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Objective: The dried succulent stem of C. tubulosa (Schenk) Wight has long been
used as herbal medicine in China and other regions of Asia for its tonifying
properties. This study aimed to elucidate the pharmacological mechanisms of the
total glycosides from Cistanche tubulosa (GCT) in ameliorating cognitive decline,
with a focus on gut microbiota remodeling and metabolic regulation.

Methods: Six-month-old APP/PS1 double-transgenic mice received oral GCT at
three doses or donepezil for 60 days. Cognitive function was assessed by the
Morris water maze. AR burden and inflammatory factors were evaluated by
immunohistochemistry and ELISA. Gut microbiota was analyzed using 16S
rRNA sequencing. Metabolomic profiles of mice serum and brain were
profiled by a targeted metabolomics approach that enabled simultaneous
quantitation of 306 metabolites. The effect of GCT on pure-cultured bacterial
strain was assessed via growth curve analysis in vitro.

Results: GCT treatment significantly improved spatial memory and reduced the
protein levels of Ap and proinflammatory factors in APP/PS1 mice. Multi-omics
analyses revealed that GCT rapidly enriched beneficial taxa like Akkermansia and
suppresses Firmicutes since the seventh day of intervention, leading to increased
neuroprotective short-chain fatty acids (e.g., p-hydroxybutyrate) and decreased
pro-inflammatory long-chain fatty acids in both serum and brain. Crucially, in-
vitro experiments demonstrated that GCT directly promoted the proliferation of
Akkermansia muciniphila, a key probiotic implicated in AD amelioration.

Conclusion: This work uncovers a novel “gut microbiota-fatty acid metabolism-
neuroinflammation” axis as the primary mechanism underlying GCT's anti-AD
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effects. These findings highlight GCT's therapeutic potential and offer new
mechanistic insights into how low-bioavailability phytochemicals exert systemic
benefits via the gut-brain axis.
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1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disorder, poses a significant global health burden due to its
irreversible cognitive decline and high prevalence (Abbott, 2023;
Scheltens et al., 2021). Over 55 million individuals worldwide
currently live with dementia, with AD accounting for 60%-70%
of cases, yet existing treatments only offer transient symptomatic
relief (Leng and Edison, 2021). Recent research has highlighted the
gut-brain axis as a pivotal mediator in AD pathogenesis, with
dysbiosis of the gut microbiota emerging as a potential
therapeutic target (Jamerlan et al, 2025; Zhang et al, 2023).
Akkermansia muciniphila, an abundant gut inhabitant of humans
and many other animals, have been proven to alleviate dementia-like
symptoms in AD mice (Ou et al,, 2020; Wang et al., 2025). Gut
microbiota-derived metabolites, such as short-chain fatty acids
(SCFAs), amino acids, and secondary bile acids, can traverse the
intestinal barrier and influence neuroinflammation, amyloid-f (Ap)
aggregation, and tau hyperphosphorylation via circulatory, neural,
and immune pathways (Ameen et al, 2022; Chen et al., 2022).
Notably, systemic and cerebral metabolic disturbances, including
dysregulated lipid, SCFAs, and energy metabolism, have been
consistently observed in patients with AD, further implicating gut
microbiome-host metabolic crosstalk in disease progression
(Butterfield and Halliwell, 2019; Zhang et al., 2024).

Traditional herbal medicines have emerged as promising
therapeutic strategy employed in treating mild to moderate
dementia as well as in managing AD (Li et al., 2022; Long et al,,
2024; Maisto and Mango, 2024). Cistanches Herba (Roucongrong in
Chinese), a widely utilized traditional Chinese medicine (TCM), is
derived from the dried succulent stems of Cistanche deserticola (Y.
C. Ma) and Cistanche tubulosa (Schenk) Wight, both officially
authenticated in the Pharmacopoeia of the People’s Republic of
China (The Commission of Chinese Pharmacopoeia, 2020). As
described in the Pharmacopoeia, Cistanches Herba is effective in
tonifying brain and kidney yang, benefiting essence and blood, and
lubricating the intestines. It has long been used for anti-aging and
treating forgetfulness in the clinical practice of TCM since the 15th
century (Fang et al,, 2017; Wang et al,, 2017; Song et al.,, 2021).
Glycosides, mainly phenylethanoid glycosides (PhGs) and iridoid
glycosides, have been recognized as the predominant constituents in
Cistanches Herba (Jiang and Tu, 2009; Zou et al,, 2017; Bai et al,,
2022). As further development based on its traditional efficacy, the
total glycosides from C. tubulosa has been used as C. tubulosa
glycoside capsule (Memoregain®) for AD treatment in clinic (Guo
etal, 2013). Although PhGs from C. tubulosa have exhibited potent
neuroprotective effects on different models of cognitive impairment
(Li N. et al, 2015; Zhang et al., 2017) and depressive disorder (Li
et al., 2018), these compounds demonstrated quite low oral
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bioavailability (e.g., echinacoside and verbascoside, <1%) (Li Y.
et al, 2015; Wu et al,, 2020). The pharmacological mechanism of
Cistanches Herba in improving cognition remains further explored,
and the low oral bioavailability of these glycosides poses a
pharmacokinetic paradox.

Intriguingly, emerging evidence suggests that modulation of gut
microbiota and microbial metabolites may be a fundamental
mechanism through which herbal medicines exert systemic
health benefits (Hui et al., 2024; Su et al., 2023; Bai et al., 2024).
GCT (with PhGs as major components) has been shown to
modulate the composition and metabolism of gut microbiota in
rodent models of diabetic nephropathy (Ma et al., 2025), alcoholic
liver disease (Qi et al., 2025), and liver fibrosis (Qi et al., 2024).
Recent studies also indicated that both TCM formulas and single
medicinal herbs can improve cognitive function through the gut-
brain axis (Chen et al., 2023; Gou et al., 2023; Wu et al., 2022; Zhao
etal., 2025). This paradigm shift raises the possibility that Cistanche-
derived glycosides may similarly act through remodeling gut
microbiome and regulation metabolism to attenuate cognitive
decline and AD pathology, which was closely related to the
traditional use of Cistanches Herba as “nourishing the brain and
enhancing intelligence” in TCM.

In this study, we investigated the effects of C. tubulosa glycosides
on cognitive function and AD pathology in APPswe/PS1dE9 double-
transgenic (APP/PS1) mice, a well-established model characterized by
AP deposition and cognitive deficits. By integrating 16S rRNA
sequencing, targeted metabolomic profiling, and experimental
validation in vivo and in vitro, we elucidated the shifts in gut
microbiota and systemic metabolic reprogramming induced by
GCT intervention, revealing the mechanism by which C. tubulosa
glycosides alleviate cognitive decline and AP burden in AD mice.

