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Background: Neutrophil extracellular traps (NETs) contribute significantly to
osteoarthritis (OA) pathogenesis; however, the precise molecular interactions
remain unclear. This study aimed to identify key NET-associated genes and their
correlated metabolites and microbiota in OA through an integrated multi-
omics approach.
Methods: Initially, transcriptomic datasets were screened to identify NET-related
genes implicated in OA. A rat OA model was established, and the expression of
key genes was validated using RT-qPCR, histological analysis, and
immunohistochemistry. TIMP1 was selected for further exploration via in vivo
gene silencing. Subsequently, transcriptomics, metabolomics, and 16S rRNA
sequencing were performed on serum, cartilage, and fecal samples from
experimental animals. Differentially expressed genes (DEGs), microbiota, and
metabolites associated with TIMP1 were identified through integrated
bioinformatics analyses. Correlation analyses across omics data layers were
conducted to pinpoint biomarkers, key metabolites, and microbial taxa.
Results: ITGB1, ITGB2, MMP9, and TIMP1 emerged as key NET-associated genes,
with TIMP1 being selected as the primary target. TIMP1 silencing significantly
alleviated inflammatory responses and cartilage degradation in OA rats. Multi-
omics analyses identified 6 biomarkers, 9 keymetabolites (e.g., FAHFAs, 12-HETE,
MTA, xanthosine), and 1 keymicrobial genus (Muribaculaceae) strongly correlated
with TIMP1 expression. These molecular entities were enriched in pathways
related to lipid metabolism, nucleotide turnover, immune regulation, and gut-
joint crosstalk.
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Conclusion: TIMP1 acts as a pivotal regulator in OA, influencing inflammation,
cartilage remodeling, metabolic pathways, and gut microbiota composition. This
study provides novel mechanistic insights and potential therapeutic targets for OA.
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1 Introduction

Osteoarthritis (OA) is the most prevalent chronic joint
disease, characterized by progressive degeneration of articular
cartilage, subchondral bone remodeling, and synovial
inflammation, which together lead to joint pain, stiffness, and
functional limitation (Tang et al., 2025). Affecting over
595 million individuals globally, osteoarthritis presents a
growing public health challenge, particularly in underserved
populations and joints, with disparities in prevalence,
disability, and treatment outcomes continuing to emerge
(Minnig et al., 2024). OA imposes a significant personal and
societal burden, yet effective disease-modifying therapies remain
unavailable. There is an urgent need to better understand its
pathogenesis to identify actionable therapeutic targets.
Accumulating evidence now supports OA as a multifactorial
disease driven by genetic, mechanical, metabolic, and
inflammatory factors (Wood et al., 2023; Binvignat et al., 2024).

In recent years, neutrophil extracellular traps (NETs) have
attracted growing attention for their role in chronic
inflammation and autoimmune diseases. NETs are web-like
structures composed of decondensed chromatin and
antimicrobial proteins—such as neutrophil elastase and
citrullinated proteins—released by activated neutrophils.
Under physiological conditions, they function in innate
immune defense by capturing and killing pathogens (H. Wang
et al., 2024). However, under pathological circumstances, NETs
can contribute to tissue injury and inflammation through
multiple mechanisms. Specifically, NET-derived components
can directly degrade cartilage matrix and activate synovial
fibroblasts and adaptive immune responses, thereby amplifying
joint inflammation (Carmona-Rivera et al., 2020). Although

NETs have been extensively studied in autoimmune conditions
like rheumatoid arthritis, emerging evidence suggests their
involvement in osteoarthritis (OA) as well. For instance,
increased neutrophil infiltration and elevated levels of anti-
HSP60 autoantibodies have been observed in OA synovial
fluid, indicating local immune activation possibly driven by
NETs (Corsiero et al., 2024). These findings highlight the
clinical urgency to better understand NETs in OA, as they
may contribute to inflammation, cartilage degradation, and
symptom progression in affected patients. Therefore,
elucidating the molecular mechanisms linking NETs and OA,
and identifying reliable biomarkers, are crucial for developing
precision therapies and improving patient outcomes (Courties
et al., 2024).

