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Background: Thiopurine drugs are widely used as immunosuppressants and
chemotherapeutic agents in clinical practice, but their adverse effects
significantly limit their clinical application. TPMT c.719A>G (rs1142345) and
NUDT15 c.415C>T (rs116855232) are the most common genetic
polymorphisms influencing thiopurine drug toxicity, with notable differences
in allele frequencies across diverse populations. However, there remains a
paucity of research on the NUDT15 c.415C>T polymorphism in the Chinese
population.
Methods: This study enrolled 571 Chinese patients. DNA samples were isolated,
and polymerase chain reaction (PCR) was performed to amplify the TPMT
c.719A>G and NUDT15 c.415C>T in each sample. PCR products were
genotyped via Sanger sequencing to identify the allelic frequencies of these
polymorphisms. Additionally, we compared the detection rate of NUDT15
c.415C>T and TPMT c.719A>G for thiopurine drug toxicity in the cohort.
Results: The minor allele frequencies of NUDT15 c.415C>T and TPMT c.719A>G
were determined to be 12.52% and 2.36%, respectively. The detection rate of the
NUDT15 c.415C>T polymorphism was significantly higher than that of TPMT
c.719A>G (23.47% vs. 4.55%, P < 0.001).
Conclusion: NUDT15 c.415C>T yielded a higher carrier rate than TPMT c.719A>G
in this cohort. And broader panels could shift absolute yields. These findings
highlight the critical role of NUDT15 c.415C>T genotyping in guiding precision
therapy with thiopurine drugs.
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Introduction

Thiopurine drugs, including azathioprine, mercaptopurine, and thioguanine, are widely
employed as immunosuppressants and chemotherapeutic agents. In immunosuppressive
therapy, they are used to treat inflammatory bowel disease, myasthenia gravis, rheumatoid
arthritis, and to prevent organ transplant rejection. As chemotherapeutics, they play a key
role in managing acute leukemia and chronic myeloid leukemia. Despite their clinical
utility, their use is constrained by severe, potentially life-threatening adverse drug reactions
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(ADRs), such as myelosuppression, alopecia, hepatotoxicity, and
pancreatitis (Marinaki and Arenas-Hernandez, 2020). These
toxicities are strongly linked to genetic polymorphisms in two
key enzymes: thiopurine S-methyltransferase (TPMT) and
nucleoside diphosphate-linked moiety X-type motif 15
(NUDT15) (Relling et al., 2019).

TPMT is primarily responsible for inactivating thiopurine
drugs. Reduced or absent TPMT activity leads to elevated
levels of thiopurine active metabolites, thereby increasing the
risk of toxicity. Genetic polymorphisms in the TPMT gene
significantly influence enzyme activity. In Western populations,
the TPMT variants p3A and p3C account for 90% of cases with low
enzyme activity and are associated with leukopenia (Meng et al.,
2018). TPMTp3A is composed of two single nucleotide
polymorphisms (SNPs): rs1800460 (c.460G>A) and rs1142345
(c.719A>G). Unlike TPMTp3A, which is defined by a
combination of two SNPs, TPMTp3C is composed solely of the
single SNP variant rs1142345. In contrast to populations of
European descent, loss-of-function TPMT alleles exhibit lower
prevalence in East Asian populations. In Chinese cohorts, the
c.719A>G (rs1142345) allele frequency typically ranges from
~1 to 3%, with TPMT*3C (c.719A>G) as the predominant star
allele (Mao et al., 2021; Zhou and Lauschke, 2022). By
comparison, carrier prevalence of TPMT loss-of-function
alleles in European populations is approximately 10% (Teml
et al., 2009). Notably, the low prevalence of TPMT variants in
East Asians suggests that alternative genetic factors contribute to
the higher incidence of thiopurine-related ADRs in this
population (Liang et al., 2016).

NUDT15 negatively regulates thiopurine activation, and loss-of-
function variants lead to accumulation of cytotoxic metabolites
(Man et al., 2019). The Clinical Pharmacogenetics
Implementation Consortium (CPIC) included nine NUDT15
single-nucleotide polymorphisms in its 2018 dosing guidelines for
thiopurines (Relling et al., 2019). The most frequent variant is
NUDT15p3 (rs116855232, c.415C>T) (Mao et al., 2021).
Additionally, minor allele frequency (MAF) of NUDT15p2 in
East Asians is about 3%. It is important to note that
NUDT15*2 is defined by two specific SNPs: rs116855232
(c.415C>T) and rs746071566 (c. 55_56insGAGTCG). This
variant has been strongly associated with thiopurine toxicity
(Yang et al., 2014; Zhang et al., 2018). It exhibits a higher
prevalence in Asian populations compared to European or
African populations (Yang et al., 2015; Khaeso et al., 2021).
Unlike TPMT, NUDT15 variants show a distinct ethnic
distribution, underscoring their critical role in predicting ADRs
in East Asians.

