et al., 2023).
Emerging therapeutic approaches targeting neuroinflammatory
pathways, particularly the inhibition of NF-κB or
NLRP3 inflammasome signaling, have demonstrated promising
results in preclinical studies (Lei et al., 2023; Zhang et al., 2023a).
Given the limitations of conventional anti-inflammatory
medications, including adverse effects associated with non-
steroidal anti-inflammatory drugs and corticosteroids, researchers
are showing increasing interest in identifying natural compounds
that exhibit potent anti-inflammatory properties while maintaining
favorable safety profiles. This shift in therapeutic focus reflects the
need for more targeted and tolerable interventions in
neuroinflammatory disorders.

Curcumin, a naturally occurring polyphenolic compound
derived from the rhizomes of Curcuma longa, has garnered
significant attention in biomedical research owing to its diverse
pharmacological properties encompassing anti-inflammatory,
antioxidant, anticancer, and neuroprotective activities (Jabczyk
et al., 2021; Ran et al., 2021; Liu et al., 2023a; Sadeghi et al.,
2023; Wang et al., 2023). Curcumin, demethoxycurcumin, and
bisdemethoxycurcumin are called curcuminoids (Figure 1). As
the principal bioactive constituent of turmeric, curcumin has
been extensively investigated for its capacity to modulate multiple
signaling pathways, including NF-κB, mitogen-activated protein
kinase, and phosphatidylinositol 3-kinase/Akt (PI3K/Akt)
cascades, which play pivotal roles in regulating inflammatory
responses, cellular proliferation, and apoptotic processes (Qiu
et al., 2020; Ren et al., 2020; Ran et al., 2021; Shamsnia et al.,
2023). Despite its considerable therapeutic potential, the clinical
application of curcumin has been constrained by pharmacokinetic
limitations, particularly its poor aqueous solubility, rapid metabolic
degradation, and systemic elimination. Therefore, contemporary
research has focused on developing advanced drug delivery

platforms, including nanoparticle formulations, liposomal
carriers, and phospholipid complexes, to enhance the
bioavailability and pharmacokinetic profile of curcumin (Chen
et al., 2020; Quispe et al., 2021; Hassanizadeh et al., 2023;
Mohammadzadeh et al., 2024). Emerging scientific evidence
further suggests that the therapeutic effects of curcumin are
mediated through epigenetic regulatory mechanisms, including
modulation of histone acetylation patterns and DNA methylation
status, which potentially contribute to its chemopreventive and
antineoplastic properties (Fabianowska-Majewska et al., 2021;
Yang et al., 2021b; Ming et al., 2022; Sawesi et al., 2022). Current
reviews on curcumin are focused on elucidating its therapeutic
targets in neurological disorders (Zia et al., 2021; Sadeghi et al.,
2023; Nunes et al., 2024; Yang et al., 2024a). Although its
interactions with numerous molecular targets have been
extensively documented, there remains a lack of comprehensive
review addressing the specific mechanisms through which curcumin
modulates inflammation in the treatment of neurological disorders
(Menon and Sudheer, 2007; Peng et al., 2021; Dehzad et al., 2023;
Sadeghi et al., 2023). A deeper understanding of anti-inflammatory
mechanisms is crucial for the development of curcumin-based
therapeutic strategies and their integration into routine
clinical practice.

In summary, curcumin has remained a subject of significant
scientific interest due to its long history in traditional medicine and
its considerable potential in modern biomedical research. Its
complex chemical structure, broad pharmacological activities, and
challenges related to bioavailability offer compelling avenues for
ongoing and future investigations. As research continues to
elucidate its mechanisms of action at the molecular level and to
improve its delivery methods, curcumin holds promise as a key
agent in the management of various health conditions. This review
provides a comprehensive exploration of the specific mechanisms by
which curcumin treats neurological diseases through the regulation
of inflammation. It systematically examines the role of curcumin in
mitigating neuroinflammation via the gut–brain axis, outlining how

FIGURE 1
Chemical structure of curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin).
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it indirectly ameliorates neuroinflammatory processes by
modulating the gut microbiota, maintaining intestinal barrier
integrity, and subsequently reducing systemic inflammation.
Furthermore, the review offers an in-depth analysis of novel
materials (e.g., nanomaterials) developed to enhance its
bioavailability—particularly within the context of neurological
therapy—and evaluates innovative strategies currently under
development aimed at optimizing its clinical efficacy.

2 Synthesis and metabolism
of curcumin

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione), is a naturally occurring polyphenolic
compound that serves as the principal bioactive constituent
extracted from the rhizomes of Curcuma longa, a perennial
herbaceous plant belonging to the Zingiberaceae family (Liu
et al., 2023b; Wang et al., 2023). For centuries, it has been
traditionally employed for medicinal purposes, culinary
applications, and as a coloring agent (Mohamadian et al., 2022;
Kuzminska et al., 2024). The ubiquitous presence of curcumin across
various plant taxa underscores its ecological significance and
therapeutic potential, warranting further investigation into its
biosynthetic pathways and health-promoting properties.

