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Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disorder that results in the degeneration of motor neurons and is typically linked
to toxic aggregates of mutant superoxide dismutase 1 (SOD1) protein. As
autophagy is critical for the removal of these toxic protein aggregates,
stimulating autophagy has emerged as a promising therapeutic approach for
ALS. Unc-51-like kinase 1 (ULK1) is a key regulator of autophagy and has been
shown to have the potential to prevent ALS pathology when activated. However,
synthetic ULK1 activators are frequently limited by toxicity and suboptimal
pharmacokinetic profiles. This study aimed to identify natural ULK1 activators
using a systematic virtual screening approach for potential ALS therapy.
Materials and Methods: This study employed a comprehensive virtual screening
approach to identify phytochemicals capable of activating ULK1. Natural
compounds from the IMPPAT database were screened using molecular
docking, followed by pan-assay interference compounds (PAINS) filtering,
pharmacokinetic profiling, and density functional theory (DFT) analysis.
Further, biological activity was predicted using the PASS tool, and candidate
molecules were subjected to molecular dynamics (MD) simulations, essential
dynamics, and binding free energy calculations via MM-PBSA.

Results: The systematic screening in this study identified Candidine and
Delavinone as high-affinity binders with reference to BL-918, proposing them
as potential activators of ULK1. Both compounds demonstrated favorable drug-
likeness, stable interactions with ULK1 in MD simulations, and promising ALS-
relevant activity profiles. Essential dynamics and MM-PBSA further supported the
binding stability and energetic favorability of these interactions.

Conclusion: Candidine and Delavinone emerge as promising phytochemical
activators of ULK1 with potential therapeutic relevance for ALS. These findings
warrant further experimental validation and preclinical studies to explore their
efficacy in autophagy modulation and neuroprotection.

amyotrophic lateral sclerosis, autophagy, UNC-51-like kinase 1, small molecule
activators, virtual screening, candidine, delavinone
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive
degenerative disorder of the motor system, affecting primarily
motor neurons within the brain and spinal cord, resulting in
weakness in the muscles, paralysis, and eventual respiratory
2022). It s
characterized by the selective degeneration of upper and lower

failure (Feldman et al, a complex disease
motor neurons, resulting in the loss of voluntary muscle control
and severe functional impairments (Nijssen et al, 2017). The
of ALS worldwide is

100,000 people, and most patients with ALS die within 2-5 years

incidence rate about 1-2 per
after the onset of the disease (Xu et al., 2020). There are sporadic
(sALS) and familial (fALS) forms of the condition, and 10% of cases
are familial (Hewitt et al.,, 2010). The insight into the pathology of
fALS provided by genetic mutations associated with the disease has
identified C9o0rf72, SOD1, TARDBP, and FUS as the most prevalent
known contributing genes (Jankovska and Matej, 2021). Yet, while
the genetic and molecular pathways responsible for ALS have been
defined, the mechanisms by which ALS progresses remain poorly
understood, and until now, there is no cure (Ruffo et al., 2025).

Misfolded and aggregated proteins in motor neurons are a
defining pathological feature of ALS (Duranti and Villa, 2022).
Among these, mutant superoxide dismutase 1 (SOD1) aggregates
are extensively studied and are known to play a significant role in
neuronal toxicity (Kaur et al, 2016). As a result, the expected
proteasomal degradation of misfolded SOD1 proteins typically
forms insoluble aggregates that activate endoplasmic reticulum
(ER) stress, mitochondrial dysfunction, and oxidative damage,
ultimately leading to motor neuron degeneration (Chen et al,
2021). Moreover, these deleterious aggregates also impede critical
cellular functions, such as RNA metabolism, axonal transport, and
synaptic transmission. Accumulation of misfolded proteins is a
hallmark of ALS pathology; thus, targeting the clearance of these
misfolded and potentially toxic protein species is an attractive
therapeutic avenue (Duranti and Villa, 2022).

Autophagy is a highly conserved intracellular pathway that
cleaves and recycles damaged proteins and organelles, thereby
contributing to the maintenance of cellular homeostasis (Chun
and Kim, 2018). It is characterized by the sequestration of
cytoplasmic cargo into double-membrane, cytosolic structures
called autophagosomes, which then fuse with lysosomes for
degradation. Autophagic flux is dysregulated in ALS patients, and
multiple preclinical models and a loss of autophagic clearance of
toxic protein aggregates have been documented (Ramesh and
Pandey, 2017). This inappropriate autophagic impairment results
in further accumulation of misfolded proteins and a vicious cycle of
cellular stress-mediated neurodegeneration (Esmaeili et al., 2022).
This has led to considerable interest in therapeutic strategies that
activate autophagy, particularly as a treatment for ALS (Chua
et al.,, 2022).

Unc-51-like kinase 1 (ULK1) is a serine/threonine kinase and a
key initiating enzyme in autophagy (Zou et al, 2022). The
integration of upstream energy and nutrient signaling is mediated
by the ULK1 complex, which comprises ULK1, ATG13, FIP200, and
ATGI101 (Wong et al, 2013). Under cellular stress, ULK1 is
activated, leading to the formation of autophagosomes that clear
damaged proteins and organelles (Zachari and Ganley, 2017).
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Importantly, ULK1 is a critical regulator of autophagy induction;
therefore, modulating its activity may lead to an effective
improvement of autophagic flux in ALS (Liu et al,, 2023). Several
studies have demonstrated that C9orf72, the most commonly
mutated gene in ALS, interacts with the ULK1 complex and
mediates autophagy (Yang et al, 2016). A mutation in
C9orf72 causes loss of function, resulting in defective autophagic
signaling, protein aggregate accumulation, and increased neuronal
vulnerability (Chua et al., 2022). Increased ULK1 expression, along
with its phosphorylation by AMPK at Ser317 and Ser777, triggers
the activation of autophagy. Consequently, pharmacological and
genetic activation of ULK1 stimulates autophagy and reduces
neurotoxicity in ALS models, providing a strong rationale for the
development of ULK1-targeted therapies (Vahsen and Lingor, 2021;
Liu et al., 2023). Currently, no FDA-approved ULK1-targeted drugs
exist for ALS, reinforcing the urgency for identifying novel
candidates like BL-918 and phytochemicals in this study.