Multi-omics integration—incorporating microbiome,
metabolomics, and transcriptomic data—has become an essential
strategy for elucidating the complex mechanisms underlying
multifactorial diseases such as OA. Unlike single-omics
approaches, which often yield fragmented molecular insights,
multi-omics allows for concurrent investigation of cross-system
interactions, offering a more comprehensive understanding of
disease biology (Chen et al., 2023). By integrating host gene
expression, metabolic profiles, and microbial composition,
researchers can pinpoint specific microbial taxa, metabolic
pathways, and gene regulatory networks implicated in joint
inflammation, cartilage degradation, and immune dysregulation
(Deng et al., 2025; Wang Y. et al., 2024). For instance, short-
chain fatty acids derived from gut microbes can modulate host
immune signaling and reshape the joint microenvironment.
Transcriptomic analyses further identify key regulatory genes and
pathways activated in response to microbial and metabolic cues.

This cross-validation across omics layers enhances biomarker
discovery and increases analytical robustness.

Moreover, multi-omics approaches can reveal novel molecular
signatures not observable in isolated datasets but uncovered through
synergistic data layering, offering unique insights into
pathophysiological mechanisms and therapeutic targets (Y. Wang
et al., 2024). Such integrative strategies hold promise for developing
personalized, mechanism-based interventions for complex
diseases like OA.

In this study, we systematically integrated transcriptomic,
metabolomic, and microbiome data to investigate the role of
NET-associated genes in OA. After identifying candidate genes
through multi-step bioinformatics screening, we established a rat
OAmodel and performed gene silencing experiments in vivo. Multi-
omics analyses of serum, cartilage, and fecal samples were then
conducted to explore molecular changes associated with gene
modulation. This integrative approach provides novel insights
into OA pathogenesis and reveals potential biomarkers and
therapeutic targets.

Abbreviations: 16S rRNA, 16S ribosomal RNA; ACL, Anterior cruciate ligament;
AUC, Area under the curve; ASV, Amplicon sequence variant; DEGs/DEMs,
Differentially expressed genes/metabolites; DNA, Deoxyribonucleic acid;
ECM, Extracellular matrix; ELISA, Enzyme-linked immunosorbent assay;
FAHFAs, Fatty acid esters of hydroxy fatty acids; FC/log2FC, Fold change/
log2 fold change; FDR, False discovery rate; GEO, Gene Expression Omnibus;
GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; H&E, Hematoxylin
and eosin; IHC, Immunohistochemistry; KEGG, Kyoto Encyclopedia of Genes
and Genomes; LC–MS/MS, Liquid chromatography–tandem mass
spectrometry; LEfSe/LDA, Linear discriminant analysis effect size/Linear
discriminant analysis; MMP, Matrix metalloproteinase; MPO,
Myeloperoxidase; NETs, Neutrophil extracellular traps; NMDS/PCoA, Non-
metric multidimensional scaling/Principal coordinates analysis; OA,
Osteoarthritis; OTU, Operational taxonomic unit; PCA, Principal
component analysis; PLS-DA/VIP, Partial least squares discriminant
analysis/Variable importance in projection; PPI, Protein–protein interaction;
QC, Quality control; ROC, Receiver operating characteristic; RT-qPCR,
Reverse transcription quantitative PCR; shRNA, Short hairpin RNA; TIMP1,
Tissue inhibitor of metalloproteinases-1; UPLC–MS, Ultra-performance liquid
chromatography–mass spectrometry.
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2 Methods

2.1 Data collection

The mRNA data in GSE114007 (GPL11154 and GPL18573) and
GSE57218 (GPL6947) datasets associated with osteoarthritis (OA)
were acquired from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). The GSE114007 dataset contained 20 articular cartilage
samples of OA and 18 normal articular cartilage samples. The
GSE57218 dataset contained 33 articular cartilage samples of OA
and 7 normal articular cartilage samples. Additionally,
137 neutrophil extracellular traps-related genes (NRGs) were
extracted from the literature for further analysis.

2.2 Differential expression analysis

The ComBat algorithm in sva package was utilized to remove
batch effect within the GSE114007 dataset. Thereafter, differentially
expressed genes (DEGs) within OA and normal samples in the
GSE114007 dataset were identified by the limma package (v 3.48.3),
with adjusted P-value (adj.P) <0.05 and |log2 Fold Change (FC)| >1.
This threshold is conventionally used to reduce batch-related noise,
high-depth RNA-seq data provide greater dynamic range and thus
allow reliable detection of moderate (≥1.4-fold) expression changes
(Newton et al., 2025). Volcano map and heat map of differentially
expressed genes (DEGs) were plotted via ggplot2 package (v 1.0.12)
and pheatmap (v 1.0.12), respectively.