2 Materials and methods
2.1 Chemicals and reagents

The reference standards of dulcitol, 8-epiloganic acid, and 8-epi-
loganic acid-6'-O-f-D-glucoside were purchased form Dexter
Ltd. (Chengdu, China);
acteoside, tubuloside A, isoacteoside, 2’—acetylacteoside were

biotechnology Co., echinacoside,
purchased form Purifa Technology Development Co., Ltd.
(Chengdu, China). Their purities were no less than 95%. The
stock solutions of the eight standards were mixed to prepare a
standard mixture. Formic acid, methanol, and acetonitrile (ACN)
were of LC-MS grade and from Thermo-Fisher (Pittsburgh, USA).
Ultrapure water was prepared through Milli-Q water purification
system (Millipore, MA). Other reagents and chemicals were of
analytical grade.
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2.2 Preparation of GCT

Raw drug materials, the dried succulent stems of C. tubulosa,
were collected from Tongrentang Co., Ltd. (Beijing, China), and
identified by Dr. Wei Song. The plant voucher is deposited in the
national infrastructures for translational medicine (Peking union
medicine college hospital). Briefly, the drug materials were sliced,
powdered, and then refluxed with 10-fold 75% ethanol for three
times (1 h each time) followed by filtration. The filtrates were
combined before subjected to frozen drying to obtain GCT
extract. For ultra-high performance liquid chromatography
coupled with quadruple time-of-flight
(UPLC-qTOE-MS) analysis, an aliquot of 0.1 mg extract was
diluted to 10 mL with 75% methanol and then filtered through a
0.22 um membrane.

mass spectrometry

2.3 UPLC-qTOF-MS analysis of GCT

UPLC-qTOF-MS analysis was performed on an Acquity
UPLC™ system coupled with a Synapt G1 MS system (Waters,
Milford, MA, USA). A Waters Acquity UPLC HSS T column (100 x
2.1 mm, 1.8 pm) was used for the analysis, with the column
temperature was set at 30 ‘C. Mobile phases were water with
0.1% formic acid (A) and acetonitrile (B). The gradient used was
as follow: (0-5.0) min, 5%-10% B; 5.0-6.0 min, 10%-13% B;
6.0-12.0 min,13%-15% B; 12.0-14.0 min, 15%-17% B;
14.0-17.0 min, 17%-23% B; 17.0-21.0 min, 23%-35% B;
21.0-22.0 min, 35%-95% B; 22.0-24.0 min, 95% B. The flow rate
was 0.5 mL/min. The injection volum of sample was 1 uL. The data
acquisiton mode was MS". The analysis Data was acquired from
50 to 1,500 Da. The source temperature was 100°C, and the
desolvation temperature was 450°C, with desolvation gas flow
850 L/h, Leucine enkephaline was used as lock mass, The
capillary voltage was 3 kV. At low CE scan, the cone voltage was
30 V for (-) ESL The collision energy was 6 eV (trap) and 4 eV
(transfer), and the collision energy was 20—45 eV ramp (trap) and
12 eV (transfer) for (—) ESI. The instrument was controlled by
Masslynx 4.1 software (Waters, Milford, MA, USA).

2.4 Mice grouping and treatment

Six-month-old male APP/PSI mice and C57BL/6] wild type
(WT) controls were obtained from Huafukang Biotechnology Co.,
Ltd. (Beijing, China). Animals were maintained under specific
pathogen-free conditions with controlled temperature (22°C +
1°C) and a 12-h light/dark cycle. After 1 week of acclimatization,
APP/PS1 mice were randomly allocated into five groups (n = 10 each
group): APP/PS1 model, APP/PS1 + low-dose GCT (CTL,
100 mg kg'd'), APP/PS1 + medium-dose GCT (CTM,
200 mg kg'-d"), APP/PS1 + high-dose GCT (CTH, 400 mg kg
".d"), and APP/PS1 + positive drug donepezil (0.92 mg kg'-d").
Age-matched WT mice (n = 10) served as normal controls. GCT
powder and donepezil were freshly suspended in distilled water
(1.0 mL) for daily oral gavage administration. Both the untreated
APP/PS1 model group and WT control group received equivalent
volumes of distilled water. Six out of the 50 APP/PS1 mice (one in
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model group, two in CTL group, one in CTM group, one in CTH
group, and one in donepezil group) unexpectedly died, while none of
the WT mice died within the treatment period continued for
60 consecutive days.

2.5 Morris water maze (MWM) testing

Spatial learning and memory were assessed using the Morris
water maze (MWM) according to established protocols (Morris R,
1984). The experiment commenced on the 55th day post-treatment
and consisted of a 5-day training stage followed by a probe trial on
day 6. The apparatus comprised a circular pool (120 cm diameter)
filled with water maintained at 22°C + 1°C. Edible white pigment was
added to water to track the mice accurately. A removable escape
platform (10 cm diameter) was positioned 1 cm below the water
surface in the center of a fixed target quadrant. During the
acquisition phase, mice underwent four trials per day. Each trial
began by placing the mouse facing the pool wall at one of four
randomized entry points (northeast, northwest, southeast,
southwest quadrant). Animals were allowed 60 s to locate the
platform, after which they were gently guided to it and remained
for 10 s if unsuccessful. Escape latency (time to reach the platform)
and swim speed were recorded when the mice found and resided on
the platform. On day 6, all mice were subjected to the probe trial in
which they swam for 60 s in the pool without the platform. Spatial
memory retention was quantified by measuring time spent in the
target quadrant and number of crossings through the former

platform location using an automated video tracking system.

2.6 Sample collection

The fecal samples were gathered at the 7th, 30th, and 60th day of
treatment to analyze the intestinal microbiota and metabolites. After
behavioral tests, five mice from each group were sacrificed for
sample collection. The serum and cerebral tissues were collected
and stored at —80°C until used. The serum was used for biochemical
tests and metabolomics analysis. Parts of the brain was used for
histomorphometry and the rest was used for metabolomics analysis.

2.7 Histopathological assessment

The cerebral tissues were fixed by tissue fixative, washed,
dehydrated, and then embedded with paraffin. After sliced into
sections (5 pm in thickness), hematoxylin and eosin (H&E) staining
and Congo red staining were

performed  following

standard protocols.