While some synthetic ULK1 activators have been investigated,
their clinical utility is typically limited by toxicity, undesired
pharmacokinetics, and low therapeutic potency (Zhang et al,
2017b; Ouyang et al, 2018; Liu et al, 2023). Thus, for the
activation of ULK1 with minimal side effects, there is a need for
novel, safer, and more efficacious compounds. Considering the
diversity

especially  phytochemicals,
alternatives (Ali et al, 2024). Natural products have been

structural and Dbioactive properties of natural

compounds, they are potential
identified as a promising source of bioactive compounds with
therapeutic properties for targeting complex diseases, including
ALS, neurodegeneration, and cancer (Mohammad et al, 2020;
Rahman et al,, 2021). The phytoconstituents of medicinal plants
are reported to have a wide range of chemical structures with various
biological actions (Saxena et al, 2013). Thus, they can be an
important source of leads for new drugs. Since natural
compounds have been documented as modulators of autophagy,
some of them are able to confer neuroprotective effects, mediated by
both reducing oxidative stress and inflammation as well as
facilitating protein clearance (Chandrasekaran et al, 2023).
Recent recognition of ULKI as a target for ALS therapy has led
to the development of new strategies that enable a systematic
screening for phytochemicals with the potential to boost
ULKI1 activity in a manner that could translate into an essential
therapeutic agent for ALS.

Computational drug discovery methods have significantly
accelerated the identification of new drug candidates (Naithani
and Guleria, 2024; Tripathi et al., 2024). Methods such as virtual
screening and molecular docking enable the rapid identification of
small molecules that exhibit high-affinity binding to specific protein
targets, significantly reducing the time and costs associated with
traditional drug screening (Khan et al., 2022). Virtual screening is a
systematic process used to screen large compound libraries, filtering
for candidates that may structurally resemble the target protein and
possess favorable predicted pharmacokinetic properties (Xue et al.,
2022). These studies are conducted through further experimentation
and typically include toxicological studies, such as absorption,
and toxicity (ADMET)
studies, to assess the drug-likeness and toxicity of a compound

distribution, metabolism, excretion,

(Shukla et al., 2018). Screening involves various computational

approaches, including molecular docking and molecular
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dynamics (MD) simulations, to filter candidates and determine
details about the binding stability and poses of the drug
candidate within the binding pocket of the target protein (Shukla
and Tripathi, 2020; 2021).

Using a multi-tiered virtual screening approach, this study
selected candidate bioactive phytoconstituents relevant for
initiating biological activities that could potentially induce
ULK1 activation. A diversity of phytochemicals was extracted
from the IMPPAT 2.0 database (Vivek-Ananth et al., 2023) and
filtered for drug-likeness parameters using the Lipinski rule of five
(Lipinski, 2000). Initial molecular docking studies were performed
to screen compounds with potentially high binding affinity to
ULKI1. Subsequently, ADMET analysis, as well as the PAINS
filter [33], were employed to identify suitable pharmacokinetic
and toxicological profiles. Selected compounds were further
investigated for potential biological activities using the
Prediction of Activity Spectra for Substances (PASS) tool (Khan
et al, 2022). The subsequent filtration of these top-scoring
candidates involves subjecting them to all-atom MD simulations,
followed by essential dynamics analysis to assess their binding
stability and interaction time frame with ULKI. Collectively, this
identification of natural compounds that stimulate ULK1-mediated
autophagy may provide a basis for developing targeted molecular
mechanisms to inhibit neurodegeneration in the context of ALS.
Since ALS is a disease for which there is an unmet clinical need for
phytoconstituents  targeting
ULKI present a promising avenue for future drug development

effective  therapies, bioactive

against this devastating disease.

2 Materials and methods
2.1 Computational tools and web resources

Several bioinformatics tools and online resources were used in
this virtual screening approach to identify potential activators of
ULK1. Molecular docking was performed to predict binding
affinities between phytoconstituents and ULKI1 protein using
InstaDock v1.2 (Mohammad et al., 2021). The docking screening
generated output evaluating the interaction strength and orientation
of each compound within the ULK1 binding site. Complex protein-
ligand complexes were generated for structural visualization and
interaction analysis using PyMOL (DeLano, 2002) and Discovery
Studio Visualizer (Visualizer, 2005) in a three-dimensional (3D) and
two-dimensional (2D) format. Deep-PK (Myung et al., 2024) was
used to predict the pharmacokinetic parameters of the screened
compounds, assessing their ADMET properties. The PASS server
(Lagunin et al., 2000) was used to explore the potential biological
activities of the compounds. The phytochemical dataset was
retrieved from the IMPPAT 2.0 (Indian Medicinal Plants,
Phytochemistry, and Therapeutics Database), a database that
contains plant-derived bioactive compounds (Vivek-Ananth
et al,, 2023). The IMPPAT 2.0 database was chosen due to its
comprehensiveness and curation, featuring over
18,000 phytochemicals from Indian medicinal plants. It includes
3D structures, ethnopharmacological relevance, and drug-likeness
annotations, making it highly suitable for virtual screening in
neurological disorders like ALS.
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2.2 Receptor and library preparation

The RCSB Protein Data Bank (Burley et al., 2022) was used to
retrieve the protein structure with PDB ID 6QAS, having a resolution of
1.75 A (Chaikuad et al, 2019). Co-crystallized ligands and water
molecules were removed from the structure using PyMOL software,
and the structure was refined to prepare it for molecular docking. Prior
to docking, the ULK1 protein structure was energy minimized using
Swiss-PDB Viewer to resolve steric clashes and ensure structural
optimization. PDB ID 6QAS was selected for its structural
completeness, co-crystallized ligand reference, and optimal resolution
of 1.75 A without mutation. Other structures like 4WNO (1.56 A) were
avoided due to introduced mutations that could bias docking/
simulation interpretations. The phytochemical library was extracted
from the IMPPAT 2.0 database, which contains 3D conformations in
PDBQT file format. Compliant with Lipinski’s Rule of Five for drug-
likeness and bioavailability, compounds were filtered based on
molecular weight, lipophilicity, and the stereochemistry of hydrogen
bonds. Molecules were energy-minimized to avoid steric clashes and
optimize structural conformation using the Swiss-PDB Viewer (Kaplan
and Littlejohn, 2001). The processed compounds were then uploaded
into InstaDock for molecular docking screening against ULKI. Ligand
Efficiency (LE) was calculated as the docking score divided by the
number of heavy (non-hydrogen) atoms.

2.3 Molecular docking screening

Molecular docking is a widely used computational technique for
identifying compounds that interact with the binding site of a target
protein (Hassan et al,, 2017). It predicts the binding affinity and ligand
efficiency of molecules for use as potential drug candidates. Structure-
based virtual screening expedites this process by rapidly analyzing
extensive compound libraries to identify suitable candidates based on
their docking scores and interaction features with a specific target.
InstaDock v1.2 was used for docking screening in a defined search space
to identify compounds with potential binding sites on the ULK1 protein
(Mohammad et al., 2021). The grid was defined with an X dimension of
28 A, a Y dimension of 32 A, and a Z dimension of 22 A based on the
predefined binding site (Liu et al., 2023). The center was positioned at
coordinates 7.88 —3.917 and 21.722 to encompass the entire protein
surface. A grid spacing of 1 A was used to ensure precise coverage. The
receptor was used as a three-dimensional structure of ULKI, and
compounds from the phytochemical library were docked to
determine their affinities. The output files were extracted from the
docking results, and the compounds were compared based on their
binding scores. The best candidates with promising binding affinities
were then identified for subsequent evaluations. To validate the docking
protocol, the co-crystallized ligand in 6QAS was re-docked into the
binding site using InstaDock. The RMSD between the docked pose and
the crystal structure was 0.897 A, indicating good agreement and
validating the docking protocol.

