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Purpose: This study was to identify risk factors associated with delayed
methotrexate (MTX) excretion in pediatric patients receiving high-dose MTX
(HDMTX) therapy based on real-world data, and to develop and evaluate a
predictive model.

Methods: Clinical data were retrospectively collected from 1,485 pediatric
HDMTX chemotherapy cycles at the Children’s Hospital affiliated with Nanjing
Medical University between 2021 and 2023. Key predictive variables were
identified by Least Absolute Shrinkage and Selection Operator (LASSO)
regression, Random Forest (RF), and Support Vector Machine Recursive
Feature Elimination (SVM-RFE), and then incorporated into predictive models
for MTX delayed excretion using Logistic Regression (LR), Naive Bayes (NB),
Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost).
Bootstrap was employed to internally validate these models and identify the
best-performing one, and then SHapley Additive exPlanations (SHAP) values were
utilized to provide both global and local interpretations.

Results: Among the 1,485 pediatric HDMTX chemotherapy cycles, 26.1% were
associated with delayed MTX excretion. Serum creatinine (Scr), total drug dose
(Dose), alkaline phosphatase (ALP), creatine kinase (CK), blood urea nitrogen
(Urea), gamma-glutamyl transferase (GGT), hemoglobin (HB), and height were
identified as key predictors of delayed excretion. Internal validation showed that
the XGBoost model performed best, with an accuracy of 0.780, an F1 score of
0.669, an area under the Receiver Operating Characteristic curve (AUROC) of
0.842, and a Brier score of 0.136. Decision Curve Analysis (DCA) also
demonstrated favorable clinical utility. SHAP analysis revealed that Scr was the
most important risk factor for delayed MTX excretion in the XGBoost model. This
XGBoost model has been translated into a convenient tool to facilitate its utility in
clinical settings.
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Conclusion: The XGBoost model demonstrated good predictive performance and
clinical utility for delayed MTX excretion in pediatric patients.

methotrexate, delayed excretion, pediatric, machine learning, predictive model

Introduction

Methotrexate (MTX) administered intravenously at doses
of >500 mg/m®> or >20 mg/kg is defined as high-dose
methotrexate (HDMTX) (2019). HDMTX significantly increases
the serum concentration of MTX, allowing it to penetrate the
blood-brain barrier and reach poorly vascularized solid tumors,
which makes it widely used in first-line chemotherapy for diseases
such as Acute Lymphocytic Leukemia (ALL) and Non-Hodgkin
Lymphoma (NHL) (Prodduturi and Bierman, 2012). HDMTX
therapy can improve the overall prognosis of patients with
hematological malignancies; however, the MTX doses used are
potentially lethal. While these doses inhibit tumor growth, they
can also damage proliferating normal tissues, leading to toxic events
such as acute liver and kidney injury, bone marrow suppression,
mucositis, gastrointestinal issues, fever, and infections (2019).
Studies have shown that delayed MTX excretion further increases
the risk of these toxicity events (Yu et al., 2024).

Currently, most related studies suggest that age, body surface
area, and drug dosage are the primary influencing factors for MTX
excretion delay (Chen et al., 2020; Zhang et al., 2022; Yu et al., 2024).
Additionally, creatinine clearance, drug interactions, and genetic
polymorphisms also impact the in vivo clearance process of MTX
(Faganel Kotnik et al, 2011; Kawase et al, 2016; Tran and
Herrington, 2016; Umerez et al., 2017; Hamada et al., 2018; Hui
et al,, 2019; Ishizaki et al., 2020; Ueda et al., 2020; Yang et al., 2020;
Ferracini et al., 2021; Ebid et al., 2022; Mao et al., 2022). However,
there are several discrepancies among different studies, and many of
these studies rely on traditional statistical methods to screen risk
factors and build predictive models. These methods often suffer
from poor sensitivity and specificity, resulting in fluctuating
prediction outcomes and significant reliance on the researcher’s
data analysis expertise.

This study was based on real-world data and employed machine
learning methods to construct a more stable and predictive risk
model. The primary aims were to explore the predictive factors for
delayed MTX excretion in pediatric patients, identify children at risk
of MTX excretion delay as early as possible, and to provide a basis
for precision treatment, thereby reducing the incidence of
toxicity events.