2.8 Biochemical assay by ELISA

The quantification of soluble AB (Ap40) and insoluble A (and
AP42) in mice brain was performed using commercial ELISA kits
(Invitrogen, KMB3481 for mouse AP40 and KMB3441 for
mouse AP42, respectively). The serum and cerebral levels of
interleukin-13 (IL-1p), interleukin-6 (IL-6), and tumor necrosis
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factor-a (TNF-a) were determined using IL-1p ELISA Kit (Halic,
DRE30027), IL-6 ELISA Kit (Halic, DRE30044), and TNF-a ELISA
Kit (Halic, DRE30030) for mouse, respectively. The kits were utilized
as per manufacturer’s instructions.

2.9 16S rRNA gene microbiome
sequencing analysis

The total microbial genomic DNA was extracted from mice fecal
samples collected at the 7th day and 60th day using the FastPure
stool DNA isolation Kit (MJYH, shanghai, China) according to
manufacturer’s instructions. The quality and concentration of DNA
were determined by 1.0% agarose gel electrophoresis and a
NanoDrop2000 spectrophotometer (Thermo Scientific, United
States). The V3-V4 hypervariable region of the 16S rRNA gene
were amplified with primer pairs 338F (5'-ACTCCTACGGGAGGC
AGCAG-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3').
The 250-bp amplicons were sequenced using the Illumina
Nextseq2000 platform (Illumina, San Diego, USA) according to
the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd.
(Shanghai, China). Raw FASTQ files were de-multiplexed and then
quality-filtered by fastp (https://github.com/OpenGene/fastp) and
merged by FLASH (http://www.cbcb.umd.edu/software/flash).
Then the optimized sequences were clustered into operational
taxonomic units (OTUs) using UPARSE (http://drive5.com/
uparse/) and analyzed using Majorbio Cloud platform (https://
cloud.majorbio.com).

2.10 Targeted metabolomics analysis

The targeted metabolomics analysis of mice serum and cerebral
samples was conducted with the Q300 Metabolite Array Kit
(Metabo-Profile China).
reference standards of targeted metabolites and extractions from

Biotechnology, Shanghai, Briefly,
samples were prepared according to the instructions of the kit as
previously reported (Xie et al, 2021). Methods for sample
preparation were summarized in Supplementary Material. An
ultra-high performance liquid chromatography coupled with
tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY
UPLC-Xevo TQ-S, Waters, Milford, MA, USA) was used to
quantitate all targeted metabolites. Samples were separated on an
ACQUITY UPLC BEH C18 column (2.1 x 100 mm, 1.7 um, Waters,
MA, USA). The mobile phase consisted of water containing 0.1%
formic acid (v/v, A) and acetonitrile/IPA (7:3, v/v, B). The following
linear elution gradient was used: 0-1 min (5% B), 1-11min (5%-78%
B), 11-13.5 min (78%-95% B), 13.5-14 min (95%-100% B),
14-16 min (100% B), 16-16.1 min (100%-5% B), 16.1-18 min
(5% B). The flow rate was 0.40 mL/min. The column temperature
was maintained at 40°C. The sample tray temperature was
maintained at 10°C. For MS detection, the capillary voltage was
set at 1500 V in positive ion mode and 2000 V in negative ion mode.
The source temperature was set at 550°C, and desolvation gas flow at
1000 L/h. Quantitative analyses of 306 targeted metabolites were
monitored in multiple reaction monitoring (MRM) mode. The
quality control samples and blank samples were analyzed across
the sample set. Raw data files from UPLC-MS/MS were processed
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using the MassLynx software (v4.1, Waters, Milford, MA, USA) for
peak integration, calibration, and metabolite quantitation.

2.11 In-vitro culture experiment

The A. muciniphila (A.muciniphila, BNCC341917) was provide
by Beina Biotechnology (Beijing, China) and cultured in Brain Heart
Infusion (BHI) agar at 37°C in anaerobic environment. The GCT
extract was added to BHI medium at different concentrations (0,
3.125,6.25, 12.5, 25, 50, 100, and 200 pg/mL) to evaluate the effect of
GCT on the growth of A. muciniphila. The optical density (OD)
value (600 nm) of bacterial solution was measured at 0, 4, 8, 12, 16,
24, 36, and 48 h to draw the growth curve.

2.12 Statistical analysis and visualization

Statistical analyses were conducted using GraphPad Prism 8.0
(GraphPad, San Diego, CA, USA) or R package. Comparisons of two
groups were performed using two-tailed unpaired Student’s t-test.
Comparisons of multiple groups were performed using one-way
analysis of variance (ANOVA) with Tukey’s test as the posthoc
analysis. Data were presented as mean + SD. Kruskal-Wallis rank
sum test was performed to analyze the gut microbiota sequencing
data. Differences were considered significant with P values <0.05.

3 Results
3.1 Chemical characterization of GCT
A total of 26 constituents in GCT extract were characterized by

UPLC-qTOF-MS (Figure 1A, 1-26).
compounds, including dulcitol, 8-epiloganic acid, 8-Epi-loganic

Among them, eight

acid-6'-O-B-D-glucoside, echinacoside, acteoside, tubuloside A,
isoacteoside, and 2'-acetylacteoside (1, 4, 5, 10, 14, 16, and 23 in
Figure 1B, respectively), were confirmed by comparing with
reference  standards. These constituents consisted one
monosaccharide (1), two iridoids (2, 3), and 20 PhGs (4—26),
detailed information of which were listed in Table 1. The result
above indicated that the GCT extract prepared for further in-vivo
experiments is abundant with PhGs.

3.2 GCT rescued cognitive impairment of
APP/PS1 mice

The experimental design of the animal study was shown in
Figure 2A. Morris water maze test was conducted to evaluate the
effect of GCT on cognitive function. During the training days, the
escape latency of mice in all groups showed a decreased trend with
prolonged training (Figure 2B). Although the APP/PS1 mice
exhibited significantly prolonged escape latencies when compared
to the normal controls, high-dose GCT group showed shortened
escape latency on day 5 when compared to the model group (P <
0.05, Figure 2B). In subsequent spatial probe test, mice in APP/
PS1 model group spent significantly less time in the target quadrant
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FIGURE 1

Chemical characterization of the total glycosides extracts from Cistanche tubulosa. (A) Total ion chromatogram (TIC) of the extract analyzed by
UPLC-qTOF-MS. (B) TIC of mixture of standards (1, dulcitol; 4, 8-epiloganic acid; 5, 8-Epi-Loganic acid-6"-O-p-D-glucoside; 10, echinacoside; 14,

acteoside; 15, tubuloside A; 16, isoacteoside; 23, 2'-acetylacteoside).