2.3 Recognition and analysis of
candidate genes

To identify NRGs that played an important role in OA, the
intersection of NRGs and DEGs was taken as candidate genes by the
ggvenn package (v 1.0.12). Functional annotation of candidate genes
was investigated utilizing clusterProfiler package (v 4.0.2) to explore
Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (P < 0.05).

2.4 Determination of key genes and gene set
enrichment analysis (GSEA)

Next, candidate genes were entered into STRING database
(http://string-db.org), and a confidence score of >0.7 was set. For
further selection of candidate genes, results with removing isolated
genes were then imported into Cytoscape (v 3.7.1), and the degree
algorithm in the cytohubba plugin was applied to calculate gene
degree score (degree score >2). Subsequently, the SVM-REF
algorithm was carried out by the e1071 package (v1.7-14) to
identify SVM-REF feature genes with the highest model accuracy.
Concurrently, Boruta algorithm was carried out by Boruta package
(v 8.0.0) to identify Boruta feature genes. The intersection genes
obtained from two machine learning algorithms were taken as
signature genes. Wilcoxon test was applied to test the difference
in expression of signature genes in OA samples and control samples
in GSE114007 and GSE57218 datasets, respectively (P < 0.05). At the

same time, ROC analysis was executed relying on signature genes in
GSE114007 and GSE57218 datasets, and area under the curve
(AUC) values were computed (AUC >0.7). Genes that had
consistent expression trends and marked disparities with AUC
value surpassed 0.7 in two datasets were defined as key genes.

To explore biological pathways took part in key genes w ere
analyzed, and GSEA was executed. In GSE114007 dataset, Spearman
correlation analysis was performed within each key gene and all
genes. Genes were then ranked from the largest to the smallest by the
correlation coefficient. Subsequently, the clusterProfiler package (v
4.0.2) was employed for GSEA (|normalized enrichment score
(NES)| >1, P < 0.05). The KEGG gene set within the msigdbr
package was applied as a background gene set.

2.5 Construction of rat model and sample
collection

In total, 24 male Sprague-Dawley (SD) rats, aged 6–8 months,
were derived from Beijing Sibeifu Bio-Technology Co., Ltd.
(Production License No.: SCXK (Beijing) 2019-0010; Use License
No.: SYXK (Dian) K2020-0006). The initial body weights of the
animals ranged from 246.7 g to 288.9 g, with a mean of 262.5 ± 8.6 g
prior to group allocation. Rats were randomly divided into 4 groups:
control group with sham surgery (6 rats) (group A), OA group
(6 rats) (group B), TIMP1 silencing group (6 rats) (group C, OA +
recombinant adeno-associated viral (rAAV)-sh-TIMP1 group), and
mock group (6 rats) (group D, OA + rAAV-sh-NC group). This
sample size was selected based on prior OA animal model studies
using similar omics and histological outcome measures. Although
formal power analysis was not conducted due to the exploratory
nature of multi-omics investigations and the lack of effect size data, a
sample size of six rats per group has been widely adopted and shown
to be sufficient to detect biological differences while balancing
ethical considerations and resource constraints (Chen et al.,
2025). All animals were housed in a specific pathogen-free (SPF)
animal facility under standardized environmental conditions:
controlled temperature (24 °C ± 2 °C), relative humidity (50%–
60%), and a 12-h light/dark cycle. Rats were given free access to
water and standard maintenance chow (commercial diet from
Beijing KeAo XieLi Feed Co., Ltd.; product code: SPF-grade
maintenance feed for laboratory rats, GB14924.3-2010) (Beijing,
China). All animals were acclimatized for 12 days prior to the start of
the experiment. Bedding was changed regularly, and animal health
was monitored daily in compliance with institutional and national
animal welfare guidelines. All rats were housed under controlled
temperature conditions with ad libitum access to food and water.
After 12-day adaptation period, surgical induction of OA was
performed by medial meniscus resection in the right knee, while
the control group underwent sham surgery with joint exposure only.
As for the OA group, OA + rAAV-sh-TIMP1 group, and OA +
rAAV-sh-NC group, the meniscus of the knee joints of the rats was
resected after anesthesia. In contrast, in the control group, only the
knee joints of rats were exposed and then sutured. On the 7th day
after surgery, rats in OA + rAAV-sh-TIMP1 group andOA + rAAV-
sh-NC group were respectively injected with 20 μL rAAV vectors
once a week for 6 consecutive weeks. The body weights of rats were
recorded every week after surgery.
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After rats in each group were anesthetized, blood samples,
articular cartilage samples, and faecal samples from all rats were
collected for subsequent analysis. Blood samples were allowed to
stand at 4 °C overnight to acquire serum.