Materials and methods
Study subjects
This was a retrospective cohort study. The subjects were

patients aged 0-16 years
malignancies who received HDMTX treatment at the Children’s

pediatric with  hematological

Hospital of Nanjing Medical University between 1 January 2021,

and 31 December 2023. A total of 1,485 chemotherapy cycles were
included in this study. The study was approved by the Ethics
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Committee of the Children’s Hospital of Nanjing Medical
University (No. 202411021-1), with a waiver of informed consent.

Due to the dynamic nature of growth and development in
pediatric patients, weight, height, and body surface area may vary
considerably between chemotherapy cycles. In addition, laboratory
assessments (e.g., complete blood count, liver and kidney function)
are standardly repeated prior to each cycle to rule out
both
demographic and laboratory parameters are not static between

contraindications. In practice, baseline values for
chemotherapy cycles within the same individual. To reflect the
clinical reality and capture cycle-specific risk, we modeled each
treatment cycle as an independent unit, even for patients
contributing multiple cycles.

The study subjects met the following inclusion criteria: i) All
chemotherapy cycles were part of a sequential four-cycle HDMTX +
6-MP treatment regimen. Each cycle was spaced approximately
2 weeks apart, provided that the patient was in complete
remission after prior chemotherapy, had completed baseline
assessments, and had no contraindications to chemotherapy
(otherwise, treatment was delayed). No other chemotherapy
regimens were administered between consecutive HDMTX+6-MP
cycles. i) Patients concurrently received intrathecal administration
of a triple regimen consisting of MTX, dexamethasone (Dex), and
cytarabine (Ara-C). iii) Each chemotherapy cycle had available MTX
plasma concentration data at 24 h, 48 h, and 72 h post-infusion. iv)
The underlying disease was either ALL or NHL, and the MTX dose
administered was approximately 3-5 g/m”. Patients were excluded if
they experienced severe drug hypersensitivity reactions, or were
unable to complete the HDMTX chemotherapy cycle for any reason,
or had incomplete data.

Delayed MTX excretion was defined as plasma MTX
concentration >1 umol/L at 48 h post-infusion (Cygp),
or >0.2 umol/L at 72 h post-infusion (C,,) Based on this
definition, patients were categorized into the delayed excretion
group and the non-delayed excretion group. All patients were
treated according to the standardized protocol outlined in the
Chinese Society of Clinical Oncology (CSCO) (2019). At our
institution, the discharge criterion was defined as an MTX

plasma concentration <0.2 pmol/L.

Data collection

Clinical data were collected through the hospital’s electronic
medical record system. The collected data included: a) Demographic
information: age, height, weight, body surface area (BSA), and
gender; b) Diagnosis and treatment information: chemotherapy
cycle number, MTX dose per unit of body surface area (g/m?),
total MTX dosage, and disease diagnosis; ¢) MTX plasma
concentrations: measured at baseline (before MTX infusion),
24 h, 48 h, and 72 h post-infusion for each chemotherapy cycle,
and additional measurements at extra time points performed on-
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demand; d) Laboratory tests: complete blood count, liver and kidney
function, and biochemical indicators.

MTX plasma concentrations were determined using the
Enzyme-Multiplied Immunoassay Technique (EMIT) assay Kkit,
Healthcare
The lower limit of detection for MTX was

manufactured by  Siemens Inc.,
United States.

0.1 umol/L.

Diagnostics

Research methodology

Feature selection

Three machine learning methods—Least Absolute Shrinkage
and Selection Operator (LASSO) regression, Random Forest (RF),
and Support Vector Machine - Recursive Feature Elimination
(SVM-RFE) — were applied to the original dataset to perform
feature selection. These methods are capable of identifying the
most relevant variables while reducing model complexity and
overfitting risk. The detailed descriptions and parameter settings
for LASSO, RF, and SVM-REFE are provided in Supplementary Table
S1. A consensus-based approach was used to determine the final set
of key predictive features.