2.4 ADMET and PAINS prediction

In drug discovery, the pharmacokinetic and toxicity profiles of
compounds are crucial in determining their suitability for
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therapeutic use. Here, Deep-PK (Myung et al., 2024) was used to
characterize the ADMET properties of the screened compounds
from the docking analysis. Deep-PK thresholds aligned with CNS
drug development requirements, focusing on high GI absorption,
BBB permeability, and CYP450 inhibition avoidance. The
carcinogenic potential of these compounds was evaluated using
the CarcinoPred-EL web server (Zhang et al, 2017a). PAINS
filtering was applied to avoid Pan-assay interference compounds
and reduce the number of false positives, thereby selecting
compounds with better pharmacokinetic properties and reduced
toxicity risks.

2.5 PASS analysis

PASS (https://www.way2drug.com/passonline/) is a web-based
application that predicts the biological activity spectrum of a
compound based on its molecular structure (Lagunin et al,
2000). PASS analysis was performed to explore the potential
biological activities of the screened compounds. PASS analysis
predicts the active (Pa) or inactive (Pi) probability of a
compound for a particular biological function. This suggests that
a higher Pa value demonstrates an increasing likelihood of biological
activity. PASS analysis was used to determine if there is a possible
correlation between the shortlisted compounds and ULK1 activation
in ALS, allowing for the prioritization of promising candidates for
further assessment. For PASS, predicted activities were accepted if
Pa > Pj, indicating functional relevance.

2.6 Interaction analysis

After PASS analysis, molecules with promising results were then
subjected to molecular interaction studies to determine their binding
to the ULK1 binding pocket. Ligand-protein interactions were
visualized from docking output files obtained using InstaDock.
Molecular interactions were examined using PyMOL (DeLano,
2002) for the screened molecules, and 3D and 2D diagrams were
drafted in Discovery Studio Visualizer (Visualizer, 2005) to assess
various interactions, including hydrogen-bonding, hydrophobic
interactions, and m-m stacking. The interactions that occurred
within the ULK1 binding site between the compounds were the
most favorable. To get more detailed information about the
stability and dynamic behavior of the selected compounds in the
ULKI1 complex, we performed MD simulations so that we could
explore the binding orientation and structural stabilities of the ligand-
protein at the timescale of the simulation. BL-918 was selected as a
reference molecule due to its validated ULKI activation activity and
reported efficacy in ALS models, serving as a pharmacological
benchmark. The top binding pose was selected based on the lowest
docking score, favorable hydrogen bonding, and structural similarity
to BL-918 within the ULK1 binding site.

2.7 Density functional theory
To evaluate the electronic characteristics of the selected

compounds, density functional theory (DFT) calculations were
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conducted using the ORCA software suite (version 6.0.1) (Neese
etal., 2020). Molecular structures were constructed in the Avogadro
1.2 package (Hanwell et al., 2012), and input files for calculations by
DFT were prepared in XYZ format. Geometry optimizations were
carried out using the B3LYP hybrid functional (Becke, 3-parameter,
Lee-Yang-Parr) with tight convergence for SCF cycles. Vibrational
frequency calculations were performed for each optimized geometry
to ensure that each structure represented a true energy minimum
and that the thermodynamic parameters (energy and entropy) were
obtained. From this study, important electronic descriptors
including the highest occupied molecular orbital (HOMO),
lowest unoccupied molecular orbital (LUMO) and optimized
geometries were obtained.

2.8 MD simulations

MD simulation is a method for analyzing the time-dependent
(dynamical) behavior of atoms and molecules in the context of
Newtonian mechanics (Shukla and Tripathi, 2020). Understanding
protein-small molecule interactions, including complex stability and
dynamic conformational changes, is crucial for drug discovery;
therefore, MD simulations are utilized to gain deeper insights. MD
simulations of ULK1 and its complexes with selected compounds
were conducted using the GROMACS 2020 B suite (Van Der Spoel
etal., 2005). The GROMOS 54A7 force field (Schmid et al., 2011) was
used in this MD simulation to define atomic interactions, allowing for
accurate energy calculations and MD predictions. Individual
molecular structures were processed for MD simulation using the
PRODRG web server (Zhu, 2019) to obtain force field parameters for
the screened compounds. A water model SPC216 (Mark and Nilsson,
2001) was used to solvate the systems. Each system was confirmed to
be well-structured through energy minimization using the steepest
descent method, which avoided steric clashes and enabled the
achievement of a stable starting structure. The system was then
equilibrated by increasing the temperature from 0 K to 300 K over
a period of 100 ps to stabilize molecular motion following energy
minimization. Equilibration was performed in two steps using the
NVT (number of particles, volume, temperature) ensemble to
simulate 100 ps, ensuring temperature equilibration, followed by
the NPT (number of particles, pressure, temperature) ensemble,
which is similar to NVT but allows the system’s pressure and
density to change. This ensured that the system remained
thermodynamically stable under the conditions of the production
run. Each system was then run to study the time evolution of the
molecules for at 300 ns. Various parameters, including solubility,
binding free energy, kinetic stability, and structural integrity of ULK1-
ligand complexes, were evaluated. While these observations define the
molecular engagement of candidate compounds with ULKI, they
provide additional evidence supporting their assessment as potential
drug candidates.

2.9 Principal component analysis
Principal component analysis (PCA) is a widely used statistical

technique in computational biology, as well as chemistry and
structural bioinformatics (Yang et al,, 2009). It is typically applied
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to remove high-dimensional complexity in datasets while retaining the
most relevant information about the variations of a system. When it
comes to results from MD simulations, PCA is applied to summarize
atomic fluctuations from MD simulations and extract a few collective
motions in the large-scale conformational changes of biomolecules.
This method can then determine the dominant modes of motion that
inform protein flexibility and rigidity before and after ligand complex
formation. PCA was performed on the MD trajectories using the gmx
covar and gmx anaeig modules of GROMACS software to investigate
the essential dynamics of ULK1 in both unbound and bound states
with the selected phytoconstituents. The first few principal
components can describe most of the atomic fluctuations, which
can be considered to characterize the dynamics and stability of the
protein-ligand molecular complex.

2.10 Free energy landscapes

Thermodynamic stability and folding dynamics of ULK1 and its
complexes were analyzed using free energy landscape (FEL) analysis
(Abdelsattar et al., 2021) with the gmx sham module in GROMACS. We
subsequently employed the FELs to assign the conformational states of
low-Gibbs-energy systems as a function of the projections of their
principal components. Our studies reveal the stable and metastable
states of ULK1 and how ligand binding reshapes the global energy
landscape representation of ULK1. We next evaluated the stability of
scaffolding, conformational transitions, and ligand-induced allosteric
modulation of free versus ligand-bound ULK1 by analyzing the FELs of
both states. FEL analysis of PCA integrated within FEL analysis
provided significant insights into ULK1 activation, particularly about
physiological motions and energy landscapes of ULKI.