3 Curcumin inhibits the pro-
inflammatory activation of immune
cells in the central nervous system

3.1 Macrophages

Curcumin exhibits significant immunomodulatory effects on
macrophages, which are pivotal innate immune cells involved in
inflammatory responses and tissue homeostasis. Experimental
studies demonstrate that curcumin preferentially suppresses pro-
inflammatory M1 macrophage polarization while promoting anti-
inflammatory M2 phenotype, primarily by inhibiting the signal
transducer and activator of transcription 3 (STAT3) signaling
pathway (Ran et al., 2021; Abdollahi et al., 2023; Deswal et al.,
2024). At the molecular level, curcumin reduces lipopolysaccharide
(LPS)-induced production of TNF-α, IL-6, and nitric oxide in
macrophages by downregulating iNOS and COX-2 expression
(Wang et al., 2019). In ischemic stroke models, curcumin
administration attenuates stroke-induced white matter damage,
improves functional outcomes, and reduces microglial pyroptosis,
mediated at least partially through the suppression of NF-κB/
NLRP3 signaling pathways (Ran et al., 2021). Similarly, in
myocardial infarction, curcumin improves cardiac function and
reduces post-MI fibrosis by inhibiting macrophage-fibroblast
crosstalk during the acute phase and suppressing IL-18-TGF-β1-p-
SMAD2/3 signaling in cardiac fibroblasts (Zhao et al., 2021). In
addition, it modulates myocardial inflammation through AMPK-
regulated M1/M2 macrophage polarization (Yan et al., 2021).
Additional evidence indicates that curcumin protects against
particulate matter-induced lung injury by suppressing oxidative
stress and inflammatory activation in macrophages (Lee et al., 2023).

In ulcerative colitis models characterized by dysregulated M1/
M2 macrophage ratios and enhanced M1 activation, curcumin
treatment normalizes aberrant macrophage activation, inhibits
macrophage chemotaxis, and alleviates inflammatory responses
(Chen et al., 2023). Collectively, these findings establish
macrophages as crucial cellular mediators of the immunomodulatory
actions of curcumin, playing a vital role in regulating immune responses
and potentially ameliorating macrophage-associated systemic and
neuroinflammatory conditions. The compound demonstrates
therapeutic potential across multiple disease states by modulating
macrophage polarization and function.

3.2 Microglia

Emerging research has elucidated the potent regulatory effects of
curcumin onmicroglia, the resident immune cells of the central nervous
system. Under neuroinflammatory conditions, curcumin (5-25 μM) can
attenuate LPS-induced microglial activation, achieving approximately
60% reduction in pro-inflammatory cytokine release (TNF-α, IL-1β, IL-
6) by suppressing the TLR4/MyD88/NF-κB signaling cascade (Gao
et al., 2019; Zhang et al., 2019). The compound exhibits anti-
inflammatory and antioxidant properties by inhibiting NOX2-
mediated ROS production in activated microglia while upregulating
the Nrf2/Heme Oxygenase-1 (HO-1) antioxidant pathway (Duan et al.,
2022; Lin et al., 2022; Xu et al., 2025a). In models of traumatic brain
injury, curcumin treatment mitigates brain damage, reduces IL-1β and
IL-6 levels, promotes microglial polarization toward the M2 phenotype,
and downregulates C1ql3 protein expression (Zhang et al., 2023b).
Similarly, in subarachnoid hemorrhage, curcumin demonstrates
neuroprotective effects by suppressing neuronal ferroptosis through
the modulation of Nrf2/HO-1 signaling (Xu et al., 2025b). Notably,
curcumin metabolites such as tetrahydrocurcumin retain biological
activity in regulating microglial triggering receptor expressed on
myeloid cells two signaling, potentially explaining the beneficial
effects of the compound despite limited blood-brain barrier
permeability (Jiang et al., 2023; Genchi et al., 2024). These findings
collectively establish microglia as crucial cellular mediators of the
immunomodulatory actions of curcumin, highlighting its therapeutic
potential in alleviating microglia-associated neuroinflammatory
pathologies through multifaceted mechanisms of action. The ability
of the compound to modulate microglial activation states and signaling
pathways positions it as a promising candidate for neuroinflammatory
intervention.

3.3 T cell

Curcumin demonstrates significant immunomodulatory capacity
in T cell-mediated diseases through pleiotropic mechanisms targeting
cellular activation, differentiation, and effector functions. In
autoimmune conditions, curcumin (10–25 μM) ameliorates disease
severity by suppressing pathogenic Th1/Th17 responses while
enhancing the activity of regulatory T cells (Tregs) (Fasihi et al.,
2024; Ghoushi et al., 2024; Nosratabadi et al., 2024). Experimental
autoimmune encephalomyelitis (EAE) studies reveal that the
neuroprotective effects of curcumin are mediated, at least partially,
through AMPK/SIRT1 activation, ultimately attenuating EAE-induced

Frontiers in Pharmacology frontiersin.org03

Zhou and Hu 10.3389/fphar.2025.1658115

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1658115


neuronal demyelination, oxidative stress, and neuroinflammation
(ELBini-Dhouib et al., 2022; Sadek et al., 2024). Rheumatoid
arthritis models demonstrate the ability of curcumin to inhibit
Th17 differentiation via suppression of STAT3 phosphorylation,
with additional evidence showing its regulation of the inc00052/
miR-126-5p/PIAS2 axis through the JAK2/STAT3 signaling pathway
(Xiao et al., 2022; Kou et al., 2023; Deng et al., 2024). In allergic
disorders, curcumin modulates Th1/Th2 balance by downregulating
GATA3 expression and reducing IL-4/IL-5 production in ovalbumin-
sensitized models (Wang et al., 2022). Therapeutic applications in
thyroid cancer reveal that curcumin can enhance anti-tumor
immunity in anaplastic thyroid carcinoma by boosting CD8+ T-cell
function and inactivating the AKT/mTORC1/STAT3/PD-L1 axis
(Vaiss et al., 2024). Furthermore, curcumin reduces severity in acute
lung injury/acute respiratory distress syndrome and uncontrolled
inflammation by promoting naïve CD4+ T-cell differentiation into
CD4+CD25+FOXP3+ Tregs (Chai et al., 2020). In summary,
curcumin exhibits broad therapeutic potential across autoimmune
diseases, allergic disorders, viral infections, and cancer
immunotherapy through its multifaceted immunomodulatory effects
on T-cell subsets, highlighting its value as a versatile
immunotherapeutic agent (Figure 2).