Model training

The key predictive features identified were used as input variables
to develop machine learning models. Four different machine learning
algorithms—Logistic Regression (LR), Naive Bayes (NB), Support
Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost)
— were employed to construct predictive models for delayed
excretion of HDMTX in pediatric patients (Descriptions and
parameter settings for the LR, NB, SVM, and XGBoost algorithms
are provided in Supplementary Table S2). To ensure comparability
across models, all models were trained using the same set of input
features. Subsequently, grid search and randomized search
approaches were applied to identify the optimal hyperparameters
for each model based on the training data. The area under the receiver
operating characteristic curve (AUROC) was used as the primary

evaluation metric during hyperparameter tuning.

Internal model validation

Bootstrap resampling with 1,000 iterations was used to perform
internal validation of the developed models. The performance of the
four machine learning models was evaluated in terms of
discrimination, calibration, and clinical utility using a
comprehensive set of metrics, including: accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), F1 Score, AUROC, Brier Score, and Decision Curve
Analysis (DCA). These metrics facilitated the selection of the

optimal predictive model.

Model interpretation

The best-performing model was interpreted using SHapley
Additive exPlanations (SHAP) through the following steps: a)
Feature Contribution Analysis: A SHAP value was assigned to
each feature to reflect its contribution to the model’s prediction.
b) SHAP Summary Plot: A summary plot was generated to visualize
the relative importance of each feature and to show how the
magnitude and direction of feature values influence the predicted
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risk of delayed MTX excretion. ¢) SHAP Dependency Plots: For each
important feature, a dependency plot was created to explore the
relationship between the feature value and the predicted outcome.

Web-based prediction tool

To facilitate the clinical application of this predictive model, we
have developed a web-based application. When the corresponding
feature values are provided, the application can return the
probability of MTX excretion, with a waterfall plot and a force plot.

Statistical analysis

Data processing was performed using R software (version 4.4.2).
Continuous variables that followed a normal distribution were
expressed as mean * standard deviation (x * s), and intergroup
comparisons were conducted using the independent samples t-test.
For continuous variables with non-normal distribution, data were
presented as median (first quartile, third quartile) [M (Q1, Q3)], and
group comparisons were performed using the Mann-Whitney U
test. Categorical variables were expressed as counts and percentages
(n, %). Comparisons between groups were carried out using the chi-
square (x°) test or Fisher’s exact test. A two-sided P value <0.05 was
considered statistically significant.

Results
Patient baseline characteristics

A total of 1,485 HDMTX chemotherapy cycles from
408 pediatric patients were included in this study. Among these,
387,389, 358, and 351 cycles corresponded to the first, second, third,
and fourth treatment cycles, respectively. 388 cycles were identified
as delayed excretion cases, resulting in a delayed excretion rate of
26.1%. Descriptive statistics of the covariates between the two
groups are presented in Table 1.

Feature selection using machine
learning methods

Each algorithm identified a distinct set of variables, as shown in
Figures 1A-C. This consensus-based feature selection approach
(Figure 1D) yielded a final set of 8 key features: Serum Creatinine
(Scr), Dose, Alkaline Phosphatase (ALP), Creatine Kinase (CK), Blood
Urea Nitrogen (Urea), Gamma-glutamyl Transferase (GGT),
Hemoglobin (HB), and Height. These eight core features were
subsequently used to construct predictive models for delayed MTX
excretion using four different machine learning algorithms.

Prediction model construction and internal
validation

Using the eight key features selected through feature selection,

four machine learning models were developed based on LR, NB,
SVM, and XGBoost. To assess model performance and ensure
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TABLE 1 The baseline characteristics of patients in the non-delayed excretion group and the delayed excretion group.