2.11 MM-PBSA analysis

The binding free energies of protein-ligand complexes were
evaluated by the Molecular Mechanics Poisson-Boltzmann

TABLE 1 Top 10 phytoconstituents and their docking scores against ULK1.

Phytochemical ID Phytochemical name

10.3389/fphar.2025.1661744

Surface Area (MM/PBSA) method (Genheden and Ryde, 2015).
We used the gmx_MMPBSA program to carry out four of these
calculations over selected trajectory fragments that stemmed from
GROMACS simulations (Valdés-Tresanco et al., 2021). To do so, we
extracted 10-ns segments from each protein-ligand complex
trajectory of a 300-ns production run and performed energy
evaluations every 0.1 ns. This via MM/PBSA approach allowed
for decomposing the various energy components such as van der
Waals terms, electrostatic terms, internal molecular energies, the
polar and nonpolar solvation, and the electrostatic component of the
solvation. AGyinging is calculated from the equation:

AGhimiing = Gcomplex - (Greceptor + Gligand)

where Geomplex is the total energy of the protein-ligand system,
Greceptor 18 the energy of the isolated protein, and Gygang represents
the energy of the unbound ligand.

3 Results
3.1 Molecular docking screening

A systematic virtual screening was conducted on a phytochemical
dataset comprising ~18,000 compounds derived from the IMPPAT
2.0 database. The first stage of this screening process consisted of
applying the Lipinski rule of five to filter the compounds, which
defines drug-likeness in terms of molecular weight, hydrogen bond
donors and acceptors, and lipophilicity. This screening resulted in a
filtered library of 11,908 phytochemicals. These phytochemicals were
docked with the ULKI protein using InstaDock to determine
correlated binding affinities. Docking analysis yielded different
conformations of each ligand, ranked by their binding energies
and interactions within the ULK1 binding site. The compounds
were ranked based on docking scores, and the top 10 compounds
were selected, with binding affinities ranging from —11.0 to —10.3 kcal/
mol, indicating a promising interaction with ULK1 (Table 1).

Source (plant)

Affinity (kcal/mol)

Ligand efficiency

1 IMPHY009120 Withametelin B
2 IMPHY006882 Candidine

3 IMPHY007679 Bismurrayaquinone A
4 IMPHY008900 Withaphysalin D
5 IMPHY010666 Withanolide I

6 IMPHY000366 Jervine

7 IMPHY011452 Delavinone

8 IMPHY009067 Picrasidine N

9 IMPHY002700 Withaphysalin A
10 IMPHY005170 Withanolide O
11 BL-918

Datura metel -11.0 0.3333
Strobilanthes cusia -10.6 0.3786
Murraya koenigii -10.5 0.3281
Physalis minima -10.5 0.3088
Withania somnifera -10.5 0.3182
Veratrum viride -10.4 0.3355
Fritillaria delavayi -10.4 0.3467
Picrasma quassioides -10.4 0.2811
Physalis minima -10.3 0.3029
Withania somnifera -10.3 0.3121

-94 0.2611

Ligand efficiency (LE) is reported in kcal/mol per non-hydrogen atom, representing the normalized docking score relative to ligand size. BL-918, is included as the known reference

ULKI1 activator for comparative assessment.
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TABLE 2 ADMET parameters of the selected compounds.
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Gastrointestinal (GI) absorption, blood-brain barrier (BBB) permeability, cytochrome P450 enzyme inhibition, renal clearance, toxicity predictions, and Carcinogenicity assessment.

10.3389/fphar.2025.1661744

Importantly, all chosen compounds exhibited considerably stronger
binding affinities compared to the reference ULK1 activator, BL-918
(Liu et al., 2023), which has an affinity of —9.4 kcal/mol.

3.2 ADMET properties

The pharmacokinetic and toxicological properties of small
molecules are key considerations in the drug discovery and
development process (Pagan et al., 2019). ADMET is an analysis
of potential therapeutics that helps estimate their drug-likeness,
bioavailability, and safety (Ferreira and Andricopulo, 2019). The
computational methods can also be successfully used to predict these
properties, thereby saving time and cost in experimental studies. The
pharmacokinetic parameters of the selected 10 compounds were
further screened with Deep-PK (Myung et al., 2024). From the
screened ten compounds, AMDET analysis identified four
compounds, Withametelin B, Candidine, Jervine, and Delavinone,
with promising pharmacokinetic profiles (Table 2). The compelling
finding from the study was that all four phytoconstituents exhibit
permeability across the blood-brain barrier (BBB), a key
physicochemical property for the discovery of drug molecules
targeting ALS.

3.3 PASS analysis

PASS analysis was performed to explore the potential biological
activities of the screened hits, Withametelin B, Candidine, Jervine,
and Delavinone. Evaluating the biological activities of small
molecules is a crucial step in drug discovery, as it predicts
whether compounds will exhibit the intended pharmacological
attribute. The PASS analysis can be used to extract two
important values: Pa, the likelihood that the compound is active
for a particular function, and Pi, the possibility of inactivity (Lagunin
et al,, 2000). PASS analysis indicated that two of the four molecules
screened, Candidine and Delavinone, have relevant biological
activities. These compounds exhibited a range of Pa values of
0.944-0.143, indicating considerable biological potential relevance
in ALS and kinase-associated pathways (Table 3).

3.4 Interaction analysis

Interaction analysis was conducted to investigate the binding
mechanism of Candidine and Delavinone with ULKI. The docked
confirmation files of both compounds were extracted and analyzed
for their interaction with key residues in the ULK1 structure. Since
the binding site is essential for the functional activity of ULKI, the
binding behavior of Candidine and Delavinone at this site was of
particular interest. The structural studies revealed strong binding
complementarity between both compounds and the binding site
pocket of ULKI1, providing a favorable binding orientation
(Figure 1). It was demonstrated that Candidine and Delavinone
fit snugly within the binding site cavity, indicating potential
activation of ULK1 (Figure 1A). A detailed investigation into
molecular interactions revealed that both compounds exhibit
persistent interactions with corresponding amino acid residues,
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TABLE 3 Biological activity predictions of the selected compounds based on the PASS (Prediction of Activity Spectra for Substances) analysis.