In addition to TPMT and NUDT15, other genes involved in the
thiopurine drugs metabolic pathway have been explored for their
association with treatment-related adverse effects. For example,
genetic variants at the ITPA locus (e.g., rs1127354 and
rs7270101) are associated with reduced enzymatic activity, which
may elevate toxicity risk through the accumulation of the potentially
harmful metabolite thioinosine triphosphate (Moradveisi et al.,
2019; Ali et al., 2023). Given their status as the most prevalent
genetic variants implicated in thiopurine metabolism, TPMT
c.719A>G (rs1142345) and NUDT15 c.415C>T (rs116855232)
were selected for investigation in this study.

The frequencies of NUDT15 and TPMT variants exhibit
significant ethnic diversity. Notably, there is a paucity of research
on the NUDT15 c.415C>T polymorphism among the Chinese
population, particularly the Han ethnic group. The objectives of
the study were twofold: (1) to determine the allelic frequencies of
these two variants in a Chinese cohort (predominantly Han
ethnicity); and (2) to evaluate their comparative utility in
predicting thiopurine drug toxicity, with the aim of optimizing
healthcare resource allocation in China, a developing nation with
a large population.

Materials and methods

Study participants and data collection

This retrospective clinical study included 571 patients who
underwent TPMT c.719A>G and NUDT15 c.415C>T genotyping
at the Second Xiangya Hospital. Data extracted from electronic
medical records comprised patients’ age, gender, nationality,
diagnosis, pharmacogenetic testing results, and the department of
the ordering physicians. The study was approved by the Ethics
Committee of the Second Xiangya Hospital, Central South
University (approval number: 141225S046).

Pharmacogenetics testing

Genomic DNA was extracted from peripheral blood samples.
We performed genotyping for TPMT c.719A>G (rs1142345) and
NUDT15 c.415C>T (rs116855232) using PCR-Sanger sequencing.
Genotyping results were documented and returned in standardized
report formats within the electronic medical record system. Notably,
our assay did not include interrogation of TPMT c.460G>A
(rs1800460) or NUDT15 c.55_56insGAGTCG (rs746071566).
Consequently, this methodological limitation precludes definitive
assignment of TPMT*3A versus *3C alleles (or detection of *3B) and
hinders discrimination between NUDT15*2 and *3 alleles.
Therefore, all results are reported as variant-specific frequencies
rather than star-allele frequencies, with interpretations explicitly
contextualized within the scope of our single-locus assay. Additional
clinically relevant alleles recommended by CPIC/Association for
Molecular Pathology (AMP) were not interrogated and fall outside
the current assay’s design.

Allele frequencies and sensitivity analysis

Allele frequencies of TPMT c.719A>G and NUDT15 c.415C>T
were calculated as: Allele frequency = [(Numbers of heterozygotes +
Numbers of homozygotes × 2)/Total sample numbers × 2] × 100%.

In this study, each patient underwent both genotyping tests
simultaneously. Carriage of either the TPMT c.719A>G or NUDT15
c.415C>T was defined as a positive result, as individuals with
intermediate or poor metabolizer phenotypes require adjustment
of thiopurine drug dosages. We compared the sensitivity of these
two variants for guiding thiopurine dosing decisions in the Chinese
(East Asian population).
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Statistical analysis

Data were analyzed with SPSS (version 20; SPSS and SAS,
version 9.2; SAS Institute, IBM Corp., Armonk, NY). Statistical
tests of significance were conducted by paired Chi-square test using
McNemar’s test. The criterion for statistical significance
was p < 0.05.