2.6 Enzyme-linked immunosorbent
assay (ELISA)

To assess inflammatory response in animal models, the content
of IL-1β (Meimian: MM-0047R2, Beijing, China) and TNF-α
(Meimian: MM-0180R2, Beijing, China) in the serum of rats was
detected employing an ELISA kit. Instructions were followed to
operate. Optical density (OD) values were measured at 450 nm by a
microplate reader (BioTek: EIx800, Vermont,United States of
America) within 15 min. Results from ELISA were exported to
Excel, and then imported into Graphpad Prism 5 for statistical
analysis and presentation (t-test, P < 0.05).

2.7 Toluidine blue staining, hematoxylin-
eosin (H&E) staining, and
immunohistochemical (IHC) analysis

To evaluate whether the animal model had been successfully
constructed, a series of experiments were executed on articular
cartilage tissue. Specifically, tissues were fixed in 4%
paraformaldehyde. After that, they were infiltrated with paraffin
and embedded. Subsequently, tissue sections were subjected to
toluidine blue staining, H&E staining, and IHC analysis (Feng
et al., 2025). For immunohistochemical analysis, 3 μm paraffin
sections were incubated with primary antibodies against Collagen
II (Huabio, ER1906-48, Hangzhou, China; 1:100), MMP3 (Affinity,
AF0217, Liyang, China; 1:50), MMP13 (Bioss, bs-10581R, Beijing,
China; 1:100), and TIMP-1 (Bioss, bs-4600R, Beijing, China; 1:100),
all diluted in 2% BSA. Antigen retrieval was performed using citrate
buffer (pH 6.0), followed by blocking with 5% normal serum.
Sections were incubated with the primary antibodies overnight at
4 °C, followed by incubation with horseradish peroxidase (HRP)-
conjugated secondary antibodies and visualization using DAB.
Counterstaining was carried out with hematoxylin. Images were
captured using an inverted microscope (Nikon, TS2), and
quantitative analysis of immunopositive staining was performed
using Image-Pro Plus software. All staining procedures were
conducted under uniform conditions. Quantitative results were
statistically analyzed using GraphPad Prism 5.0.

2.8 Reverse transcription quantitative
polymerase chain reaction (RT-qPCR)
analysis

A total of 6 normal tissue samples, 6 OA tissue samples, 6 OA +
sh-NC tissue samples, and 6 OA + sh-TIMP-1 tissue samples were
taken from rats. In addition, total RNA was extracted from 5 pairs of
tissue samples by TRIzol reagent (Vazyme, Beijing, China).
Subsequently, RNA concentrations were measured by
NanoPhotometer N50. Secondly, mRNA was transcribed to

synthesize cDNA employing Hifair® Ⅲ 1st Strand cDNA
Synthesis SuperMix for qPCR kit (Yishen, Shanghai, China).
Next, above reverse transcription product, cDNA, was diluted
with RNase/DNase-free reagents. Finally, RT - qPCR analysis was
carried out on a CFX96 real-time PCR detection system (BIO-RAD,
Hercules, CA, United States of America). Collected data underwent
analysis utilizing the well-established 2−ΔΔCt method, employing
GAPDH as a reference gene for normalization. Finally, Graphpad
Prism 10 was employed to plot and calculate the P-value.

2.9 Metabolomics sequencing and data
preprocessing

Metabolomic sequencing was conducted on serum samples of
rats in groups A, C, and D. Collected samples were extracted with
50% methanol buffer. Briefly, 50% methanol was added to serum,
vortexed for 1 min, and then incubated at room temperature for
10 min. Then, the extraction mixture was precipitated overnight
at −20 °C. After that, after centrifuging at 4,000 g for 20 min,
supernatant was transferred to a new 96-well plate. Before LC-MS
analysis, samples were stored at −80 °C. In addition, 10 μL of each
sample was taken out to prepare a mixed QC sample. All samples
were acquired by an LC-MS system following machine orders.