S. No. Phytochemical Structure Pa Pi Activity
1 Withametelin B 0.968 0.004 Antineoplastic
0.524 0.018 Transcription factor stimulant
0.310 0.056 Antibacterial
0.307 0.073 Antipsoriatic
0.263 0.032 Antioxidant
2 Candidine 0.804 0.005 Kinase modulator
0.512 0.105 Antineurotic
0.512 0.105 Antineurotic
0.262 0.149 Antiinflammatory
0.253 0.119 Antineurogenic pain
3 Jervine 0.944 0.001 Hedgehog signaling inhibitor
0.722 0.022 Antineoplastic
0.503 0.022 Transcription factor stimulant
0.385 0.065 Analeptic
0.143 0.112 Anesthetic
4 Delavinone 0.897 0.004 Respiratory analeptic
0.799 0.005 Analeptic
0.622 0.006 Antinociceptive
0.563 0.018 Polarisation stimulant
0.460 0.025 Dementia treatment
5 BL-918 eFE 0.737 0.002 Glycine transporter inhibitor
. )sl\ @ H 0.284 0.013 Antileprosy
¢ NN :
F oL . 0.144 0.010 Autophagy inducer
0.220 0.088 TRKB antagonist
0.365 0.253 Nootropic

Pa: Probability to be active; Pi: Probability to be inactive. A higher Pa value indicates a more substantial likelihood of the compound exhibiting the associated biological effect.

including Argl8, Leu2l, Val29, Cys47, Ile48, Ser86, and Tyr89
(Figure 1B). These interactions closely resembled those of known
ULKI activators, endowing these compounds with the potential to
act as modulators of ULK1 (Ouyang et al., 2018). Structural analysis
further revealed that Candidine and Delavinone bound inside the
deep binding pocket of ULK1, suggesting that these compounds may
act as activating ligands and mediate a modification in ULKI1 that
promotes its activation (Figure 1C). These results demonstrate the
ability of Candidine and Delavinone as potential ULKI-targeting
molecules, which merit further therapeutic evaluation.

The crystal structure of ULK1 (PDB ID: 6QAS) includes a well-
defined ATP-binding pocket and key residues such as Argl8, Leu21,
Cys47, Ser86, and Tyr89 that contribute to ligand recognition. These
residues were found to be critical in ligand interactions with
Candidine and Delavinone, suggesting the importance of the
kinase domain in stabilizing the ligand-protein complex. The
binding modes of Candidine and Delavinone were compared
with those of the reference ULKI1 activator BL-918 using

Frontiers in Pharmacology

Discovery Studio Visualizer to perform a detailed interaction
analysis. We generated 2D interaction diagrams to illustrate all
potential molecular interactions, providing insight into the key
residues involved in binding (Figure 2). The docking analysis
revealed that both Candidine and Delavinone formed multiple
interactions within the binding site of ULKI, thus exhibiting
strong binding affinity towards the target region (Figures 2A,B).
The compounds were found to have similar key binding interactions
with BL-918, as observed in the plots, suggesting a similar mode of
action (Figure 2C).

3.5 DFT analysis

DFT is a powerful tool for developing novel organic corrosion
modulators in modern drug discovery (Obot et al, 2015). We
performed DFT calculations for the optimized geometries and
electronic properties of Candidine, Delavinone, and BL-918.
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FIGURE 1

Molecular interactions between ULK1 and the ligands Candidine, Delavinone, and BL-918. The binding pocket of ULK1 is shown in cyan, with the
ligands represented in distinct colors: Candidine (green), Delavinone (yellow), and BL-918 (orange). (A) Displays the binding poses of all ligands within the
ULK1 binding site. (B) Provides a magnified view of key hydrogen bonding and hydrophobic interactions between ULK1 and the ligands. (C) Presents an
electrostatic surface representation of ULK1, highlighting ligand binding and the spatial orientation of the ligand within the binding pocket.

These evaluations were made based on the HOMO and LUMO, as a
measure of the electronic reactivity of the compounds. HOMO is the
highest energy orbital accessible to the system to donate an electron,
while LUMO is the lowest energy receiving orbital to accept an
electron in the process. The energy gap of HOMO and LUMO (AE
H-L) gives information about the stability and reactivity behaviour
of the compound. A narrow energy gap indicates a high reactivity,
because a low energy is required for the transition of electrons, while
a higher gap, less reactivity and more stability. It can be seen from
Figure 3 that Candidine had higher reactivity with a HOMO-LUMO
energy gap of 2.5570 eV. The Delavinone HOMO-LUMO gap was
4.9119 eV, while 4.2471 eV for the HOMO-LUMO gap of BL-918.
The HOMO and LUMO distributions and their energy level are
shown in Figure 3. The orbital maps show the electron profile, and
blue and pink correspond to the positive and negative lobes of the
molecular orbitals.

3.6 MD simulations analysis

MD elucidate  the

thermodynamic properties and binding behavior of ULKI in its

simulations were performed to
free and complex forms with Candidine and Delavinone. The
simulations were performed for 300 ns, providing detailed
insights into the conformational stability and flexibility of
ULK1 after its binding to the ligands. The stability of ULKI in
the presence of the Candidine and Delavinone was further examined
using the various structural parameters described in the following
subsections.

Frontiers in Pharmacology

3.6.1 Structural dynamics analysis

Root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) analyses were conducted to explore the
structural dynamics of ULK1 upon complexing with the screened
compounds (Figure 4). This RMSD metric is the standard for
evaluating total protein stability in terms of atomic positional
shifts throughout the simulation (Pikkemaat et al, 2002). The
RMSD values for ULK1 in its free state, ULK1-Candidine, ULK1-
Delavinone, and ULK1-BL-918 complexes were observed to be 0.19,
0.18, 0.21, and 0.17 nm, respectively. The results showed that the
protein retained its structural stability throughout the 300 ns
simulation, with only minor deviations (Figure 4A). While slight
differences were observed in the trajectory of the RMSD of the
ULK1-Delavinone complex during the middle of the simulation
time, these variations were not significant. They indicated that
ligand binding had not introduced any considerable instability in
terms of conformation. Furthermore, the appearance of the RMSD
probability distribution function (PDF) was assessed and confirmed
a slight change for ULKI-Delavinone versus ULK1, suggesting a
very slight but consistent expansion of protein dynamics upon
ligand binding (Figure 4A, lower panel).

To examine the local flexibility of ULK1 further upon docking
with Candidine and Delavinone, an RMSF analysis was performed
on the simulated trajectories. RMSF quantifies the movement of
each amino acid residue, enabling the identification of regions of
flexibility and rigidity. The computed average RMSF values were
found to be 0.11, 0.11, 0.11, and 0.10 nm for ULK1l, ULK1-
Candidine, ULKI-Delavinone, and ULKI1-BL-918, respectively,
which suggests that ULK1 exhibited consistent fluctuation
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Two-dimensional (2D) interaction diagrams showing the molecular interactions of ULK1 with phytochemicals. (A) Candidine, (B) Delavinone, and (C)
BL-918. Hydrogen bonds, hydrophobic interactions, and - stacking interactions are illustrated using standard color-coded symbols (green lines for
hydrogen bonds, purple for ni-n stacking, etc.). Ligand atoms are shown in ball-and-stick format, and interacting amino acid residues are labeled. These
visualizations were generated using Discovery Studio Visualizer to depict binding orientation and key contact residues.

behavior before and after binding with the ligand (Figure 4B). There
were only minor changes for the RMSF values of ULK1-Candidine
and ULK1-Delavinone, indicating local conformational adjustments
to the added ligand, while the overall structural stability of the
protein was preserved. Analysis of RMSF PDFs confirmed that these
fluctuations were within reasonable ranges, lending further
credibility to the stability of the ligand-bound complexes
(Figure 3B, lower panel).