Results

Characteristics of study participants

This study included 343 females and 228 males, with a median
age of 43 years (range: 5–84 years). The vast majority were of Han
Chinese ethnicity (99.12%, 566/571). Other ethnic groups included
Tujia (0.35%, 2/571), Miao (0.35%, 2/571), and Dong (0.18%, 1/
571). This distribution was largely consistent with the
2020 National Population Census of China, which reported
Han Chinese as the majority (91.1%). Patients were primarily
from the Departments of Neurology (52%, 297/571),
Rheumatology (22.9%, 131/571), and Gastroenterology (22.6%,
129/571). Most diagnoses were non-malignant, including
myasthenia gravis, autoimmune myositis, and Crohn’s disease.
Patient demographic and clinical characteristics are summarized
in Table 1 and Supplementary Material.

Frequency of TPMT c.719A>G and NUDT15
c.415C>T variants

Among all 571 patients, 9 were homozygous for NUDT15
c.415C>T (TT), 125 were heterozygous (TC), and 437 were wild-
type (CC). Conversely, only 1 patient was homozygous for
TPMT c.719A>G (GG), 25 were heterozygous (AG), and
545 were wild-type (AA). The MAFs were 12.52% for

NUDT15 c.415C>T and 2.36% for TPMT c.719A>G,
respectively (Table 2 and Supplementary Material).

Comparison for detection rate between
two variants

The positive detection rates for TPMT c.719A>G and NUDT15
c.415C>T were 4.55% (26/571) and 23.47% (134/571), respectively.
A paired Chi-square test revealed a statistically significant difference
positive rates between NUDT15 c.415C>T and TPMT c.719A>G
(Table 3, P < 0.001). These results indicate that NUDT15 c.415C>T
genotyping is more sensitive than TPMT c.719A>G testing in the
Chinese population. Additionally, seven patients carried
heterozygous mutations in both NUDT15 c.415C>T (TC) and
TPMT c.719A>G (AG).

A total of 153 patients (26.8%, 153/571) were predicted to have
intermediate or poor TPMT/NUDT15 activity. While NUDT15
c.415C>T testing adds 22.25% to the diagnostic yield of TPMT
c.719A>G alone, TPMT c.719A>G complements NUDT15
c.415C>T by identifying an additional 3.33% of at-risk patients
negative for NUDT15 c.415C>T variants. These patients were
recommended to adjust thiopurine dosages or switch to
alternative therapies. In this cohort, no serious adverse events
were observed except in two cases. Both patients had Crohn’s
disease. In our hospital, clinicians recommend conducting TPMT
c.719A>G and NUDT15 c.415C>T genetic testing prior to initiating
thiopurine therapy. And according to CPIC guidelines, intermediate
metabolizers should initiate thiopurine therapy with reduced
starting doses (30%–80% of normal dose). Poor metabolizers
should consider alternative non-thiopurine immunosuppressant
therapy in non-malignant conditions. Unfortunately, the two
patients initially refused to undergo genetic testing and received
conventional thiopurine dosages. Subsequently, they developed
agranulocytosis. Pharmacogenetic testing performed afterward
revealed they were homozygous for NUDT15 c.415C>T (Table 4).

TABLE 1 Characteristics of the patients in our cohort (n = 571).

Characteristics

Age, years

Median 43

Range 5–84

Gender

Female 343 (60.1%)

Male 228 (39.9%)

Nationality

Ethnic Han 566 (99.1%)

Other ethnic groups 5 (0.9%)

Clinical departments

Department of neurology 297 (52%)

Department of rheumatology 131 (22.9%)

Department of gastroenterology 129 (22.6%)

Others 14 (2.5%)

Others: Departments of dermatology, infectious diseases, geriatrics, respiratory and ophthalmology.
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Discussion

Previous studies have investigated the association between
thiopurine drug-induced ADRs and genes including TPMT, ITPA,
NUDT15, GST, MRP4, HGPRT, IMPDH, and XO. Among these,
TPMT, NUDT15, and ITPA are the most extensively studied (Chen
et al., 2021; Suzuki et al., 2023; Salazar et al., 2024). Notably, the U.S.
Food and Drug Administration (FDA) recommends determining
patient TPMT genotypes prior to drug administration, while the
CPIC guidelines additionally advise assessing NUDT15 genotypes
before initiating thiopurine therapy (Relling et al., 2019). Therefore,
this study was intentionally designed to focus onNUDT15 andTPMT,
given their well-established role as primary contributors to thiopurine
toxicity in the study cohort, although the ITPA gene has been
implicated in thiopurine-induced ADRs.