4 Influence of curcumin on various
neurological diseases

4.1 Alzheimer’s disease (AD)

AD is a progressive neurodegenerative disorder characterized by
cognitive decline, memory impairment, and behavioral disturbances
and is the most prevalent cause of dementia worldwide (Scheltens

et al., 2021; Jucker and Walker, 2023). The neuropathological
hallmarks of AD include the accumulation of extracellular
amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles
composed of hyperphosphorylated tau protein, which collectively
contribute to synaptic dysfunction and neuronal degeneration
(Graff-Radford et al., 2021; Serrano-Pozo et al., 2021;
Ossenkoppele et al., 2022). Despite extensive research, the precise
etiology of AD remains unclear, with proposed involvement of
genetic predisposition, environmental factors, and metabolic
disturbances. Owing to the growing global aging population and
limited availability of disease-modifying therapies, elucidating AD
pathogenesis is challenging in contemporary neuroscience research.
Given the complex and multifactorial nature of AD pathogenesis,
developing effective pharmacological interventions remains a
formidable challenge in neurology and drug discovery. Current
therapeutic approaches primarily focus on symptomatic
management, with acetylcholinesterase inhibitors such as
donepezil, rivastigmine, and galantamine enhancing cholinergic
neurotransmission to alleviate cognitive deterioration (Se Thoe
et al., 2021; Liu et al., 2024a). Furthermore, the N-methyl-D-
aspartate receptor antagonist memantine provides partial
neuroprotection by modulating glutamatergic excitotoxicity (Vaz
and Silvestre, 2020; Pardo-Moreno et al., 2022; Varadharajan et al.,
2023). However, these treatments offer merely transient
symptomatic stabilization without altering disease progression,
thus stimulating increasing interest in natural compounds with
multimodal neuroprotective properties. Among these compounds,
curcumin, the principal bioactive polyphenol derived from Curcuma
longa (turmeric), has emerged as a promising candidate for AD
intervention, owing to its diverse pharmacological activities
targeting multiple pathological pathways implicated in AD
progression.

FIGURE 2
Curcumin exerts inhibitory effects on neuroinflammation associated with central nervous system disorders by modulating the activity of
inflammatory cells, including macrophages, microglia, and astrocytes, thereby reducing the release of pro-inflammatory cytokines and subsequently
protecting healthy neurons from damage.
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Curcumin exhibits multiple pharmacological properties relevant
to AD pathogenesis, including anti-amyloidogenic, anti-tau,
antioxidant, and anti-inflammatory effects (Aggarwal and
Harikumar, 2009; Azzini et al., 2024). Recent studies demonstrate
that during AD progression, impaired adult neurogenesis in the
dentate gyrus can be ameliorated by curcumin treatment through
modulation of GSK3β/Wnt/β-catenin and CREB/BDNF pathways
via PI3K/Akt regulation, reducing apoptosis and improving
neurogenesis in AD mouse models (Lou et al., 2024). In AD
transgenic mice, curcumin administration downregulates
hippocampal expression of HMGB1, RAGE, TLR4, and NF-κB,
improving cognitive function by suppressing the HMGB1-RAGE/
TLR4-NF-κB inflammatory signaling cascade (Han et al., 2021). As a
dietary supplement, curcumin benefits patients with insulin
resistance, type 2 diabetes (T2D), and AD by reducing circulating
levels of IAPP and GSK-3β while alleviating insulin resistance-
related markers, consequently lowering the risk of T2D and AD
(Thota et al., 2020). Notably, prophylactic administration of
curcumin prior to Aβ deposition demonstrates preventive
potential for AD, possibly through facilitating Aβ42 clearance
from the brain to peripheral circulation (Mei et al., 2020).
Additionally, curcumin enhances BDNF-ERK signaling to
mitigate AD-associated cognitive deficits (Zhang et al., 2015).
Emerging evidence reveals that curcumin treatment significantly
alters the composition of gut microbiota in ADmice. The compound
undergoes biotransformation by gut microbiota through reduction,
demethoxylation, demethylation, and hydroxylation, yielding
neuroprotective metabolites (Sun et al., 2020; Leblhuber et al.,
2021). These findings suggest a gut-liver-brain axis mediating
metabolic and cognitive functions, possibly by reducing fatty acid
synthesis, altering cholesterol metabolism, inhibiting hepatic
lipogenesis-related pathways, and modulating synaptic plasticity-
related pathways in the brain, ultimately suppressing weight gain
and improving behavioral and cognitive functions (Pluta et al., 2022;
Lamichhane et al., 2024).

The therapeutic efficacy of curcumin in AD is considerably
constrained by its limited ability to cross the blood-brain barrier. To
address this limitation, researchers have explored combination
therapy with ginkgo biloba extract and curcumin, demonstrating
the suppression of acetylcholinesterase, caspase-3, hippocampal
amyloid-β (Aβ1-42), and phosphorylated tau levels and reduced
expression of pro-inflammatory cytokines TNF-α and IL-1β in rat
models. This combined treatment also significantly decreased
malondialdehyde and modulated reduced glutathione levels (Assi
et al., 2023). To enhance the neuroprotective effects of curcumin in
AD, advanced delivery systems have been developed. Notably,
carrier-free curcumin nanoparticles (CNPs) formed through
molecular self-assembly exhibit multivalent binding to Aβ,
resulting in superior inhibition of Aβ aggregation. Following
intranasal administration, these lipid-based formulations release
CNPs and cardiolipin in response to the oxidative
microenvironment characteristic of AD. The CNPs modulate
microglial polarization (M1→M2) via TLR4/NF-κB pathway
inhibition, while simultaneously suppressing Aβ aggregation and
enhancing microglial phagocytic clearance of Aβ, thereby
overcoming barriers to microglial repolarization (Feng et al.,
2024). Intravenous administration of novel brain-targeted
nanoparticles (Ce/Zr-MOF@Cur-Lf) facilitates rapid brain entry

and ameliorates multiple AD pathological features, including
neuronal damage, Aβ deposition, cholinergic system dysfunction,
oxidative stress, and neuroinflammation (Yang et al., 2024c).
Furthermore, localized delivery of curcumin using human hair
keratin/chitosan (C/K) hydrogels may enhance neural
regeneration and repair nerve damage, representing an innovative
approach for targeted therapy.