3.6.2 Structural compactness analysis

The radius of gyration (R,) is a widely used measure of the
compactness of a protein that was calculated to determine the overall
integrity of ULK1 upon ligand binding. R, provides insights into a
protein’s folding state by evaluating the distribution of atomic mass
around its center of mass, with lower R, values indicating a more
compact structure (Lobanov et al., 2008). The R, of ULK1, ULKI-
Candidine, and ULK1-Delavinone complexes during the 300 ns long
trajectory run of ULK1, ULK1-Candidine, ULK1-Delavinone, and
ULK1-BL-918 complexes were found to be 1.96, 1.97, 1.97, and
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1.97 nm, respectively. A minor increase in R, for ULK1-Candidine
and ULKI-Delavinone could reflect a slight structural expansion
that can be predicted due to the occupancy of a few intramolecular
spaces by the ligands, occupying portions within the protein
(Figure 5A). This was also reflected in the PDF of R, values,
demonstrating that the overall structure was stable and indicated
a well-folded ligand-bound state, confirming the stability of the
ULK1 fold in the presence of Candidine and Delavinone (Figure 5A,
lower panel).

Further, (SASA) of
ULK1 and its complexes was calculated and plotted to assess

the solvent-accessible surface area

the stability of these structures under solvent conditions. SASA
is a quantitative measure of a biomolecule’s exposure to the solvent
in its surrounding environment, reflecting both conformational
stability and molecular interactions (Durham et al., 2009). The
average SASA values were calculated as 145.04, 145.25, 146.21,
and 145.25 nm? for ULK1, ULKI-Candidine, ULK1-Delavinone,
and ULK1-BL-918, respectively (Table 4). We observed a small
increase in SASA for ligand-bound complexes, indicating
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FIGURE 3
HOMO-LUMO representations and energy gaps of Candidine, Delavinone, and BL-918 derived from DFT analysis. The energy difference between

the HOMO and LUMO is also illustrated in the figure, with values expressed in electronvolts (eV). Blue and pink represent the positive and negative phases
of the molecular orbital wavefunction, respectively.
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FIGURE 4
Structural dynamics of ULK1 in its free and ligand-bound states. (A) Root mean square deviation (RMSD) plots showing the stability of ULK1, ULK1-

Candidine, ULK1-Delavinone, and ULK1-BL-918 complexes over the 300 ns simulation period. (B) Root mean square fluctuation (RMSF) plots depicting
residual flexibility within the protein structure before and after ligand binding. Subgraph in panel B shows RMSF pattern of the ligand binding region in
ULKZY, i.e., amino acid residues 10-90. The lower panels present probability distribution function (PDF) values.

minor changes in the solvent accessibility of the protein  significant change. The PDF distribution of SASA values
upon ligand binding (Figure 5B). Nonetheless, the protein  subsequently demonstrated that the changes are within a
remained stable throughout the entire simulation, showing no  permissible range, thereby further supporting the structural
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free and ligand-bound forms throughout the simulation. (B) Solvent-accessible surface area (SASA) plot, illustrating changes in protein solvent exposure
due to ligand binding. Lower panels display the PDF values for Ry and SASA.

TABLE 4 Average molecular dynamics (MD) parameters for free ULK1 and its ligand-bound complexes.

Protein/protein-ligand system RMSD (hm)  RMSF (nm) SASA (nm?)  #Intramolecular H-bonds
ULK1 0.19 0.1 1.96 145.04 196
ULK1-Candidine 0.18 0.11 1.97 145.25 200
ULKI-Delavinone 021 0.1 1.97 146.21 201
ULK1-BL-918 0.17 0.10 1.97 145.25 201

Parameters include root mean square deviation (RMSD, in nanometers), root mean square fluctuation (RMSF, in nanometers), radius of gyration (Rg, in nanometers), solvent-accessible surface
area (SASA, in nm?), and the average number of intramolecular hydrogen bonds over the 300 ns simulation. These metrics reflect the structural stability, compactness, and solvation properties

of ULKI in its apo and holo forms.

stability of ULK1-Candidine and ULKI-Delavinone complexes
(Figure 5B, lower panel).

3.6.3 Dynamics of hydrogen bonds

Hydrogen bonding is fundamental to protein conformations
and protein-ligand binding, and the characteristics of hydrogen
bonding are highly informative of the stability and mode of
interaction of a ligand with a protein (Williams and Ladbury,
2003). To analyze the effects of ligand binding on
ULK1 conformational stability, the hydrogen bonds of ULK1 in
free and ligand-bound form were examined from the simulation
trajectories (Figure 6). Before and after the formation of the
complex of ULK1 with Candidine and Delavinone, the number
of hydrogen bonds formed in ULK1 was tracked and plotted to
analyze for any significant differences (Figure 6A). The average
number of hydrogen bonds was calculated as 196, 200, 201, and
201 for ULK1, ULK1-Candidine, ULK1-Delavinone, and ULK1-
BL-918, respectively. The analysis also showed that the change in
the number of intramolecular hydrogen bonds in ULK1 was
negligible upon ligand binding. The complex formation did not
show statistically significant perturbation with respect to the
ULK1 structure.
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Further analysis was conducted to assess the intermolecular
hydrogen bonds formed by ULK1 with Candidine and Delavinone.
The ULK1-Candidine interaction displayed 1 to 3 intermolecular
hydrogen bonds, suggesting moderate binding stability during
simulation (Figure 6B). Similarly, the ULKI1-Delavinone complex
also formed between 1 and 3 intermolecular hydrogen bonds during
the simulation (Figure 6C). At the same time, the ULKI1-BL-
918 complex formed up to 5 intermolecular hydrogen bonds in a
time-delayed way (Figure 6D). Overall, intermolecular hydrogen
bond distribution showed that the ULKI1-Delavinone complex
exhibited a more stable hydrogen bond distribution than the
ULK1-Candidine complex, indicating more substantial and
persistent ligand-protein interactions.