Azathioprine (AZA) acts as a prodrug of 6-mercaptopurine (6-
MP) and undergoes nonenzymatic conversion to 6-MP within

erythrocytes. Subsequently, 6-MP is metabolized into various
derivatives by three key enzymes: xanthine oxidase (XO), TPMT,
and hypoxanthine guanine phosphoribosyl transferase (HGPRT).
The thiopurine metabolism pathway is depicted in Figure 1
(Matsuoka, 2020; Tanaka and Saito, 2021; Suzuki et al., 2023).
Reduced TPMT activity leads to accumulation of 6-thioguanine
nucleotides (6-TGN). Decreased NUDT15 activity increases
thiopurine triphosphate levels. Inosine triphosphate
pyrophosphatase (ITPA) converts 6-thioinosine triphosphate (6-
TITP) to 6-thioinosine monophosphate (6-TIMP), and diminished
ITPA activity is hypothesized to cause 6-TITP accumulation. All of
these conditions could result in an increased risk of adverse
drug reactions.

To date, over 40 TPMT alleles (TPMTp2–p41) have been
identified in individuals with TPMT deficiency (Iu et al., 2017).
The frequency of TPMT genetic polymorphisms varies
significantly across ethnic groups, with an approximate
prevalence of 3% in Asians—substantially lower than that in
European populations (Fangbin et al., 2012; Matsuoka, 2020).
The most common polymorphism is TPMT c.719A>G, which
exhibited an overall prevalence of 2.36% in our Chinese cohort
(predominantly Han ethnicity). The TPMT enzyme is central to
thiopurine metabolism, and the TPMTp3C polymorphism
represents a risk factor for thiopurine intolerance (Cardoso de
Carvalho et al., 2020). This variant induces protein instability and
impairs TPMT enzymatic activity (Evans, 2004), leading to
accumulation of thiopurine nucleoside active metabolites and
subsequent cytotoxicity. Conversely, the NUDT15 enzyme
dephosphorylates thiopurine triphosphate—the active
metabolite incorporated into DNA—into its monophosphate
form (Tanaka and Saito, 2021). NUDT15p3 is recognized as a
loss-of-function variant (Moriyama et al., 2016), causing elevated
thiopurine triphosphate levels and exacerbating thiopurine-
induced cytotoxic effects, including myelosuppression and
alopecia. In our cohort, NUDT15 c.415C>T had an overall
prevalence of 12.52% in the Chinese population (predominantly
Han ethnicity).

During thiopurine treatment, the incidence of leukopenia ranges
from 15% to 40% in Asian populations (Takatsu et al., 2009; Kim
et al., 2010; Qiu et al., 2015), significantly higher than the
approximately 3% reported in Western populations (Lewis et al.,
2009; Sood et al., 2015). Severe leukopenia affects approximately 1%
of Asian patients (Asada et al., 2016), underscoring the critical need
for pharmacogenetic testing in these populations. As a developing
East Asian nation with a population exceeding 1.4 billion, China
faces regional disparities in economic development and limited
public healthcare funding. From a health economics perspective,
there is a pressing need to deliver cost-effective personalized

TABLE 2 Distribution of TPMT c.719A>G and NUDT15 c.415C>T.

Genotype Number of patients Frequency (%)

WT HET HOM

TPMT c.719A>G 545 25 1 2.36

NUDT15 c.415C>T 437 125 9 12.52

WT:wild type (for the allele of interest); HET: heterozygote; HOM: homozygous for the variant allele.

TABLE 3 Frequency distribution/contingency table for preparation of the
chi-squared test (resulting statistics are presented in the text).

TPMT c.719A>G Total

+ -

NUDT15 c.415C>T + 7 127 134

- 19 418 437

Total 26 545 571

TABLE 4 Characteristics of the 2 patients who developed agranulocytosis.

Clinical Information of Patients Patient 1 Patient 2

Age (years) 31 43

Gender Male Male

Nationality Han Han

Diagnosis Chron’s disease Chron’s
disease

NUDT15 c.415C>T genotype HOM HOM

TPMT c.719A>G genotype WT WT

WBC 0.4*109/L 0.98*109/L

RBC 3.45*1012/L 4.47*1012/L

PLT 88*109/L 69*109/L

NEUT 0.05*109/L 0.1*109/L

WBC: white blood cells, RBC: red blood cell, PLT: platelets, NEUT: neutrophil coun.
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medication guidance to patients within constrained
financial resources.