Collectively, the existing preclinical evidence from in vitro and
in vivo studies substantiates the neuroprotective efficacy of
curcumin in AD pathogenesis, primarily mediated through its
anti-neuroinflammatory properties and cognitive-enhancing
effects. Nevertheless, substantial research efforts are still
warranted to bridge the gap between these promising
experimental findings and clinical applications, particularly
concerning bioavailability optimization and therapeutic regimen
standardization (Sun et al., 2024).

4.2 Parkinson’s disease (PD)

PD is a progressive neurodegenerative disorder pathologically
characterized by selective degeneration of dopaminergic neurons in
the substantia nigra pars compacta and the presence of
intraneuronal proteinaceous inclusions known as Lewy bodies,
predominantly composed of α-synuclein aggregates (Kalia and
Lang, 2015; Bloem et al., 2021). Clinically, PD manifests with
cardinal motor symptoms including bradykinesia, resting tremor,
rigidity, and postural instability, accompanied by various non-motor
features such as cognitive impairment, sleep disturbances, and
autonomic dysfunction (Hayes, 2019; Morris et al., 2024). With a
global prevalence exceeding six million cases, PD ranks as the second
most common neurodegenerative disorder after AD, imposing
substantial socioeconomic burdens (Ascherio and Schwarzschild,
2016; Weintraub et al., 2022). The etiology of PD remains
multifactorial, involving complex interactions between genetic
predisposition, environmental exposures, and aging-related
cellular dysfunction (Lotankar et al., 2017; Tysnes and Storstein,
2017). Mutations in genes encoding α-synuclein, leucine-rich repeat
kinase 2, and PARKIN have provided crucial insights into
pathogenic mechanisms, including mitochondrial dysfunction,
proteostasis failure, and neuroinflammation (Jankovic and Tan,
2020; Brooker and Gonzalez-Latapi, 2025; Xiao et al., 2025).
Current therapeutic approaches primarily focus on dopamine
replacement using levodopa, which provides symptomatic relief
but fails to halt disease progression. Emerging disease-modifying
strategies targeting α-synuclein pathology or employing gene-based
interventions show promise but require further validation (Du et al.,
2020; Chen et al., 2022). Curcumin, a natural polyphenol,
demonstrates significant potential in PD and other
neurodegenerative conditions. Experimental evidence indicates
that curcumin exerts neuroprotective effects by modulating the
BDNF/PI3k/Akt signaling pathway, which plays a critical role in
neuroregeneration and anti-apoptotic processes (Jin et al., 2022).
Furthermore, curcumin prevents rotenone-induced PD in murine
models by inhibiting microglial NLRP3 inflammasome activation
and mitigating mitochondrial dysfunction (Xu et al., 2023). In
rotenone-exposed mice, curcumin administration activates the
p62-Keap1-Nrf2 pathway, enhances autophagy, and improves
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antioxidant capacity (Rathore et al., 2023). Additional mechanisms
include neuroprotection through HDAC6-NLRP3 pathway
modulation and amelioration of MPTP-induced gastrointestinal
dysfunction, gut microbiota dysbiosis, and short-chain fatty acid
profile alterations (Cai et al., 2025). To enhance therapeutic efficacy,
advanced delivery systems have been developed, including
mitochondria-targeting biomimetic nanoparticles functionalized
with curcumin (Zhu et al., 2022; Cai et al., 2023). These
nanoparticles localize to damaged neuronal mitochondria in
inflammatory environments and modulate the NAD+/SIRT1/
PGC-1α/PPARγ/NRF1/TFAM signaling cascade, alleviating MPP
+ -induced neuronal toxicity and mitochondrial dysfunction (Zheng
et al., 2023). Moreover, curcumin-loaded nanoemulsions have
demonstrated superior efficacy in preventing motor deficits and
inhibiting complex I dysfunction, representing promising
nanomedicine applications for PD (Ramires Junior et al., 2021).
While preclinical studies consistently demonstrate the ability of
curcumin to mitigate PD symptoms and attenuate
neuroinflammation in vivo, rigorous clinical trials remain
necessary to substantiate its therapeutic potential for patients
with PD and establish optimal treatment protocols.