Characteristics

The non-delayed excretion group (n = 1,097)

The delayed excretion group (n = 388)

10.3389/fphar.2025.1662718

P value

Demographic information

Age (year) 5.0 (3.2,8.1) 7.4 (4.1,11.0) <0.0001
Height (m) 1.12 (0.96,1.30) 1.27 (1.05,1.47) <0.0001
Weight (kg) 19.0 (14.5,26.0) 24.3 (17.0,35.0) <0.0001
BSA (m?) 0.77 (0.61,1.01) 0.95 (0.70,1.15) <0.0001
Sex 0.044

Male 614 (55.9%) 240 (61.9%)

Female 483 (44.1%) 148 (38.1%)

Treatment information

Dose (mg) 2,770 (2000,4,000) 3,505 (2400,5295) <0.0001
Dose/BSA (mg/m?) 3,421 (2992,4971) 4,227 (3015,4992) 0.005
Period 0.002

Period 1 265 (24.2%) 122 (31.4%)

Period 2 279 (25.4%) 110 (28.4%)

Period 3 272 (24.8%) 86 (22.2%)

Period 4 281 (25.6%) 70 (18%)

Laboratory tests

WBC (x10°/L) 3.68 (2.85,5.04) 3.77 (2.89,5.52) 0.125
N (x10°/L) 1.49 (1.02,2.32) 1.71 (1.14,2.69) 0.002
HB (g/L) 104 (94,113) 100 (91,109) <0.0001
PLT (x10%/L) 228 (168,307) 230 (158,319) 0.925
Urea (mmol/L) 3.48 (2.61,4.46) 3.20 (2.23,4.20) 0.002
UA (umol/L) 229 (192,271) 240 (202,282) 0.002
Scr (umol/L) 24.0 (19.9,28.9) 27.0 (22.0,34.1) <0.0001
Cys-c (mg/L) 1.01 (0.870,1.14) 0.98 (0.85,1.14) 0.225
K (mmol/L) 423 (4.00,4.51) 4.17 (3.88,4.48) 0.005
Na (mmol/L) 140 (139,141) 141 (139,142) 0.002
Cl (mmol/L) 105.4 (104.0.107.0) 105.2 (103.7,106.7) 0.044
Ca (mmol/L) 2.52 (2.41,2.61) 2.50 (2.39,2.61) 0.076
Mg (mmol/L) 0.89 (0.84,0.94) 0.88 (0.83,0.93) 0.058
P (mmol/L) 1.72 (1.57,1.84) 1.69 (1.51,1.83) 0.042
eGFR (mL/min/1.73 m?) 222.0 (197.4,253.0) 219.7 (193.4,260.9) 0.666
ALT (U/L) 54 (27,100) 60 (29,119) 0.025
AST (U/L) 27 (21,37) 29 (22,46) 0.049
ALP(U/L) 177 (143,219) 160 (129,197) <0.0001
GGT (U/L) 41 (22,77) 49 (25,95) <0.0001
LDH (U/L) 257 (223,297) 260 (225,304) 0213
CK (U/L) 33 (24,46) 30 (21,44) 0.001
CK-MB (U/L) 17 (13,22) 15 (12,20) 0.001
HBDH (U/L) 178 (155,208) 179 (153,212) 0.665
TP (g/L) 62.1 (58.9,65.7) 62.6 (58.83,66.4) 0.235
ALB (g/L) 419 (3.1,44.5) 41.3 (38.3,43.9) 0.017
GLO (g/L) 20.3 (18.0,23.0) 21.4 (18.5,24.4) <0.0001
A/G 2.03 (1.75,2.38) 1.91 (1.66,2,24) <0.0001
GLU (mmol/L) 4.55 (4.15,4.94) 4.58 (4.19,5.04) 0.097
TBIL (umol/L) 7.19 (5.51,9.64) 7.27 (5.57,10.07) 0.301
DBIL (umol/L) 2.85 (2.16,3.81) 2.99 (2.22,4.34) 0.015
PA (g/L) 0.19 (0.15,0.23) 0.20 (0.16,0.24) 0.183