In our cohort, the prevalence of TPMT c.719A>G was
significantly lower than that of NUDT15 c.415C>T (2.36% vs.
12.52%). The positive detection rates for TPMT c.719A>G,
NUDT15 c.415C>T, and both indexes testing were 4.55%,
23.47%, and 26.8%, respectively. Compared with testing NUDT15
c.415C>T alone, simultaneous testing of both polymorphisms only
increased the positive rate by 3.33%. Additionally, only one patient
was homozygous for TPMT c.719A>G. These findings suggest that
single-locus testing for NUDT15 c.415C>T may be a clinically
acceptable strategy in China, although the CPIC guideline for
thiopurine dosing (Relling et al., 2019) still recommends
comprehensive detection of all relevant polymorphisms.

The present study is subject to several limitations. The
current study focused on NUDT15 c.415C>T and TPMT
c.719A>G variants, but did not include the complete allele
panel recommended by CPIC/AMP guidelines. This may lead
to underreporting clinically relevant alleles and does not fully
align with standardized testing protocols. It prioritized TPMT
c.719A>G and NUDT15 c.415C>T due to their established
clinical relevance in East Asian populations, where they
represent the most frequently observed variants associated
with thiopurine-induced toxicity (Relling et al., 2019; Mao
et al., 2021). This may have resulted in incomplete
characterization of genetic contributions to ADRs of
thiopurine drugs. Due to the two-site design of our
genotyping assay, inference of star alleles, which relies on
haplotypic combinations of multiple variants, was not feasible
in this study. Star-allele inference for TPMT and NUDT15
necessitates multi-locus haplotype analysis (e.g., TPMT*3A =
c.460G>A+ c.719A>G; NUDT15*2 = c.415C>T + c.55_

56insGAGTCG). Owing to our assay’s exclusive interrogation
of c.719A>G and c.415C>T, we may have overestimated the
prevalence of TPMT*3C (as some carriers could harbor the
*3A haplotype) and NUDT15*3 (as some carriers may actually
carry the *2 allele). Future investigations should incorporate all
AMP/CPIC Tier-1 variants to enable accurate star-allele
assignment and robust haplotype-based genotyping. Besides,
the lack of metabolite data represents a limitation of the
current study. Future investigations incorporating
simultaneous measurement of thiopurine metabolites and
genetic variants will help elucidate how allele status affects
drug metabolism and, ultimately, clinical responses.

Conclusion

In summary, this study revealed thatNUDT15 c.415C>T yielded
a higher carrier rate than TPMT c.719A>G in this cohort
(predominantly Chinese Han ethnicity). Compared with TPMT
c.719A>G, NUDT15 c.415C>T demonstrated greater suitability
for predicting thiopurine drug toxicity in Chinese patients. It is
important to note that this study only interrogated two single
variants. Broader genetic panels may alter the absolute carrier
yields. These findings highlight the critical role of NUDT15
c.415C>T genotyping in optimizing precision therapy for
thiopurine-based treatments.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary materials.

FIGURE 1
Thiopurine metabolism pathway XO: Xanthine oxidase; TPMT: Thiopurine S-methyltransferase; HGPRT: Hypoxanthine guanine phosphoribosyl
transferase; ITPA: Inosine triphosphate pyrophosphatase; IMPDH: Inosine monophosphate dehydrogenase; GMPS: Guanosine monophosphate
synthetase; NUDT15: Nucleoside diphosphate-linked moiety X-type motif 15; AZA: Azathioprine; 6-MP:6-Mercaptopurine; 6-TUA: 6-Thiouric acid; 6-
MeMP: 6-Methylmercaptopurine; 6-TIMP: 6-Thioinosine monophosphate; 6-TITP: 6-Thioinosine triphosphate; 6-MeTIMP: 6-Methylthionosine
monophosphate; 6-TXMP: 6-Thixanthosine 5′-monophosphate; 6-TGMP: 6-Thioguanosine monophosphate; 6-TGDP: 6-Thioguanosine diphosphate;
6-TGTP: 6-Thioguanosine triphosphate; 6-MeTGMP: 6-Methylthioguanine monophosphate; 6-TdGMP: 6-thio-deoxyguanosine monophosphate; 6-
TGDP: 6-thio-guanosine diphosphate; 6-TdGTP: 6-thio-deoxyguanosine triphosphate. This figure is adapted from previously published works (Tanaka
and Saito, 2021; Suzuki et al., 2023).
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