3.6.4 Secondary structure dynamics

To study the structural effects of ligand binding to ULK1, we
investigated the secondary structure elements along the 300 ns
simulation. Changes in secondary structure elements (a-helix, p-
sheet, turn, coil) may indicate flexibility or conformational change
induced by ligand binding. Figure 7 shows the time-dependent
secondary structure populations by free ULK1 and by its
complexes with Candidine, Delavinone, and BL-918, and the
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FIGURE 6

Intramolecular and intermolecular hydrogen bond formation between ULK1 and the ligands Candidine, Delavinone, and BL-918. (A) Time
progression of intramolecular hydrogen bonds in ULK1, showing the stability of the protein’s internal hydrogen bonding network during the simulation.
(B) Time progression of hydrogen bonds between ULK1 and Candidine, demonstrating the stability and frequency of ligand-protein interactions. (C) Time
progression of hydrogen bonds between ULK1 and Delavinone. (D) Time progression of hydrogen bonds between ULK1 and BL-918.

average composition of each structure is given in Table 5.
ULK1 secondary
distribution throughout the simulation (Figure 7A). A higher
turn and helix content was found to be present in the
ULK1-Candidine complex, suggesting a more flexible structure

showed a consistent structure element

(Figure 7B). It was also accompanied by a small decrease in the
amount of coil and bend formation. On the other hand, the content
of a-helices residues of the ULKI1-Delavinone complex became
higher, and most structure did not change (Figure 7C). The
secondary structure profile of the ULKI1-BL-918 complex was
almost unchanged (Figure 7D). Together, these minor structural
variations suggest that ligand binding induces only mild
conformational changes in ULKI, without causing significant
destabilization or impairing its functional integrity.

3.7 Principal component analysis

PCA is a widely used method for essential dynamics analysis, which
identifies the conformational movements of proteins and protein-ligand
systems, reducing high-dimensional data into principal components
that capture the dominant motion patterns of the biomolecule (Yang
etal,, 2009). We performed PCA to analyze the collective motions of the
ULK1 protein and its complexes with Candidine and Delavinone during
simulations (Figure 8). The PCA analysis revealed that the
ULK1 protein and its ligand-bound forms exhibited distinct
projections along two principal eigenvectors (EVs) calculated from
the Ca atomic displacements (Figure 8A). The enrichment analysis
revealed that ULK1-Delavinone exhibited a more compact projection
than ULK1, ULKI-Candidine, and ULK1-BL-918. The ligand-bound
complexes showed stable conformational motions, with minor
deviations from the conformation of the native state, even with
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diverse normative trajectories (Figure 8B). The PCA results showed
clustering of the ligand-bound complexes compared to free ULKI,
indicating ligand-induced restriction of conformational mobility. Such
clustering reflects stable and restricted motions, consistent with binding-
induced stabilization.

3.8 Free energy landscape analysis

FEL analysis is another valuable technique for evaluating the
impact of ligand binding on protein folding and conformational
stability (Abdelsattar et al., 2021). FEL provides insights into the
folding dynamics by mapping the energy states of a protein through
simulations, revealing the most stable regions and the extent of
reshaping in response to ligand binding. To assess the interaction
of Candidine and Delavinone with elongating ULK1, FELs were
generated from the PCA trajectories to visualize the global minima
and folding mechanism of ULKI. Energy links to ligand-bound and
unbound conformations of ULK1 that are presented in deep blue on
the contour plots represent the states that are energetically preferred
and nearest to the respective native state (Figure 9). ULK1 presented a
single global minimum, stable in 1-2 basins (Figure 9A). In complexes
with Candidine and Delavinone, the expansion of energy basins was
observed in the FELs, where ULK1 adopted diverse stable
conformations with two to three global minima (Figures 9B,C). At
the same time, ULKI1-BL-918 also adopted diverse stable
conformations with a single global minimum (Figure 9D). The
FEL structural analysis revealed distinct conformational preferences
of ULKI in its unbound and ligand-bound states (Figure 9, lower
panels). Structural snapshots extracted from the global minima
highlight the most stable conformations, offering mechanistic
insights into how each ligand modulates ULK1 stability and flexibility.
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FIGURE 7

Time-resolved secondary structure elements for (A) free ULK1, (B) ULK1-Candidine, (C) ULK1-Delavinone, and (D) ULK1-BL-918 during the 300 ns

simulation.

TABLE 5 Average distribution of secondary structure elements in ULK1 and its ligand-bound complexes over a 300 ns simulation.

Secondary structure element ULK1-candidine ULK1-delavinone ULK1-BL-918
Coil 61 59 60 58

(-sheet 55 55 52 55

B-bridge 3 3 3 4

Bend 33 30 32 33

Turn 27 29 30 29

a-helix 86 87 87 87

7t-helix 0 0 0 0

3,¢-helix 6 7 6 5

k-helix 3 2 2 3

The number of residues adopting each secondary structure type, coil, B-sheet, B-bridge, bend, turn, a-helix, 310-helix, and nt-helix, was averaged across all trajectory frames. These data provide

insights into the conformational stability and flexibility of ULK1 upon ligand binding.

3.9 MM-PBSA analysis

To evaluate the binding affinities of the studied ligands for
ULKI1, we carried out MM/PBSA calculations for the protein-ligand
complexes using the production trajectories. These studies dissected
the binding energy (AGyinaing) into contributions from the gas-phase
(van der Waals (vdW) and electrostatic) and solvation (polar and

Frontiers in Pharmacology

13

non-polar) effects. The results show that Candidine and Delavinone
exhibited better binding energy as compared to BL-918 (Table 6).
Concretely, ULK1-Delavinone reached the lowest binding free
energy (19.99 £ 3.73 kJ/mol), with the next being ULK1-BL-918
(-18.26 + 2.71 kJ/mol) and ULK1-Candidine (—6.93 + 2.79 kJ/mol).
The negative values indicate a strong interaction and stability of
ULKI1 with the selected phytochemicals during the binding process.
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FIGURE 8

Principal component analysis (PCA). (A) 2D projections illustrating the essential dynamics of ULK1, ULK1-Candidine, ULK1-Delavinoneand, and
ULK1-BL-918. (B) Time-dynamics projection highlighting the dominant conformational changes observed in each system.

FIGURE 9
Free energy landscape (FEL) plots of ULK1 in different states. (A) FEL of ULKY, displaying a single global minimum corresponding to the most stable

protein conformation. (B) FEL of the ULK1-Candidine complex, showing shifts in energy basins due to ligand binding. (C) FEL of the ULK1-Delavinone
complex with multiple stable conformational states. (D) FEL of the ULK1-BL-918 complex, revealing multiple stable conformational states. The deeper
blue regions represent the most energetically favorable conformations, providing insights into the thermodynamic stability of ULK1-ligand
interactions. The lower panels showed the fetched protein structural snapshot from the global minima.

Opverall, the data signify the possibility of Candidine and Delavinone
as potential ULK1 binders are worth deeper validation.