Chromatographic separations were executed employing an
ultra-performance liquid chromatography (UPLC) system
(SCIEX, Framingham, MA, United States). An ACQUITY UPLC
T3 column (100 mm * 2.1 mm, 1.8 µm, Waters, Milford, MA,
United States) was applied for reversed-phase separation. A high-
resolution tandem mass spectrometer, TripleTOF5600plus (SCIEX,
Framingham, MA, United States) was applied to detect metabolites
eluted form the column, and the mode of data acquisition was
Information Dependent Acquisition (IDA) mode. Pearson
correlation analysis was conducted on abundance values of each
QC sample to evaluate repeatability of metabolite detection. Next,
raw files were imported into XCMS software for peak extraction and
peak alignment to attain original abundance information of each
metabolic ion in the samples. Then, metabolites were annotated
through HMDB database, the KEGG database and an in-house
metabolite secondary spectral library. Subsequently, QC was carried
out on metabolites by metaX software. Samples with 80% missing
data or QC samples with 50% missing data were excluded. Then,
median normalization was employed for data normalization, a
minimum imputation method was employed to fill in missing
data values. Finally, metabolite data were quantified. Partial Least
Squares Discriminant Analysis (PLS-DA) and permutation tests
were adopted to evaluate inter-group differences among the three
groups, as well as within groups D and A, and within groups D and
C. A clustering heatmap was drawn to display the abundances of
metabolites.

2.10 Confirmation and enrichment analysis
of differential metabolites

PLS-DA and Student’s t-test (with metabolite intensities log2-
transformed prior to testing) (thresholds: VIP >1, P < 0.05 and
|log2FC| ≥0.2630344) were conducted on groups D and A to
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ascertain differentially expressed metabolites (DEMs), which were
named as DEMs1. Volcano plot of DEMs1 was generated, and an
expression heatmap of the top 30 DEMs1 was drawn. Subsequently,
enrichment analysis on DEMs was carried out. Results were
displayed by bar chart. The same analysis was conducted within
groups D and C to gain DEMs2. The log2 transformation stabilized
variance and improved the approximation to normality. The
threshold of |log2FC| ≥0.263 (1.2-fold change) combined with
VIP >1 is commonly adopted to account for the inherently lower
dynamic range of metabolite quantification (Meng et al., 2024; Zhao
et al., 2025).

2.11 16S rRNA gene sequencing and data
preprocessing

16S rRNA gene sequencing was undertaken on fecal samples of
rats in groups A, C and D. Firstly, DNA of fecal samples was
extracted depending on kit (OMEGA Stool DNA Kit, Omega Bio-
Tek, Norcross, GA, United States). Subsequently, PCR amplification
(with 35 cycles) was carried out based on total DNA. PCR products
were identified by 1.5% agarose gel electrophoresis. Then, target
fragments were recovered through kit (AxyPrep PCR Cleanup Kit,
Axygen Biosciences, Union City, CA, United States). The PCR
product underwent further purification with the help of Quant-iT
PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, Waltham,
MA, United States). The library was quantified on Promega
QuantiFluor fluorescence quantification system. Finally,
sequencing was carried out on an Illumina sequencing platform
250 PE, depending on standard operation procedures. To normalize
original data, splicing, quality control, and chimera filtering were
carried out employing overlap. The DADA2 was invoked to perform
deduplication and denoising, splicing, and chimera removal.
Amplicon Sequence Variants (ASVs) were employed to construct
an Operational Taxonomic Units (OTU)-like table. QIIME2 was
employed to remove chimeras and generate a feature table. Finally,
the ggvenn package was employed to create a Venn diagram to
visualize the number of ASVs in each group.

2.12 Diversity analysis and abundance
analysis of gut microbiota

In order to investigate microbiota richness and diversity among
the three groups, alpha diversity of microorganisms was computed.
Alpha diversity indices included Chao 1, Observed species, Goods_
coverage, Pielou-e, Shannon, and Simpson indices. Sequencing
depth in the overall level and group level of microorganisms was
evaluated through rarefaction curves based on these 6 indices. Next,
to explore species differences among groups, Beta diversity was
investigated among groups A, C, and D through Principal
coordinates analysis (PCoA), Nonmetric Multidimensional
Scaling (NMDS), Analysis of similarities (ANOSIM), and
Analysis of Variance applying Distance Matrices (Adonis). Both
ANOSIM and Adonis (PERMANOVA) are permutation-based,
distribution-free methods that do not rely on normality or
homogeneity of variances. In light of the ASV abundance table,
to assess differences in species composition structure and species

diversity among samples, PCoA was carried out in light of four
metrics: unweighted unifrac, weighted unifrac, jaccard, and Bray-
Curtis. NMDS was utilized to evaluate species composition of
samples based on the ordination sequence of the distance matrix
(stress <0.2). Anosim analysis was on the basis of four metrics of
unweighted unifrac, weighted unifrac, jaccard, and Bray-Curtis to
test whether within-group differences markedly exceeded within-
group differences, thus judging whether grouping was meaningful
(R > 0, P < 0.05). Adonis examined the degree of explanation of
sample differences by different grouping factors through the
distance matrix and utilized permutation tests to assess its
significance (P < 0.05).