(P < 0.001, Figure 2C) and showed fewer platform crossings (P <
0.01, Figure 2D) when compared to the normal controls. Notably,
mice in medium- GCT group, high-dose GCT group, and donepezil
group exhibited significantly increased target quadrant dwell time
compared to the APP/PS1 model mice (P < 0.05), while mice in
high-dose GCT group also demonstrating a marked increase in
platform crossings (P < 0.05). No significant differences in average
swimming speed were observed across groups, indicating that
behavioral improvements were not attributable to changes in
motor ability (Figure 2E). Post-platform removal, the normal
and high-dose GCT groups displayed
trajectories biased toward the original platform quadrant, while

control, donepezil,
the model, low-, and medium-dose GCT groups showed evenly
distributed trajectories across all quadrants (Figure 2F). These data
suggested that GCT, especially at the high dose (400 mg kg'-d") in
present study, improved the spatial learning and memory behavior
of APP/PS1 mice. Since GCT at 400 mg kg'-d"' exhibited optimal
therapeutic efficacy in APP/PS1 mice, our subsequent studies were
conducted at this dose.

3.3 GCT reduced AP burden in APP/PS1 mice

H&E staining revealed normal cortical and hippocampal
structures across all groups, with no edema, hemorrhage, or
inflammatory infiltration (Figure 3A). Congo red staining showed
no senile plaques in controls. The model group exhibited increased
scattered senile plaques in the cortex and hippocampus, whereas the
GCT group showed reduced cortical and hippocampal plaques
(Figure 3B). Immunohistochemistry demonstrated weak p-Tau
and AP expression in hippocampal neurons of controls. The
model group exhibited an enhanced p-Tau and AP expression
with increased positive cells, while the GCT group showed
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attenuated expression and fewer positive cells compared to the
model group (Figure 3C). ELISA analyses further revealed
significantly elevated soluble and insoluble AP1-40 and AP1-42
levels in the model group versus controls (P < 0.001). GCT
treatment at 400 mg kg'-d"' significantly reduced both soluble
and insoluble AB1-40 and AP1-42 levels in hippocampi of APP/
PS1 mice (P < 0.05, Figure 3D).

3.4 GCT altered the gut microbial
composition of APP/PS1 mice

Fecal samples were collected on day 7 and day 60 of GCT
intervention and subjected to 16S rRNA sequencing. As shown in
Figure 4A, the model group exhibited significantly reduced
Shannon index and elevated Simpson indexes, as well as
reduced Chao index of observed operational taxonomic units
(OUTs) compared to the normal controls (P < 0.05), indicating
diminished gut microbiota a-diversity and richness in APP/
PS1 mice. Although high-dose GCT intervention failed to alter
the alpha-diversity, the principal coordinates analysis (PCoA)
based on weighted UniFrac distance demonstrated distinct
microbial compositions among the control, APP/PS1 model,
and high-dose GCT groups at both day 7 and day 60
(Figure 4B). When compared to the PCoA result at day 7
(Adonis: R*> = 0.615, P=0.001), more striking difference
between the model group and GCT-treated group appeared at
day 60 (Adonis: R* = 0.438, P = 0.001). Taxonomic composition
analysis focused on the top-ranked taxa at two different levels
(phylum and genus) further revealed the regulatory effect of GCT
on gut microbiota composition of APP/PS1 mice. Consistent with
the B-diversity results of PCoA, the gut microbiota composition of
APP/PS1 mice showed significant changes within 7 days of GCT
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TABLE 1 Characterization of chemical constituents in total glycosides extract of Cistanche tubulosa by UPLC-Q-TOF/MS analysis.

Peak tr Identification Formula Measured [M-H]- Predicted VESS (=) MSE (m/z2)
no. (min) (m/z) [M-H] error
(m/2) (mDa)
1 0.55 Dulcitol CeH 1406 181.0675 181.0707 32 181.0677 [M-HJ"
2 242 geniposide acid CiH»010 | 373.1125 373.1135 -1 211.0651 [M-H-Glu]"
167.0734 [M-H-Glu-CO,]
149.0625 [M-H-Glu-CO,-
H,0J
3 324 adoxosidic acid Cy6H24010 375.1261 375.1291 -3 213.0781 [M-H-Glu]
or mussaenoside acid 169.0913 [M-H-Glu-CO,]
4 3.54 8-epiloganic acid Ci16H24010 375.1262 375.1291 -2.9 213.0735 [M-H-Glu]
169.0810 [M-H-Glu-CO,]
151.0739 [M-H-Glu-CO,-
H,OJ
5 414 cistanoside F CoHagOrs | 487.1424 487.1452 -28 179.0375 [M-H-Rha-Glu]
135.0472 [M-H-Rha-Glu-
CO,J
6 7.29 Cistanbuloside C1/C2 CiysHyOs 8012440 801.2452 -12 783.2352[M-H-H,0]
621.1963[M-H-H,O-Cf]"
7 8.94 campneoside I CaoH3016 | 639.1952 639.1925 27 621.1876 [M-H-H,0]
459.1581[M-H-H,0-Cf]
8 9.05 kankanoside K, or CiyeHis0s | 815.2638 815.261 28 783.2398[M-H-OMe]"
kankanoside K, 621.2006[M-H-OMe-Cf]
9 9.15 isomer of campneoside Il CyoH36016 639.1960 639.1925 3.5 621.1908 [M-H-H,0]
459.1581 [M-H-H,0-Cf]"
10 9.67 echinacoside CysHygOno | 785.2551 785.2504 47 623.2177 [M-H-Cf]"
477.1600[M-H-Cf-Rha]’
11 11.79 poliumoside or C35H46019 769.2538 769.2555 -1.7 607.2241 [M-H-Cf]"
isomer of poliumoside
12 12.24 poliumoside or CisHuOro | 769.2543 769.2555 -12 769.2507 [M-H-Rha]"
isomer of poliumoside
13 13.08 compneoside | C30H35016 653.2090 653.2082 0.8 621.1823 [M-H-OMe]
459.1388 [M-H-OMe-Cf]
14 14.26 acteoside CyoHaOrs | 623.1982 623.1976 0.6 461.1638[M-H-Cf]
315.1030[M-H-Cf-Rha]"
15 14.79 tubuloside A CiyHysOs | 827.2728 827.2610 58 665.2258[M-H-Cf]"
623.2145[M-H-Ac-Cf]
16 15.56 isoacteoside CooHy0ys | 623.1967 623.1976 09 416.1633[M-H-Cf]"
315.1101[M-H-Cf-Rha]"
17 15.99 Isomer of acteoside CooH3O1s | 623.1963 623.1976 -13 461.1638[M-H-Cf]"
18 16.16 syringalide A 3'-a- CyoH36014 607.2058 607.2027 3.1 461.1549 [M-H-Rha]
L-rhamnopyranoside 445.1814 [M-H-Cf]
299.1205 [M-H-Cf-Rha]
19 1625 2'-O-acetylpoliumoside CyHugOs | 811.2687 811.2661 26 665.2257[M-H-Rha]"
1623.2124[M-H-Rha-AC]"
20 16.35 isosyringalide CyoH36014 607.1942 607.2027 -8.5 461.1740 [M-H-Rha]
3'-a-L-rhamnopyranoside 315.1086 [M-H-Rha-Cm]
163.0414[M-H-Rha-Glu-
PhAJ
21 16.58 kankanoside | CisHiOrg | 7532550 7532603 -53 591.265[M-H-Cf]"
22 17.00 kankanoside G CooH3¢014 | 607.2019 607.2027 -08 461.1740[M-H-Rha]
445.1814 [M-H-Cf]"
299.1205 [M-H-Glu-Ac]
(Continued on following page)
Frontiers in Pharmacology 06 frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1662336