BSA, body surface area; Dose, total dose of methotrexate administered; Dose/BSA, dose of methotrexate per unit of body surface area; Period, the sequence number of chemotherapy cycles;
WBC, white blood cell count; N, absolute neutrophil count; HB, hemoglobin concentration; PLT, platelet count; Urea, blood urea nitrogen; UA, uric acid level; Scr, serum creatinine; Cys-c,

cystatin C; K, potassium concentration; Na, sodium concentration; Cl, chloride concentration; Ca, calcium concentration; Mg, magnesium concentration; P, phosphorus concentration; eGFR,
estimated glomerular filtration rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; LDH, lactate
dehydrogenase; CK, creatine kinase; CK-MB, creatine kinase MB, fraction; HBDH, alpha-hydroxybutyrate dehydrogenase; TP, total protein; ALB, albumin; GLO, globulin; A/G, albumin to

globulin ratio; GLU, glucose level; TBIL, total bilirubin; DBIL, direct bilirubin; PA, prealbumin.
“BSA, was estimated using a weight-based formula: Weight< 30 kg, BSA (m2) = Weight x 0.035 + 0.1; Weight> 30 kg, BSA (m2) = (Weight-30) x 0.02 + 1.05.

*eGFR, was estimated using a Schwartz formula: eGFR [ml/(min-1.73 m2) ] = K x Height (cm) x 88.4/Scr (umol/L). The constant K in the Schwartz formula varies by age and sex as follows:
0-28 days, K = 0.33; 28 days to 1 year, K = 0.45; 2-12 years, K = 0.55; above 12 years: K = 0.77 for males, and = 0.55 for females.
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Feature Selection Results Using LASSO, RF, and SVM-RFE. Note: (A) LASSO Regression Coefficient Path Plot and LASSO Cross-Validation Curve. (B)
RF Number of Trees vs Error Plot and RF Feature Importance Ranking Plot. (C) SYM-RFE Accuracy vs Number of Features Plot and SVM-RFE
Generalization Error vs Number of Features Plot. (D) Venn Diagram: The Venn diagram displays the intersection of feature sets selected by LASSO, RF, and

SVM-RFE.

TABLE 2 Performance metrics of the predictive models in internal validation.

Sensitivity (95%Cl)

Accuracy (95%Cl) Specificity (95%Cl)

NPV (95%Cl) PPV (95%Cl) F1 score (95%Cl)

LR 0.672 (0.648,0.695) 0.792 (0.766,0.816) 0.437 (0.383,0.471) 0.738 (0.710,0.763)  0.502 (0.455,0.550) 0.461 (0.420,0.499)
NB 0.609 (0.585,0.634) 0.802 (0.773,0.828) 0.378 (0.343,0.416) 0.609 (0.579,0.638)  0.613 (0.565, 0.659) 0.468 (0.430,0.502)
SVM 0.745 (0.722,0.766) 0.898 (0.876,0.916) 0.529 (0.489,0.568) 0.728 (0.701,0.754)  0.786 (0.744,0.823) 0.632 (0.597,0.665)

0.907 (0.886,0.924)

XGBoost 0.780 (0.758,0.800)

0.577 (0.536,0.617)

0.774 (0.748,0.798)  0.796 (0.754,0.832) 0.669 (0.633,0.701)

internal validity, bootstrap resampling with 1,000 iterations
was performed.

Among the four models, the XGBoost model demonstrated the
best overall performance across all validation metrics (Table 2; Figures
2A-D), with an AUC of 0.842 (95%CI: 0.815-0.873). The calibration
curve demonstrated that the probability of MTX excretion delay
predicted by the XGBoost model was relatively well matched with
the actual measurement (Supplementary Figure S1).

Additionally, sensitivity analysis was performed using only the
first chemotherapy cycle from each patient. A new predictive model
was developed based on this subset. As shown in Supplementary
Figure S2, XGBoost again emerged as the optimal model, and there
was no significant difference in performance between this model and
the one trained on all treatment cycles (DeLong test, P = 0.967).

In addition, DCA showed that the XGBoost model had the
widest applicable threshold range (approximately 10%-80%).
Within most of this range (approximately 10%-75%), the
XGBoost model provided the highest benefit among all four
models, reaching up to 0.2 (Figure 2E). This indicates that the
XGBoost model offers the greatest clinical utility in terms of
decision-making compared to the other models.