4.3 Multiple sclerosis (MS)

MS is a chronic autoimmune-mediated demyelinating disease of
the central nervous system, characterized by multifocal
inflammatory lesions, axonal damage, and progressive
neurological dysfunction (Kuhlmann et al., 2023). As the most
prevalent non-traumatic cause of neurological impairment in
young adults, MS affects approximately 2.8 million individuals
worldwide, with a higher prevalence among females and in
temperate geographical regions. The clinical manifestations of MS
exhibit significant heterogeneity, ranging from relapsing-remitting
episodes to progressive neurological decline, reflecting a complex
interplay between genetic susceptibility and environmental triggers
(Travers et al., 2022). The pathogenesis of MS involves the
infiltration of autoreactive T cells across the blood-brain barrier,
initiating an inflammatory cascade targeting myelin, followed by
oligodendrocyte loss and impaired axonal conduction (Perez et al.,
2023). Although the precise etiology remains elusive, genome-wide
association studies have identified over 200 risk loci, particularly
within the major histocompatibility complex region, underscoring
the importance of immune dysregulation (Hauser and Cree, 2020).
Current therapeutic options for the disease, such as anti-CD20
monoclonal antibodies and sphingosine-1-phosphate receptor
modulators, demonstrate limited efficacy in progressive forms of
MS (de Seze et al., 2023; Klotz et al., 2023). Th17 cells are critical
immune participants in the pathophysiology of MS (Qureshi et al.,
2018). Curcumin inhibits the proliferation of Th17 cells and reduces
the production of pro-inflammatory cytokines, including TNF-α,
IL-22, and IL-17, offering therapeutic potential for MS (Ghoushi
et al., 2024). In addition, curcumin exerts neuroprotective effects by
downregulating AXL-mediated astrocyte-driven inflammation in
cuprizone-induced mouse models, targeting MS treatment
(Zhang et al., 2025). In EAE mouse models and LPS-stimulated
BV-2 microglial cells, curcumin may ameliorate microglial-
mediated inflammatory responses by inhibiting the AXL/JAK2/

STAT3 signaling pathway (Sun et al., 2022). Reports indicate that
curcumin and its semi-synthetic derivative F-curcumin suppress the
expression of IL-1β, IL-4, IL-10, IL-17, interferon-γ, and TGF-β
during EAE induction, mitigating MS-associated inflammation
(Khosropour et al., 2023). To enhance the bioavailability of
curcumin in the treatment of MS, researchers have designed a
prodrug, curcumin monoglucuronide, which, when administered
intravenously or intraperitoneally, alters the overall gut microbiome
composition and modifies the abundance of specific bacterial
populations to suppress neuroinflammation and improve MS
outcomes (Khadka et al., 2021). In materials science, investigators
have utilized high-density lipoprotein-mimicking peptide-
phospholipid scaffolds (HPPS) as carriers to improve the
bioavailability of curcumin, effectively reducing inflammatory
monocyte infiltration across the blood-brain barrier, inhibiting
microglial proliferation, and limiting the infiltration of other
effector immune cells, thereby decreasing the incidence of EAE
in mice (Lu et al., 2020). Similarly, polymeric forms of nano-
curcumin correct the balance of pro-inflammatory and anti-
inflammatory gene expression in EAE models, reduce oxidative
stress, enhance myelin regeneration, and increase progenitor cell
markers (Mohajeri et al., 2015).

In summary, curcumin demonstrates the potential to inhibit
neuroinflammation in EAE models, improving outcomes in MS.

4.4 Stroke

Stroke represents a significant global health burden, ranking as
the second leading cause of death and the third leading cause of
disability worldwide. This cerebrovascular event occurs when
arterial occlusion or vessel rupture interrupts blood flow to the
brain, resulting in the rapid onset of neurological deficits (Kong
et al., 2022; Hilkens et al., 2024). The pathophysiological cascade
involves excitotoxicity, oxidative stress, and neuroinflammation,
ultimately leading to neuronal death within minutes to hours
following ischemic injury (Feigin et al., 2025). Recent
advancements in the management of acute stroke, particularly
the expansion of thrombolytic time windows and the widespread
adoption of endovascular thrombectomy, have fundamentally
altered the treatment landscape for ischemic stroke (Bushnell
et al., 2024). However, significant challenges persist, including
narrow therapeutic time windows, the risk of hemorrhagic
transformation, and limited neuroprotective strategies (Caso
et al., 2024). Moreover, recovery post-stroke remains suboptimal
for many patients, with approximately 50% of survivors
experiencing long-term disabilities. Therefore, identifying more
effective therapeutic targets is critical for enhancing stroke
rehabilitation (Kong et al., 2024a; Wegener et al., 2024). Research
indicates that curcumin partially mitigates stroke-induced white
matter injury and improves neurological function by inhibiting the
NF-κB/NLRP3 signaling pathway, providing neuroprotection
following a stroke (Ran et al., 2021). Furthermore, curcumin
pretreatment enhances ischemic stroke outcomes by preserving
blood-brain barrier integrity, promoting synaptic remodeling, and
downregulating the phosphorylation of NF-κB andMMP-9, thereby
suppressing inflammatory responses (Wu et al., 2021). In models of
intracerebral hemorrhage (ICH), curcumin treatment facilitates the
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inhibition of oxidative stress in microglia by activating the Nrf2/
HO-1 pathway and promoting neurological recovery post-ICH,
thereby alleviating neuronal damage (Duan et al., 2022). To
enhance the therapeutic efficacy of curcumin in stroke, a
combined therapy utilizing curcumin and human umbilical cord-
derived mesenchymal stem cells exerts anti-inflammatory and
antioxidant effects through the AKT/GSK-3β/β-TrCP/Nrf2 axis,
improving neurological function following acute ischemic stroke
(Li et al., 2023). Similarly, in materials science, researchers have
encapsulated curcumin in mPEG-PCL nanoparticles, which are
administered intranasally to deliver curcumin directly to the
brain. This approach reprograms pro-inflammatory microglia to
an anti-inflammatory phenotype, reducing neuronal inflammatory
death and hematoma volume in mouse models of ICH (Duan et al.,
2024). Additionally, encapsulating curcumin in polymer-based
nanoparticles has shown superior therapeutic effects compared
with curcumin alone in inhibiting erastin-induced ferroptosis in
HT22 hippocampal cells (Yang et al., 2021a).

In summary, curcumin exhibits neuroprotective properties in
ischemic and hemorrhagic stroke models by inhibiting
neuroinflammation and mitigating neuronal damage, thereby
promoting recovery from stroke.