Hou et al.

10.3389/fphar.2025.1662336

TABLE 1 (Continued) Characterization of chemical constituents in total glycosides extract of Cistanche tubulosa by UPLC-Q-TOF/MS analysis.

tr Identification

(min)

Formula

(m/z2)

Measured [M-H]"

Predicted
[M-H]-
(m/z)

(=) MSE (m/z)

23 17.31 2/-acetylacteoside C3H3s016 | 665.2067 665.2082 -15 623.2177[M-H-Ac]
477.1600[M-H-Ac-Cf]"
24 18.24 tubulaside B C31H35076 | 665.2162 665.2082 8 503.1887 [M-H-Cf]"
461.1740 [M-H-Cf-Ac]"
25 18.49 tubuloside E C3H3s015 | 649.2070 649.2132 6.2 607.2109 [M-H-Ac]"
461.1713 [M-H-Cf-Ac]
315.1131 [M-H-Cf-Ac-Rha]
26 19.34 osmanthuside B6 or CyoH36015 | 591.2018 591.2078 -6 445.1787 [M-H-Cf]-
osmanthuside B 163.0414 [M-H-Rha-Glu-
Cm]”
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FIGURE 2
Total glycosides of Cistanche tubulosa improved the spatial learning and memory of APP/PS1 mice. (A) Mice grouping and experiment timeline. (B)

Escape latency during training days in Morris water maze test (MWT). ***P < 0.001 versus the wild type (WT) control group. *P < 0.05 versus the APP/
PS1 model group. (C) Time stayed in target quadrant in the probe test. (D) Numbers of target cross in the probe test. (E) Average swimming speeds. (F)
Representative track images of mice during probe test in MWT. Data showed as mean + SD. *P < 0.05, **P < 0.01,***P < 0.001. n. s., no significant
difference. WT, wild type; CTL, low dose of the total glycosides from C. tubulosa; CTM, medium dose of the total glycosides from C. tubulosa; CTH, high
dose of the total glycosides from C. tubulosa.

intervention (Figure 4C). These results suggested that short-term At the phylum level, Firmicutes and Bacteroidetes dominated
the gut microbiota across all groups, but their ratios differed

(Figure 4C). The ratio of Firmicutes to Bacteroidetes was 0.57 in

GCT intervention rapidly altered gut microbiota architecture,
potentially preceding cognitive amelioration in APP/PS1 mice.
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FIGURE 3

Effect of the total glycosides from Cistanche tubulosa on brain histopathology and biochemical markers. (A) H&E staining. (B) Congo red staining. (C)
Immunohistochemistry for Ap and p-Tau. (D) The contents of soluble and insoluble Ap among different groups determined by ELISA assays. *P < 0.05,
***P < 0.001. DG, dentate gyrus; WT, wild type; CTL, low dose of the total glycosides from C. tubulosa; CTM, medium dose of the total glycosides from C.

tubulosa; CTH, high dose of the total glycosides from C. tubulosa.

controls, increased to 1.19 in APP/PS1 model group, and partially
declined to 0.84 in GCT group after 60-day intervention. The
relative abundance of Epsilonbacteraeota dropped in the model
group (0.75% vs 3.32% in controls) and was restored to 2.35% after
60-day GCT treatment. Similarly, Proteobacteria abundance
decreased in the model group (0.75% vs 1.07% in controls) but
was elevated to 1.25% after GCT intervention (Figure 4C). At the
genus level, GCT treatment also rebalanced the abundances of
several main bacterial genera in APP/PS1 mice gut microbiota,
such as  Akkermansia, Dubosiella, Lactobacillus, and
Lachnospiraceae_ NK4A136_group since the 7th day of GCT
intervention (Figure 4D).

To further elucidate the effect of GCT on the composition of gut
microbiota, linear discriminant analysis effect size (LEfSe) method
was employed to identify key microbiota with significant intergroup
disparities at day 60, as this time point represented the study
endpoint (LDA threshold = 2). The normal control group was
characterized by dominant taxa such as f Bifidobacteriaceae and
f_Prevotellaceae. GCT intervention of 60 days mainly promoted the

Frontiers in Pharmacology

enrichment of beneficial bacteria from f Rikenellaceae, f
Deferribacteraceae,

and f Bacteroidaceae  (Figures 5A,B).
Intergroup differences at day 60 were further analyzed using the
Kruskal-Wallis rank sum test. Consistently, the GCT intervention
also corrected the abnormal increase of Firmicutes at phylum level
(Figure 5C). All above results indicated that the gut microbiota in
APP/PS1 mice altered significantly, while GCT modulated the
composition of gut microbiota.