Frontiers in Pharmacology

Model interpretation using SHAP

The contribution of the eight selected predictive features in the
XGBoost model was interpreted using SHAP analysis, as illustrated
in the Summary Plot (Figures 3A,B) and Dependence Plots (Figure
3C). Among the eight predictors, Scr was identified as the most
influential feature in predicting delayed MTX excretion. Dose and
ALP followed in terms of importance. Higher levels of Scr, higher
MTX dose, and lower levels of ALP were associated with an
increased risk of delayed excretion. In comparison, the other five
variables—CK, Urea, GGT, HB, and height—showed relatively
weaker influences on the model’s predictions.

Clinical application of the prediction model

To facilitate the practical use of the final XGBoost prediction
model in clinical settings, we developed a web-based application
(Figure 4). When the actual values of the eight predictive features are
entered into the tool, the application automatically calculates and
displays the individual risk of delayed MTX excretion for each
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ROC and DCA Curves. (A-D) ROC curves for LR, NB, SVM, and XGBoost Models. ROC curve was performed via 1,000 bootstrap iterations. The 45-
degree diagonal line represents the baseline for random classification. The red line represents the mean ROC of 1,000 bootstrap iterations. The grey lines
represents the actual ROC of 1,000 bootstrap iterations. (E) DCA Curves for LR, NB, SVM, and XGBoost Models.

pediatric patient. In addition to the predicted probability, the web
tool generates two interpretable visualizations: Waterfall plot and
Force plot. The web application is publicly accessible at https://
delay-prediction-njch.ndemo.net.

Discussion

HDMTX therapy is associated with significant antitumor
efficacy; however, it also carries substantial toxicity risks (Mosleh
et al, 2023). Given that children have less mature organ
development and lower tolerance to drug toxicity compared to
adults, they are at a higher risk of severe adverse events,
including mortality. Delayed MTX excretion is typically defined
based on whether plasma MTX concentrations exceed predefined
threshold levels at specific time points after infusion. However,
elevated MTX levels are usually detected only after delayed
excretion has already occurred, limiting opportunities for early
intervention. This study was a retrospective analysis of pediatric
patients with ALL or NHL who received HDMTX therapy.
Leveraging real-world data and machine learning techniques, we
identified key predictors of delayed MTX excretion from
demographic, dosing, treatment cycle, and laboratory variables. A
risk prediction model was subsequently developed to identify high-
risk patients before HDMTX administration. By enabling early risk
stratification, this model supports the delivery of individualized,
precision-based interventions to potentially reduce the incidence of
delayed excretion and associated toxicities.

Most existing studies on delayed MTX excretion have
traditionally relied on conventional statistical methods for feature
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selection and predictive model development. These traditional
approaches, such as linear regression, require the fulfillment of
numerous assumptions—linearity, independence, normality,
homoscedasticity, among others—before they can be applied
effectively. When dealing with smaller datasets, simple linear
models are often the most reasonable choice due to their
interpretability and straightforward implementation. However,
these models’ expressiveness becomes notably limited as dataset
sizes increase. In contrast, machine learning models can overcome
many of the limitations imposed by traditional statistical models and
incorporate techniques like regularization to mitigate overfitting
(Christodoulou et al., 2019; Chen et al., 2023). Consequently, in this
study, we opted to utilize machine learning methods for model
construction. Machine learning models, especially more complex
ones, typically exhibit superior predictive performance but are often
criticized as “black boxes” due to their opaque decision-making
processes. To address this interpretability issue, we employed SHAP,
which leverages concepts from cooperative game theory to explain
individual predictions made by machine learning models. By
calculating each feature’s contribution to the prediction outcome,
SHAP values provide a means to assign optimal credit allocation and
local explanations. This approach allows us to better understand
how the XGBoost model arrives at its decisions, thereby enhancing
transparency and trustworthiness in clinical applications.