4.5 Amyotrophic lateral sclerosis (ALS)

ALS is a devastating neurodegenerative disorder characterized by
the progressive degeneration of upper and lower motor neurons,
leading to muscle weakness, paralysis, and ultimately respiratory
failure within 3–5 years of symptom onset (Feldman et al., 2022).
The global prevalence of ALS is approximately 4–6 cases per
100,000 individuals, making it the most common motor neuron
disease among adults and imposing significant physiological and
psychological burdens on patients and caregivers (Goutman et al.,
2022; Akcimen et al., 2023). The pathogenesis of ALS involves a
complex interplay between genetic susceptibility, particularly
mutations in C9ORF72, superoxide dismutase 1 (SOD1), TARDBP,
and fused in sarcoma (FUS), and environmental factors, resulting in
multiple pathological mechanisms, including protein misfolding,
oxidative stress, mitochondrial dysfunction, and neuroinflammation.
Despite extensive research efforts, current therapeutic options remain
limited (Goutman et al., 2022; Ilieva et al., 2023).

Recent studies have identified solid lipid curcumin particles as a
potential estrogen replacement therapy that may mitigate the
progression and pathogenesis of TDP-43-related diseases (Majumder
et al., 2025). In addition, curcumin treatment enhances ATP levels by
attenuating the sequestration of pyruvate kinase mediated by FUS
aggregation, thereby offering a promising avenue for ALS treatment
(Shi et al., 2023). Furthermore, researchers have discovered a novel
potent polyphenolic compound, ethoxycurcumin, an effective inhibitor
in reducing the risk of fatal ALS by preventing the abnormal misfolding
and aggregation of SOD1 into amyloid aggregates (Kouhi et al., 2024).
This mechanism may be due to the stronger binding affinity of
curcumin to SOD1 protofibrils, facilitated by greater van der Waals
interactions (Sharma et al., 2023). Collectively, these findings indicate
that curcumin significantly inhibits ALS symptoms in vitro and in vivo,
providing new therapeutic directions for improving the
prognosis of ALS.

4.6 Epilepsy and seizures

Epilepsy is a chronic neurological disorder characterized by
recurrent, unprovoked seizures resulting from abnormal, synchronous
neuronal activity in the brain. It is among the most prevalent
neurological conditions, significantly impacting morbidity, mortality,
and quality of life (Specchio et al., 2022). Seizures canmanifest in various
clinical phenotypes, ranging from brief focal awareness seizures to
generalized convulsive events, reflecting underlying network
dysfunction (Deng and Husari, 2024; Krishnamurthy, 2025). The
mechanisms underlying epilepsy include ion channel dysfunction
(such as SCN1A mutations in Dravet syndrome), heightened
excitability of glutamatergic pathways, and impaired GABAergic
inhibition. Despite the availability of antiepileptic drugs,
approximately 30% of patients experience drug-resistant epilepsy,
necessitating alternative interventions such as surgical resection,
neurostimulation, or dietary therapies. Consequently, novel
therapeutic approaches are essential (Kanner et al., 2024; Pellinen
et al., 2024). Recent studies have demonstrated that curcumin can
significantly reduce the frequency of seizures in the clinical treatment
of pediatric refractory epilepsy (Erfani et al., 2022). In rat models of
epilepsy, curcumin administration markedly decreased seizure-like
activity, with reduced mRNA and protein levels of Na+, thereby
diminishing seizure occurrences (Kumar et al., 2019). In a
pentylenetetrazol (PTZ)-induced seizure model, curcumin exerted
anticonvulsant effects by elevating serotonin levels in the brain,
influencing receptors such as 5-HT1A, 5-HT2C, and 5-HT4, and
potentially by downregulating 5-HT7 gene expression (Arbabi Jahan
et al., 2018). Moreover, curcumin attenuates glial cell activation and
ameliorates cognitive deficits in patients with chronic epilepsy (Kaur
et al., 2015). In a lithium-pilocarpine rat model inducing status
epilepticus, positron emission tomography revealed that curcumin
treatment inhibited cerebral glucose metabolism, reduced body
weight, mitigated hippocampal neuronal damage, and decreased
neuroinflammation, ultimately reducing seizure frequency (Slowing
et al., 2023). Furthermore, in the same model, curcumin conferred
neuroprotection by inducing autophagy and inhibiting necroptotic
apoptosis, safeguarding hippocampal neurons from status epilepticus-
induced injury (Wang et al., 2017). To enhance the anticonvulsant
properties of curcumin and improve its bioavailability, researchers have
micronized the compound using supercritical carbon dioxide processing.
In adult zebrafish models of PTZ-induced seizures, micronized
curcumin exhibited effects comparable to those of classical
antiepileptic drugs (Bertoncello et al., 2018).

In summary, curcumin demonstrates potential as an
antiepileptic agent in various models by suppressing
neuroinflammation, thereby reducing seizure frequency (Figure 3).