3.5 GCT altered the metabolism of fatty
acids in serum of APP/PS1 mice

Microbiota-derived metabolites participate in host metabolism
through multiple metabolic
phenotypes could provide a comprehensive understanding of
GCT’s and its
mechanisms through the “gut-brain” axis. Consequently, a

targeted metabolomics analysis was performed on mice serum

pathways. Investigating host

metabolic regulatory effects anti-dementia
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FIGURE 4

The effects of total glycosides from Cistanche tubulosa on the gut microbial diversity of APP/PS1 mice. (A) a-diversity at the 7th and 60th days of
intervention, respectively: Shannon, Simpson, and Chao indexes. (B) p-diversity at the 7th and 60th days of intervention, respectively: plots from the
principal coordinates analysis. (C) Community analysis based on phylum level. (D) Community analysis based on genus level. WT, wild type; CTH, high
dose of the total glycosides from C. tubulosa. *P < 0.05; ***P < 0.001; n. s., no significant difference.

and cerebral tissue, enabling the simultaneous quantification of
306 metabolites, including 201 gut microbiota-associated
metabolites. A total of 209 metabolites were successfully detected
and quantified in mice serum from control, APP/PS1, and APP/PS1
+ high-dose GCT group, including carbohydrates (54.26%, content
ratio), amino acids (24.68%), organic acids (15.4%), fatty acids
(4.79%), and others (0.87%) (Figure 6A). The observed reduction
from the predefined panel of 306 target metabolites to the final
quantifiable 209 ones is due to metabolites either falling below the
limit of detection or being absent in mice serum, as expected when
applying a fixed commercial panel.

Partial least squares-discriminant analysis (PLS-DA) revealed
distinct metabolic profiles among the three groups, with
pronounced differences between the normal control and APP/

Frontiers in Pharmacology

PS1 model groups, while the high-dose GCT group exhibited an
intermediate profile (Figure 6B). Differential metabolites among
the groups were identified based on univariate statistical analysis.
A total of 18 metabolites showed statistically significant alterations
in serum of GCT-treated group compared with those in APP/
PS1 model group. Among these, 12 long chain fatty acids with
unsaturation degree of 0-2 showed significant decrease in
circulating levels after 60-day GCT treatment (Figure 6C).
Notably, the serum levels of two short-chain fatty acid
derivatives, 2-phenylpropionic acid and trihydroxybutyric acid,
were significantly elevated following GCT intervention (P < 0.05).
Furthermore, the precursors of 2-phenylpropionic acid, serine and
dimethylglycine, also exhibited significant upregulation post-GCT
treatment (P < 0.05).
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The total glycosides of Cistanche tubulosa reshaped the composition of gut microbiota in APP/PS1 mice at the 60th day of intervention. (A)
Cladogram of different taxonomic compositions of the three groups by linear discriminant analysis effect size (LEfSe) (LDA score >2.0, P < 0.05). (B) The
LDA scores (log 10) of differential bacterial taxa among the three groups provided by LEfSe. (C) The relative abundances of significantly altered gut
microbiota at phylum and genus levels (P < 0.05). WT, wild type; CTH, high dose of the total glycosides from C. tubulosa. *P < 0.05.

3.6 GCT corrected the metabolic disruptions
of fatty acids in brain of APP/PS1 mice

In cerebral samples of mice, a total of 194 metabolites were
determined by the targeted metabolomics approach. Distinct from
the serum metabolic profile, amino acids accounted for 80.75% of
detected metabolites in cerebral tissue across the three experimental
groups, followed by organic acids (7.38%) and fatty acids (6.82%) as
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the other predominant categories (Figure 7A). Subsequent PLS-DA
analysis revealed intergroup metabolic disparities (Figure 7B).
Univariate statistical comparisons further revealed metabolites
that demonstrated significant reversal in cerebral tissue following
GCT intervention. As shown in Figure 7C, the contents of three
saturated fatty acids, including 12-hydroxystearic acid (C12:0),
pentadecanoic acid (C15:0), and palmitic acid (C18:0), were
elevated in APP/PS1 mice and significantly attenuated following
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FIGURE 6

The effect of total glycosides of Cistanche tubulosa (GCT) on serum metabolic profile of APP/PS1 mice. (A) The composition of serum metabolome
in wild type (WT) mice, APP/PS1 mice, and GCT-treated APP/PS1 mice. (B) The score plot of partial least squares-discriminant analysis. (C) The content of
metabolites significantly altered in serum after GCT treatment. CTH, high dose GCT. *P < 0.05, **P < 0.01.

GCT intervention. Conversely, three short-chain fatty acids,
including 3-hydroxybutyric acid, isobutyric acid, and 2-
phenylpropionic acid, exhibited significant reduction in APP/
PS1 with  their restored  post-GCT
intervention. In addition, the aberrant changes in contents of
glucose 6-phosphate,

model mice, levels

fructose 6-phosphate, and
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N-methylnicotinamide, three intermediates involved in energy
metabolism, were also attenuated by GCT.

These results were well collaborated with those metabolic
changes observed in circulation. Specifically, the contents of
short-chain fatty acids, such as 2-phenylpropionic acid and
butyric acid derivatives, significantly increased after GCT
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FIGURE 7

The effect of total glycosides of Cistanche tubulosa (GCT) on metabolic profile of cerebral tissue from APP/PS1 mice. (A) The composition of brain
metabolome in wild type (WT) mice, APP/PS1 mice, and GCT-treated APP/PS1 mice. (B) The score plot of partial least squares-discriminant analysis. (C)
The content of metabolites significantly altered in cerebral tissue after GCT treatment. CTH, high dose GCT. *P < 0.05, **P < 0.01.

with 3-
hydroxybutyric acid demonstrating promising neuroprotective

intervention in both serum and cerebral tissue,
efficacy against dementia pathogenesis (Kachoueiyan et al,
2025; Madhavan et al., 2025; Ge et al., 2023). Moreover, the
results revealed pathological accumulation of several saturated
long-chain fatty acids (LCFAs) in circulatory systems and
cerebral parenchyma of APP/PS1 mice, with GCT intervention
achieving markedly normalization of these pro-inflammatory
metabolites. The gut microbiota-dependent nature of fatty acid
metabolism suggests that the GCT-induced gut microbiota
remodeling potentially contributes to its observed anti-dementia
effect through metabolic reprogramming, indicating modulation
of fatty acids-homeostasis as a key mechanistic basis for GCT’s
therapeutic effect.
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3.7 GCT decreased the neuroinflammation
of APP/PS1 mice

SCFAs, such as propionate and butyrate, have been reported to
exert anti-inflammatory effects, whereas both saturated and
monounsaturated LCFAs exhibit pro-inflammatory properties.
Strikingly, GCT intervention significantly increased these anti-
inflammatory SCFAs  while concurrently reducing pro-
inflammatory LCFAs (Figures 6C, 7C). For neuroinflammation
plays a pivotal role in the pathogenesis of AD (Leng and Edison,
2021), then we measured the inflammatory markers from different
groups. As illustrated in Figure 8, the levels of IL-1p, IL-6, and TNF-
a in both serum and brain of APP/PS1 mice were markedly
upregulated compared to the normal

controls, indicating
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FIGURE 8