In this study, the feature selection analyses using LASSO, RF,
and SVM-RFE consistently identified eight key predictors of delayed
MTX excretion: Scr, total MTX dose, ALP, CK, Urea, GGT, HB, and
height. These eight variables were then incorporated into four
machine learning models—LR, NB, SVM, and XGBoost—for
predictive modeling. Based on internal validation, the XGBoost
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SHAP analysis elucidates feature influence and direction in the XGBoost model. (A) Beeswarm plot: features are ranked by impact magnitude; dot
color indicates feature value (yellow: high, purple: low). (B) Bar plot: features are ordered by mean |[SHAP|, representing overall importance. (C)
Dependence plots: illustrate how feature values affect SHAP values, indicating contribution direction. SHAP values >0 increase predicted risk.

model demonstrated superior performance compared to the other
models. Therefore, we focused on interpreting the XGBoost model
using SHAP to explore the contribution of each predictor in
individual risk assessment.

The SHAP analysis conducted on the XGBoost model revealed
that Scr had the highest contribution to the prediction of delayed
MTX excretion. The dependence plot illustrated higher Scr values
were consistently associated with increased model-predicted risk of
delayed MTX excretion, which was consistent with the statistical
associations observed in previous studies (Xu et al., 2014; Mei et al.,
2018; Zhan et al,, 2022). From a pathophysiological perspective,
MTX and its metabolites are primarily eliminated through
glomerular filtration and proximal tubular secretion into the
primary urine, followed by excretion via urine (Mosleh et al,
2023). When renal function, particularly glomerular filtration rate
(GFR), is compromised, the clearance of MTX decreases. Scr is a
common indicator of glomerular filtration. Notably, SHAP reflects
model-learned associations, not causation—while higher Scr
correlates with higher predicted risk, this does not prove it
directly causes delayed excretion.

The SHAP analysis revealed that total MTX dose had the
second-highest predicting delayed MTX
excretion, following Scr. Higher doses of MTX were associated

contribution  to
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with an increased model-predicted risk of delayed excretion.
Additionally, ALP was identified as another significant predictor
in the model. Lower ALP levels were associated with a model-
predicted higher risk of delayed MTX excretion. This observation
may reflect underlying anemia or malnutrition due to the primary
disease. As malnutrition is known to affect the function of various
tissues and organs, it could potentially influence drug metabolism
efficiency. However, the model itself cannot establish a causal link.

CK, Urea, and GGT showed relatively moderate contributions in
the SHAP feature importance ranking. The SHAP dependence plot
for CK revealed a non-linear relationship between CK levels and the
predicted risk of delayed MTX excretion: when CK < 50 U/L, lower
values were associated with model-predicted risk scores of delayed
excretion; in the intermediate range (50-100 U/L), changes in CK
levels had minimal impact on the predicted risk; when CK > 100 U/
L, higher values were linked to the predicted elevated risk of delayed
MTX excretion. Low CK levels may be attributed to several factors,
including the younger age of pediatric patients—whose baseline CK
activity is naturally lower—or underlying disease-related
malnutrition. However, this interpretation represents a clinical
hypothesis independent of the model’s findings. The dependence
plot for Urea demonstrated that: when Urea levels were below the
normal reference range (1.79-6.43 mmol/L), lower values correlated
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with higher risk of delayed MTX excretion; within the normal range,
variations in Urea had no significant effect on the model-predicted
risk scores. The dependence plot of GGT indicated: within the
normal reference range (8-61 U/L), changes in GGT levels did not
significantly alter the predicted risk; when GGT exceeded the
normal range, it may increase the risk of delayed MTX excretion.
Elevated GGT levels are often indicative of hepatic or biliary
dysfunction, such as impaired bile flow or liver damage (Lu and
Association, 2022). Since MTX undergoes extensive hepatic
metabolism, this may partially explain the association patterns
identified by the model.

HB and height demonstrated relatively weaker contributions to
the predictive performance of the XGBoost model. However, their
SHAP dependence plots still revealed meaningful associations with
the risk of delayed MTX excretion. The SHAP dependence plot for
HB showed that lower HB levels were associated with a higher
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model-predicted risk of delayed MTX excretion. The dependence
plot for height indicated a non-linear relationship: when height was
below 150 cm, variations in height had minimal impact on the
predicted risk; when height exceeded 150 cm, increased height was
associated with higher predicted risk scores in the model. Generally,
taller patients tend to have larger BSA and higher MTX clearance
rates (Mei et al., 2018; Hui et al., 2019; Chen et al., 2020; Yang et al.,
2020). However, they also receive higher total doses of MTX based
on BSA-adjusted dosing protocols. The nonlinear patterns identified
by the model may reflect a dynamic interplay between these two
opposing effects: in children shorter than 150 c¢m, the increased
clearance associated with greater height may offset the effects of
higher drug doses, resulting in no significant net change in the risk of
delayed excretion; in contrast, once height exceeds 150 cm, the
increase in drug load may outpace the compensatory rise in
clearance, leading to a greater likelihood of delayed excretion.