5 Discussion

Neurodegenerative diseases (NDs), including stroke, AD, PD, ALS,
and Huntington’s disease, are increasingly recognized as complex
multifactorial disorders characterized by the interplay of chronic
neuroinflammation, oxidative stress, and progressive neuronal
degeneration (Polissidis et al., 2020; Gupta et al., 2023; Kong et al.,
2023; Zhou et al., 2023; Goetzl, 2025). A growing body of evidence
underscores the pivotal role of sustained neuroinflammatory processes
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in the onset and progression of these debilitating diseases. The
neuroinflammatory cascade in NDs is primarily mediated by the
persistent activation of resident immune cells in the central nervous
system, namely microglia and astrocytes (Agnello and Ciaccio, 2022;
Teleanu et al., 2022). This pathological activation initiates a self-
perpetuating inflammatory cycle characterized by the excessive
production of pro-inflammatory cytokines (such as TNF-α, IL-1β,
and IL-6), ROS, and neurotoxic mediators (Youwakim and Girouard,
2021; Gao et al., 2023). Notably, the NLRP3 inflammasome has emerged
as a critical molecular platform linking neuroinflammation and
neurodegeneration, facilitating the maturation and secretion of IL-1β
and IL-18 in response to pathological protein aggregation (Coll et al.,
2022). Recent advancements in neuroimmunology indicate that the
neuroinflammatory process exhibits neuroprotective and neurotoxic
effects, depending on the disease stage and microenvironment
(Nainu et al., 2023). While acute inflammation can promote tissue
repair and pathogen clearance, chronic inflammation drives progressive
neurodegeneration through feedforward loops involving damage-
associated molecular patterns and sustained immune activation

(Castro-Gomez and Heneka, 2024; Yu et al., 2025). Understanding
these complex neuroimmune interactions provides crucial insights for
developing targeted therapeutic strategies for modulating rather than
suppressing neuroinflammatory responses (Kong et al., 2024c). Current
research efforts are focused on identifying key regulatory nodes within
the neuroinflammatory cascade that can serve as therapeutic targets,
potentially disrupting the cycle of inflammation-mediated
NDs (Figure 4).

The pharmacological treatment strategies for NDs approved by
regulatory agencies such as the Food and Drug Administration and
European Medicines Agency are primarily palliative, focusing on
symptom management rather than addressing the underlying
neuropathological mechanisms (Zhang et al., 2023c; Cantara
et al., 2024). These conventional approaches, including
acetylcholinesterase inhibitors for AD and dopaminergic
replacement therapies for PD, are often associated with
significant adverse effects and demonstrate limited efficacy in
halting disease progression (Grayson, 2016; Beata et al., 2023).
Furthermore, these therapies do not modulate the chronic

FIGURE 3
Themolecular mechanisms underlying curcumin-mediated anti-neuroinflammatory effects involvemultiple signaling pathways, including: the TNF
receptor associated factors 6 (TRAF-6) -mediated nuclear factor kappa-B (NF-κB), activator protein-1 (AP-1), Interferon Regulatory Factor 5 (IRF5), IRF7,
and mitogen-activated protein kinase (MAPK)/p38/Extracellular regulated protein kinases (ERK) axis; the Janus Kinase (JAK)/signal transducer and
activator of transcription (STAT) axis; the reactive oxygen species (ROS)-Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-
related factor 2 (Nrf2) axis; the TRAF-3 axis; and amyloid-beta (Aβ) protein modulation.
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neuroinflammatory processes that are increasingly recognized as key
drivers of neurodegeneration (Zhang et al., 2023c). In contrast,
extensive preclinical research has identified curcumin and its
derivatives as multimodal neuroprotective agents that can target
the fundamental inflammatory pathways associated with NDs (Lo
Cascio et al., 2021; Genchi et al., 2024). Mechanistic studies indicate
that curcumin exerts its therapeutic effects through the complex
modulation of various neuroinflammatory signaling cascades,
including the NF-κB pathway, NLRP3 inflammasome activation,
and Nrf2-mediated antioxidant responses, while downregulating
pro-inflammatory cytokines (such as IL-6 and TNF-α) and
upregulating anti-inflammatory mediators (such as TGF-β and
IL-10) (Zia et al., 2021; Erfani et al., 2022; Tripathi and
Bhawana, 2024). Curcumin possesses the ability to
simultaneously modulate multiple signaling pathways, conferring
a comprehensive advantage compared to many single-target
synthetic drugs or other flavonoids such as quercetin and
resveratrol (Akaberi et al., 2021). Notably, curcumin can activate

the BDNF/TrkB pathway, thereby promoting synaptic growth and
hippocampal neurogenesis—a feature rarely observed in most
synthetic drugs (e.g., acetylcholinesterase inhibitors) and superior
to that of some flavonoids which only exhibit anti-inflammatory or
antioxidant properties (Yang et al., 2020). Furthermore, curcumin is
naturally low in toxicity, and long-term use is associated with
significantly fewer side effects than synthetic drugs such as
nonsteroidal anti-inflammatory drugs or immunosuppressants.
While other flavonoids like resveratrol may impose hepatic or
renal burden at high doses, curcumin has a well-established
safety profile at appropriate dosages (Pourbagher-Shahri et al.,
2021). Curcumin may offer a more favorable safety profile
compared to the broad immunosuppressive effects associated
with many conventional anti-inflammatory drugs.

Despite its compelling therapeutic potential, the clinical translation
of curcumin is severely hampered by a constellation of pharmacokinetic
limitations. Most prominent among these is its exceedingly low
systemic bioavailability, which profoundly restricts its therapeutic