The total glycosides of Cistanche tubulosa (GCT) decreases the proinflammatory factors in vivo and promotes the growth of Akkermansia
muciniphila in vitro. (A) Levels of proinflammatory factors in mice serum. (B) Levels of proinflammatory factors in mice cerebral tissue. (C) Effect of GCT
on the growth of A. muciniphila. (D) The growth curves of A. muciniphila. *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significance.

aberrantly elevated inflammation in both circulation and brain
tissue (P < 0.01). In contrast, these pro-inflammatory cytokines
were significantly downregulated in the GCT-treated group
compared to the APP/PS1 model group (P < 0.05). These data
demonstrate that GCT effectively attenuates neuroinflammation in
AD mice, which could be mediated by the altered and their mediated
fatty acids.
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3.8 GCT promoted the proliferation of
Akkermansia muciniphila in vitro

Akkermansia muciniphila, a widely recognized probiotic in the
gut microbiota, is known to promote the production of SCFAs
including propionate and butyrate. Akkermansia muciniphila itself
as well as its metabolites have been proven to alleviate dementia-like
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The total glycosides of Cistanche tubulosa (GCT) ameliorate cognitive decline in APP/PS1 mice probably through modulation of gut microbiota and

fatty acid metabolism.

symptoms in APP/PSI mice (Ou et al,, 2020) and 5xFAD mice
(Wangetal., 2025). Although the 16S rRNA sequencing has revealed
a significantly enhanced level of A. muciniphila after 7 days’ GCT
intervention in vivo (Figure 4D), the effect of GCT on A. muciniphila
still needs validation to further elucidate the mechanisms of GCT in
treating AD. Our subsequent in-vitro study found that GCT
significantly promoted the growth of A. wmuciniphila pure-
cultured strain at 12 h in a dose-dependent manner (Figure 9A).
Further growth curve analysis indicated that the logarithmic period
for A. muciniphila was observed to end at 16 h, while GCT at
concentration of 12.5, 25, and 50 upg/mL all enhanced the
proliferation of A. muciniphila (Figure 9B).

4 Discussion

Globally, over 50 million people lived with dementia in 2020,
with prevalence projected to double every 2 decades, reaching
82 million by 2030 and 152 million by 2050 (GBD,
2019 Dementia Forecasting Collaborators, 2022). In China, the
socioeconomic burden of dementia is anticipated to exceed
3.2 trillion yuan by 2030 (Zhu et al.,, 2023). AD, accounting for
60%-80% of dementia cases, remains a therapeutic challenge due to
limited preventive or curative interventions. Medicinal and dietary
herb have demonstrated advantages in managing chronic and age-
related diseases, highlighting the untapped potential of natural
products and herbal formulations for anti-AD drug development.
PhGs from Cistanche herbs exhibit well-documented anti-dementia
effects, yet their low oral bioavailability and mechanistic
underpinnings remain incompletely understood. The mechanism
through which GCT displayed the anti-AD effects remains unclear.
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The present study demonstrates that GCT effectively ameliorate
cognitive deficits and pathological hallmarks in APP/PS1 double-
transgenic mice. GCT intervention significantly improved spatial
learning and memory as well as reduced AP deposition.
Furthermore, multi-omics analyses firstly revealed that GCT
reshaped gut microbiota composition and rectified systemic and
cerebral metabolic disturbances in AD-model mice, particularly in
fatty acid and energy metabolism pathways. The in-vitro experiment
further demonstrated that A. muciniphila might have played the
crucial role in aforementioned changes caused by GCT. These
findings not only elucidate the apparent paradox between the low
bioavailability and potent neuroprotective effects of phenylethanoid
glycosides, but also indicate that GCT serves as a promising
therapeutic candidate for AD, acting via gut microbiota
modulation and metabolic reprogramming.

APP/PS1 mice were selected for its accelerated AP accumulation
and AD-associated memory deficits, which begins at 6 months of age
and progressively worsens, mimicking key features of human AD
(Cao et al,, 2021). By initiating treatment at 6 months and last for
2 months, this study targeted a stage of established amyloidosis and
cognitive decline, allowing evaluation of GCT’s therapeutic potential
advanced AD-like
improvements in AP burden and cognitive performance validate

in reversing pathology. The observed
the model’s relevance for testing anti-AD interventions. Consistent
with previous reports (Chen et al., 2024), APP/PS1 mice exhibited
reduced gut microbial diversity and altered taxonomic composition,
characterized by decreased beneficial taxa (e.g., Bacteroidetes) and
(e.g.
restored microbial

increased  pro-inflammatory  genera Lactobacillaceae,
Dubosiella). GCT

enriching Rikenellaceae and Bacteroidaceae, families associated

intervention balance,

with anti-inflammatory and neuroprotective effects. Notably, in
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the normal gut microbiota, Firmicutes and Bacteroidetes are two
significant phyla, while the increased Firmicutes-to-Bacteroidetes
ratio (F/B) has been associated with multiple pathological states (Lee
et al., 2021; Strati et al., 2017). In this study, an increased F/B was
also observed in APP/PS1 mice, which was decreased after GCT
intervention. It has been revealed that Firmicutes and Bacteroidetes
are important for intestinal energy metabolism, yet an increase in
F/B caused metabolic disruptions (He et al., 2018; Sweeney and
Morton, 2013).

Akkermansia muciniphila has been shown to have a significant
impact on inflammation and neurodegeneration. In AD patients,
there is a decrease in the abundance of A. muciniphila and a
decrease in propionic acid in both fecal and blood samples (Wang
etal., 2025). Probiotic interventions targeting A. muciniphila show
promise in the AD treatment. Treatment with A. muciniphila
reduced regulated cognitive impairment and hippocampal
NLRP3-mediated through
intestinal barrier function and attenuating Th17 responses in

neuroinflammation improving
the gut, central nervous system, and lymphoid tissues of mice
(Lietal., 2025). A cocktail of unique probiotics, including strains of
A. muciniphila, significantly reduced cognitive decline and AD
pathology markers in a humanized AD mouse model. The
beneficial effects were linked to a reduced inflammation in both
systemic circulation and the brain (Prajapati et al, 2025). In
another study, A. muciniphila protected against dopamine
neurotoxicity in a Parkinson’s disease model by modulating
butyrate to inhibit microglia-mediated neuroinflammation,
suggesting its potential in treating neurodegenerative diseases
(Xu 2025). These findings directly the
mechanistic relevance of GCT-induced A. muciniphila
enrichment observed in our study, strengthening the biological

et al, support

rationale for its potential benefits in AD.