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1662718_wc_f4|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1662718

Zhou et al.

This observation requires further investigation and validation in
independent cohorts.

This was a large-sample, single-center retrospective cohort study to
date investigating risk factors for delayed MTX excretion. A major
strength of our work lies in the development of a web-based prediction
tool based on the final XGBoost model, which allows clinicians to
conveniently input patient-specific features and obtain real-time
individualized risk predictions along with interpretable visualizations
(e.g., waterfall and force plots). This user-friendly interface enhances the
practical applicability of our findings in daily clinical practice. Despite
these strengths, several limitations should be acknowledged. First, we
did not include drug-drug interactions in our analysis, as the usage rates
of potentially interacting medications were all below 10%. This low
prevalence may reflect clinical efforts to actively avoid prescribing drugs
that could potentially delay MTX excretion. Second, due to the
retrospective nature of the study, genetic testing was not routinely
performed at the time of treatment, and data on urine output and urine
pH were frequently missing. As a result, polymorphisms in drug-
metabolizing genes, urine volume, and urinary pH were not included in
the analysis. Additionally, all patients in this cohort received
standardized hydration, urinary alkalinization, and leucovorin rescue
according to the Expert Consensus on High-Dose Methotrexate with
Calcium Folinate Rescue for the Treatment of Malignant Tumors. As a
result, variables such as hydration rate/volume, degree of alkalinization,
and timing/dose of leucovorin were not included in the model.
However, the omission of these factors may introduce unmeasured
confounding bias. For instance, inadequate fluid intake and low urine
well-established MTX-induced
nephrotoxicity, which directly delay drug excretion (Howard et al,
2016; Chen et al, 2020). If not accounted for, the model may
underestimate risk in dehydrated patients while overestimating the

output are risk factors  for

importance of markers such as serum creatinine (Scr)—which itself can
be influenced by volume status. Furthermore, urinary pH is critical for
MTX solubility; when pH falls below 7.0, the risk of crystalline
nephropathy increases substantially (Bezabeh et al., 2012; Kawaguchi
et al, 2021). The current model did not capture this key physiological
mechanism, potentially limiting its accuracy in predicting delays caused
by intratubular precipitation. Concomitant use of interacting
medications—such as proton pump inhibitors (PPIs), which inhibit
renal tubular secretion of MTX, or other nephrotoxic agents—can
significantly alter MTX pharmacokinetics (Howard et al, 2016).
Quantifying the precise impact of these unmeasured confounders is
challenging, but their absence may lead to an over-optimistic
assessment of model performance. This could restrict the model’s
generalizability across diverse clinical settings. The model may be
most applicable to patients receiving optimal hydration, without
significant drug interactions or additional renal insults. Future
studies should aim to address these gaps by conducting multi-center
prospective investigations, expanding the range of sample types, and
incorporating a broader range of covariates to further refine and
validate the predictive performance of the model and improve the
model’s utility in supporting clinical decision-making.

In conclusion, machine learning models can serve as reliable
tools for predicting the occurrence of delayed MTX excretion during
HDMTX therapy in pediatric patients. Among the models
evaluated, the XGBoost model, constructed using key predictors
including Scr, total drug dose, ALP, CK, Urea, GGT, HB, and height,
demonstrated the best predictive performance. This study provides a
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practical approach for early identification of high-risk patients for
MTX excretion delay, thereby supporting personalized treatment
decisions. By enabling timely interventions, the model has the
potential to reduce the incidence of delayed excretion and
associated toxicities, ultimately improving both the safety and
adherence of chemotherapy in pediatric oncology.
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