4 Discussion

Targeting ULKI is an emerging strategy for mitigating the
pathological of aggregates
characteristic of ALS (Ouyang et al., 2018). Given the limitations

accumulation toxic  protein
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associated with existing synthetic ULK1 activators, including BL-
918, our focus on bioactive phytoconstituents aims to provide safer,
structurally novel, and more druggable candidates. This study
identifies and characterizes two phytochemicals, Candidine and
Delavinone, as promising natural activators of ULKI using an
integrated computational approach. The docking analysis
suggests that the screened phytoconstituents have high binding
potential towards ULK1 and may be further investigated as
potential modulators of ULK1 activity in ALS. The top-ranked
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TABLE 6 MM/PBSA-derived binding energy components for ULK1-ligand complexes.

Complex AGypwaaLs AEg, AEpg AEnpoLAR AGgas AGsoLy AGrotal (KJ/mol)
ULKI-Candidine ~15.03 -3.82 13.69 -1.77 ~18.85 11.92 ~6.93 +2.79
ULKI-Delavinone ~40.66 ~13.19 38.40 —4.54 -53.85 33.86 ~19.99 + 3.73
ULKI1-BL-918 3571 0.89 2038 382 ~34.82 16.56 1826 + 271

compounds represented structurally diverse scaffolds, reflecting
chemical classes such as isoquinoline alkaloids (e.g., Candidine)
and steroidal alkaloids (e.g., Delavinone). This diversity increases
the chance of identifying novel binding modes and provides broader
applicability for therapeutic development. ADMET findings indicate
that Withametelin B, Candidine, Jervine, and Delavinone possess
drug-like properties and non-toxic features and should proceed to
the next stage of the screening cascade as ULK1 activators relevant to
ALS therapeutics. The PASS analysis showed that both Candidine
and Delavinone exhibited biological activities, including kinase-
modulating, antineurotic, anti-inflammatory, and antineurogenic
pain-relieving properties, as well as potential treatments for
dementia symptoms. This enabled the identification of promising
candidates for further validation and optimization.

The interaction analysis Key residues, such as Argl8 and Cys47,
are directly involved in the binding with Candidine and Delavinone,
suggesting that these compounds may be promising modulators of
ULK]1. Considering that they directly interact with the same residues
used by BL-918, Candidine and Delavinone may enhance
ULK1 activity, as found in previous findings (Ouyang et al,
2018; Liu et al,, 2023). The interaction analysis provides insight
into the molecular mechanisms of these compounds and further
establishes their potential as future drug candidates after further
validation. The MD simulation results suggest that the binding of
Candidine and Delavinone to ULK1 is not accompanied by
significant structural perturbations or instability. These analysis
methods, specifically RMSD and RMSF, contribute essential
information that helps determine the atomic-level dynamics of
ULK1, reiterating the roles of Candidine and Delavinone as
promising hit modulators of ULK1 for future drug development.

The R, and SASA findings imply that binding of Candidine and
Delavinone induces minimal conformational rearrangement,
resulting in negligible compromise of structural compactness. The
consistent patterns observed in both R, and SASA analyses
underscore the dynamic stability of these ligand-bound states,
highlighting Candidine and Delavinone as stable modulators of
ULK1 activity. The intramolecular hydrogen bond analysis of
ULKI1 and ULKIl-ligand complexes showed a higher number of
hydrogen bonds, confirming that the internal hydrogen bond
network of ULK1 was preserved and more compact. While the
intermolecular hydrogen bond dynamics showed Candidine and
Delavinone form stable hydrogen bond interactions with ULK1,
further stabilizing the complex. The ULKI1-Delavinone complex,
on the other hand, showed more stability than Candidine and
ULKI. These findings of intermolecular interactions provide
valuable information for the development and optimization of
novel ULK1 modulators for therapeutic potential.

PCA analyses confirmed that the global motion of ULK1 was
minimally affected by ligand binding, suggesting that the structure of
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both complexes remained stable within proximity throughout the
simulation for Candidine and Delavinone. These results also offer
key insights into the dynamics of ULK1 and its interaction with the
screened compounds, paving the way for future studies on their
translational utility. FEL analysis suggests that the binding of ligands
induces slight conformational changes without altering the native
folding landscape of the protein. No indication of unfolding was
observed, indicating that ULKI remained stable during the
simulation. The FEL results showed that Candidine and Delavinone
only affected a slight conformational state of ULK1, but no significant
destabilization was observed. A limitation of this study is the reliance on
a single best-docked pose for each ligand as the starting conformation in
MD simulations. Although commonly practiced, this approach may not
capture the full conformational flexibility.

Overall, these findings support the use of Candidine and
Delavinone as structurally novel and pharmacokinetically viable
activators of ULKI. Notably, Delavinone showed superior MM-
PBSA-derived binding affinity (-19.99 + 3.73 kJ/mol), stable
hydrogen bonding, and minimal structural perturbation of ULKI,
positioning it as a particularly compelling lead candidate. This study is
limited by its reliance on computational data without experimental
validation. The data support their advancement toward preclinical
validation. Further studies should investigate their autophagy-
inducing activity and neuroprotective effects in relevant ALS
cellular and
relationship (SAR) analysis for lead optimization. In summary,
these results suggest that both ligands interact with ULK1 without
compromising the structural integrity of the target, indicating them as

animal models, as well as structure-activity

promising candidates for further assessment as ULK1 modulators.

5 Conclusion

ALS is a progressive neurodegenerative disease characterized by the
accumulation of toxic protein aggregates, including mutant SODI,
which leads to the degeneration of motor neurons. Since the
clearance of these aggregates is mediated by autophagy, improving
autophagic pathways has been considered a possible therapeutic
approach. ULK1 is a key activator of autophagy and is a promising
target for drug development in ALS. This study was designed to identify
bioactive phytoconstituents that activate ULK1 using a computational
drug discovery approach. Multi-step virtual screening was conducted
against a library of phytochemicals sourced from the IMPPAT
2.0 database. Structure-based molecular docking revealed that
Candidine and Delavinone have the most potent binding affinities
for the ULK1 binding site, compared to BL-918, a known
ULK1 activator. Analysis of ADMET showed that both compounds
exhibited good ADMET properties, including BBB permeability,
without any observed toxicity. Their potential biological activity was
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further supported by PASS analysis, which revealed various relevant
activities. DFT and MD simulations were conducted to assess the
stability of ULKI in a complex with Candidine and Delavinone. The
RMSD, RMSF, Ry, and SASA analysis results indicated that binding the
ligand caused only minor structural changes while the overall stability of
the protein was preserved. Hydrogen bond interactions exhibited
greater stability in the complex, particularly with ULKI and
Delavinone. PCA, as well as FEL and MM-PBSA analyses, also
confirmed that ULKI’s folding mechanism was not substantially
impacted by ligand binding. These small-molecule compounds,
Candidine and Delavinone, possess strong binding potential towards
ULK1 and advantageous drug-like properties. These structurally diverse
phytochemicals present promising candidates for further experimental
validation in autophagy-related ALS therapy development. The results
offer valuable insights into the therapeutic potential of
ULK1 modulation by phytochemicals and call for subsequent
in vitro and in vivo evaluations for drug development.
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