In recent years, metabolomics has been increasingly applied to
investigate gut microbiota metabolism and host-microbiota co-
metabolism. Metabolomics enables rapid profiling of gut
the

landscape of microbial activity. Additionally, microbiota-derived

microbiota-associated metabolites, reflecting metabolic
metabolites participate in host metabolism through multiple

pathways. Investigating host metabolic phenotypes may
comprehensively reveal GCT’s metabolic regulatory effects and
anti-dementia mechanisms through the “gut-brain” axis. In this
study, targeted metabolomics further revealed that GCT normalized
dysregulated metabolites linked to microbial activity, including
SCFAs and LCFAs. This integrative approach underscores the
gut-brain axis as a critical mediator of GCT’s anti-AD effects,
bridging microbial to  functional
metabolic outcomes.

Aberrant fatty acid metabolism is a hallmark of AD. Elevated
serum levels of oleic acid, linolenic acid, and linoelaidic acid in
APP/PS1 mice align with clinical reports linking these
metabolites to dementia risk (Honda et al., 2019). GCT

significantly reduced these pro-inflammatory fatty acids,

compositional  changes

suggesting a mechanism immune

modulation. Furthermore, several saturated LCFAs (such as

involving  peripheral

oleic acid and palmitic acid), as well as monounsaturated
LCFAs (such as linoleic acid and Palmitoleic acid), known to
promote AP and tau aggregation (Mill and Li, 2022; Qian et al,,
2023), were also normalized post-GCT treatment. These findings
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highlight GCT’s  role in

neuroinflammation, a key contributor to AD progression.

mitigating  lipid-driven

Butyrate is a major SCFA constituting over 60% of gut
microbiota-derived SCFAs through bacterial fiber fermentation.
In this study, intervention with GCT significantly elevated
cerebral levels of 3-hydroxybutyric acid (B-hydroxybutyrate) and
isobutyric acid in AD model mice. Notably, GCT restored brain
levels of neuroprotective SCFAs, including 3-hydroxybutyric acid
and isobutyric acid. These metabolites enhance secretion of brain
derived neurotrophic factors and counteract neuronal degeneration
(Bairamian et al., 2022). In patients with AD and its animal models,
decreased levels of B-hydroxybutyrate have been implicated in
disease pathological progression (Kachoueiyan et al, 2025;
Madhavan et al., 2025). Studies suggest that it plays a critical role
AD B-hydroxybutyrate
supplementation reduced plaque formation, microgliosis, and

in pathogenesis. Exogenous
caspase-1 activation in the 5xFAD AD mouse (Shippy et al,
2020). Furthermore, B-hydroxybutyrate ameliorates AD pathology
by modulating B-hydroxybutyrylation (Kbhb), a post-translational
modification of tricarboxylic acid (TCA) cycle-related enzymes. In
APP/PS1 AD model mice, Kbhb modifications of TCA enzymes
were significantly reduced during pathological stages. However, -
restored Kbhb

modification levels and enzymatic activity, thereby enhancing

hydroxybutyrate supplementation markedly
ATP production and mitigating amyloid-p plaque pathology
(Han et al, 2025). Disrupted cerebral glucose metabolism and
Warburg-like glycolytic shifts have also been characterized in AD
(Chen and Zhong, 2013; Dewanjee et al., 2022). Elevated glucose 6-
phosphate and fructose 6-phosphate in APP/PS1 mice reflect
impaired energy homeostasis, which GCT effectively reversed.
Collectively, GCT ameliorates AD pathology by modulating gut
microbiota composition and associated metabolic networks,
particularly fatty acid and energy pathways. Despite the low oral
bioavailability of PhGs, their efficacy likely arises from microbial
metabolic cooperation, underscoring the gut-brain axis as a
promising target for dietary interventions supporting brain
the dried succulent stems of both C.
tubulosa and C. deserticola are traditionally consumed as

health. Furthermore,

nourishing foods in China and across various Asian regions.
Within this context, C. tubulosa was selected for this study due
to its reported superior bioactivity in supporting neurological health.
Comparative studies highlight that C. tubulosa extracts exhibit
stronger effects on mood regulation than C. deserticola (Fan
et al., 2022). Moreover, PhGs, the key bioactive components
associated with cognitive support, are more enriched in C.
tubulosa (Liu et al., 2019). To maximize PhG yield, 75% ethanol
reflux extraction was employed, yielding the GCT extract rich in
these glycosides. The mediating role of gut microbiota proves
particularly crucial in explaining the therapeutic effects of many
TCM components with low oral bioavailability. Investigating the
regulatory effects on gut microbiota composition and microbial
metabolite production could provide novel perspectives for
elucidating their pharmacological mechanisms.

In addition, GCT contains diverse bioactive glycosides that likely
exert therapeutic effects through multiple targets and signaling
pathways. Our comprehensive analysis reveals that GCT induces
modulatory effects gut
Taxonomic profiling demonstrates

multidimensional on microbiota

architecture. significant
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restoration of the Firmicutes-to-Bacteroidetes ratio alongside
enrichment of beneficial genera including Akkermansia and
Dubosiella, indicating enhanced microbial ecosystem resilience.
further GCT-mediated
upregulation of SCFA biosynthesis coupled with downregulation

Functional ~metabolomics indicates
of saturated LCFA production. These coordinated shifts suggest
GCT remodels microbial communities toward a health-associated,
anti-inflammatory phenotype, potentially disrupting the gut
dysbiosis-inflammation axis implicated in AD pathogenesis.
Critically, this represents an integrated regulatory action that not
attributable to isolated bacterial strains or singular metabolic
rather the effects

components. Given the multifactorial pathogenesis of AD,

pathways, but synergistic of multiple
involving concurrently dysregulated neuroinflammatory cascades,
proteostasis failure, and metabolic dysfunction, this systems-level
therapeutic approach may offer superior efficacy in modulating
disease progression compared to single-metabolite or single-strain
interventions. Furthermore, the established safety profile of
Cistanche Herba, recognized for centuries as a dual-purpose
medicinal and edible plant within traditional pharmacopeias,
provides a robust foundation for clinical translation. Collectively,
these findings position GCT as a promising complementary
therapeutic candidate worthy of further development.

5 Conclusion

In this study, we provide the first evidence that GCT alleviates
cognitive deficits and AP pathology in APP/PS1 mice primarily
through remodeling the gut microbiota and rectifying dysregulated
fatty acid metabolism, with Akkermansia playing a significant role.
This study not only clarified the mechanism by which Cistanches
Herba alleviate cognitive decline from a novel perspective, but also
added new
dementia therapy.

evidences for its traditional wuse as anti-
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