FIGURE 4
Potential application of curcumin in neuroinflammatory diseases. Neuroinflammation is a common pathogenic mechanism of various neurological
diseases, including stroke, multiple sclerosis (MS), Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), epilepsy and seizures,
migraine, and amyotrophic lateral sclerosis (ALS). Therefore, curcumin shows great potential as a prodrug in the clinical translation of these inflammation-
related neurological diseases.
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efficacy. This deficiency arises from a combination of factors including
poor aqueous solubility, inadequate absorption from the
gastrointestinal tract, rapid metabolic inactivation, and swift systemic
elimination. Consequently, even after oral administration of high doses,
plasma and tissue concentrations of the native compound remain
substantially below the levels required to elicit significant
pharmacological effects within the central nervous system. Recent
advancements in nanotechnology-based drug delivery systems have
significantly transformed the therapeutic potential of curcumin in
bioavailability pathways associated with NDs (Liu et al., 2024b;
Mohammadzadeh et al., 2024). Nanostructured curcumin
demonstrates considerable potential in reducing therapeutic doses.
Through nanotechnology-based formulation, the particle size of
curcumin can be effectively reduced, while its surface charge and
specific surface area are optimized. Moreover, such processing
facilitates the formation of a high-energy amorphous state stabilized
by intermolecular hydrogen bonding (Mohammadzadeh et al., 2024).
Compared to free curcumin, its nanoformulations exhibit not only
significantly improved aqueous solubility and drug release profiles but
also enhanced antioxidant and antitumor activities (Ratan et al., 2023).
Furthermore, nano-carrier systems can effectively shield the drug from
detrimental environmental factors, markedly improving its
physicochemical stability. Owing to these multiple
advantages—including superior stability, protection of the drug,
controlled release properties, prolonged in vivo circulation time, and
efficient drug loading without the need for chemical
modification—both synthetic and natural polymers have been
extensively employed to develop curcumin nano-delivery systems
(Hajimirzaei et al., 2025). Commonly used polymeric carriers
include poly (lactic-co-glycolic acid) (PLGA), polycaprolactone
(PCL), poly (N-isopropylacrylamide) (PNIPAAm), chitosan, dextrin,
polyethylene glycol (PEG), and polyvinyl alcohol (PVA). Various
preparation techniques—such as nanoprecipitation, high-pressure
homogenization, emulsion-solvent evaporation, and chemical
crosslinking—have been utilized to fabricate these nanoparticles (Del
Prado-Audelo et al., 2019). These methods enable efficient
encapsulation of curcumin into polysaccharide-based nanoparticles,
thereby significantly enhancing its stability and enabling controlled
drug release. Sophisticated formulations, including nanoparticles, solid
lipid nanoparticles, and liposomal carriers, have achieved notable
success in enhancing the pharmacokinetic properties of curcumin
through various mechanisms (Mahjoob and Stochaj, 2021). These
enhancements include improved bioavailability, increased
permeability across the blood-brain barrier, and targeted anti-
inflammatory effects (Yang et al., 2024b; Hajimirzaei et al., 2025).
Such innovative technologies have augmented the therapeutic potential
of curcumin in neuroinflammation-related conditions, demonstrating
the ability to reverse cognitive deficits, reduce oxidative stress markers,
andmaintain synaptic density (Attaluri et al., 2022; Ghaffari et al., 2024;
Yang et al., 2024b).

However, the clinical translation of these findings remains
constrained by the limitations of human studies and ethical
considerations. Based on the current available evidence,
curcumin demonstrates considerable potential in modulating
neuroinflammation. Nevertheless, translating this promise into
clinical applications requires addressing several critical challenges,
including but not limited to: conducting large-scale, randomized
controlled trials with rigorously defined endpoints, validating

mechanistic pathways in human subjects, standardizing
bioavailable formulations, and exploring adjunctive and
combination therapies. Consequently, more extensive and well-
designed trials are imperative to establish optimal dosing
regimens and long-term safety profiles.

6 Conclusion

In conclusion, while curcumin exhibits promising therapeutic
value in the context of neuroinflammation-related diseases, its
efficacy and prognostic outcomes remain inconsistent.
Consequently, it is imperative to develop and optimize curcumin
treatment protocols—including administration routes and dosing
strategies—to enhance its clinical effectiveness.
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Glossary
NF-κB Nuclear factor kappa-B

NLRP3 NOD-like receptor thermal protein domain associated protein 3

Nrf2 Nuclear Factor Erythroid 2-related Factor 2

TGF-β Transforming growth factor β

IL-10 Interleukin 10

CNS Central nervous system

TNF-α Tumor necrosis factor-α

IL-1β Interleukin-1 β

IL-6 Interleukin- 6

ROS Reactive oxygen species

AD Alzheimer’s disease

PD Parkinson’s disease

MS Multiple sclerosis

TLRs Toll-like receptors

BBB Blood-brain barrier

NSAIDs Non-steroidal anti-inflammatory drugs

MAPK Mitogen-Activated Protein Kinase

PI3K/Akt Phosphatidylinositol 3-Kinase/Akt

HAT Hydrogen atom transfer

SET Single electron transfer

STAT3 Signal transducer and activator of transcription 3

LPS Lipopolysaccharide

NO Nitric oxide

HO-1 Heme Oxygenase-1

TBI Traumatic brain injury

SAH Subarachnoid hemorrhage

TREM2 Triggering receptor expressed on myeloid cells 2

EAE Experimental autoimmune encephalomyelitis

Aβ Amyloid-β

AChEIs Acetylcholinesterase inhibitors

DG Dentate gyrus

T2D Type 2 diabetes

GBE Ginkgo biloba extract

P-tau Phosphorylated tau

MDA Malondialdehyde

GSH Glutathione

CNPs Curcumin nanoparticles

SNCA α-synuclein

LRRK2 Leucine-rich repeat kinase 2

MHC Major histocompatibility complex

CPZ Cuprizone

IFN-γ Interferon-γ

HPPS High-density lipoprotein-mimicking peptide-phospholipid scaffold

PNC Polymeric forms of nano-curcumin

hUC-MSC Human umbilical cord-derived mesenchymal stem cells

ALS Amyotrophic lateral sclerosis

SLCP Solid lipid curcumin particles

FUS Fused in sarcoma

SOD1 Superoxide dismutase 1

PTZ Pentylenetetrazol

PET Positron emission tomography

NDs Neurodegenerative diseases

HD Huntington’s disease

DAMPs Damage-associated molecular patterns

NPs Nanoparticles

SLNs Solid lipid nanoparticles
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