2.13 Determination and function prediction
of differential microorganisms

In addition, annotations were made by SILVA (Release 138,
https://www.arb-silva.de/documentation/release-138/) and NT-16S
(https://www.ncbi.nlm.nih.gov/) databases, and the species with the
top 30 relative abundances at the genus level were presented through
stacked bar charts, heatmaps, and clustering diagrams.
Subsequently, to further identify differential microorganisms in A
group and D group, differential microorganisms 1 were selected by
linear discriminant analysis (LDA) scores and linear discriminant
analysis effect size (LEfSe) analyses at the family, genus, and species
level (P < 0.05, LDA scores >3), a commonly used threshold in
microbiome studies to ensure both statistical and biological
relevance (Segata et al., 2011). KEGG pathways of differential
microorganisms 1 were predicted by PICRUSt2 (P < 0.05). The
abundance of differential microorganisms 1 at the genus level within
groups (D vs. A) was later demonstrated by heatmaps. The above
analysis was also conducted within groups D and C, and differential
microorganisms 2 were ascertained.

2.14 Transcriptome sequencing and data
preprocessing

Total RNA of cartilage tissues (groups A, C, and D) was extracted
using TRIzol (Invitrogen, CA, United States) and quantified for number
and purity by NanoDrop ND-1000 (NanoDrop, Wilmington, DE,
United States). Then, the integrity of RNA was detected by
Bioanalyzer 2100 (Agilent, CA, United States) and verified by
agarose gel electrophoresis. Assay criteria were
concentration >50 ng/μL, RNA integrity index (RIN) >7.0, OD260/
280 >1.8, and total RNA >1 μg. The mRNA containing polyadenylic
acid (PolyA) was specifically captured by Dynabeads Oligo (dT)
(Thermo Fisher, Cat. 25-61005, CA, United States). Captured
mRNA was fragmented at 94 °C (5–7 min), applying the
magnesium ion fragmentation kit (NEBNext® Magnesium RNA
Fragmentation Module, Cat. E6150S, United States). Then, cDNA
was synthesized by reverse transcription with reverse transcriptase
(Invitrogen SuperScript™ II Reverse Transcriptase, Cat. 1896649,
CA, United States). Double-stranded DNA was synthesized applying
E. coli DNA polymerase I (NEB, Cat. m0209, United States), RNase H
(NEB, Cat. m0297, United States) and dUTP solution (Thermo Fisher,
Cat. R0133, CA, United States). Subsequently, an A base was added to
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both ends of it, and its fragment size was screened and purified applying
magnetic beads. Double-stranded DNA was digested with UDG
enzyme (NEB, Cat. m0280, MA, US), and then PCR was carried
out (denaturation at 95 °C for 3 min, 8 cycles of denaturation at
98 °C for 15 s, annealing at 60 °C for 15 s, extension at 72 °C for 30 s, and
finally extension at 72 °C for 5 min) to attain a library with a fragment
size of 300 bp, with a tolerance of ±50 bp. Finally, sequencing was
undertaken depending on standard operation applying illumina
Novaseq™ 6000. 2 × 150 bp paired-end sequencing (PE150) was
chosen as sequencing mode. Raw data were filtered by
Trimmomatic software (v 0.39). Subsequently, filtered data were
aligned with reference genome (Rattus norvegicus.107) through
Hisat2 software (v 2.2.1). Gene expression data was extracted by
FeatureCount software (v2.0.3) (parameters: -t exon -g gene_name)
and then data was converted into Fpkms format. Expression level of
each sample was presented by box plots. Finally, PCA was employed to
cluster three groups of samples and remove outliers.

2.15 Confirmation and enrichment analysis
of differentially expressed genes

Ground on transcriptome sequencing data, differentially
expressed genes (DEGs) in groups D and A were identified by
DESeq2 package (v 1.34.0) and labeled as DEGs1 (adj.P < 0.05 and
|log2FC| >0.5). Volcanomap of DEGs1 was generated by
ggplot2 packages (v 3.5.1) and top 10 up and downregulated
genes (depending on log2FC) were labeled. Heatmap was drawn
by ComplexHeatmap packages (v 2.12.1) to show expression
patterns of these 20 genes. To explore biological functions and
signal pathways that DEGs1 were participated in, clusterProfiler
software package (v 4.0.2) was utilized to conduct GO function
and KEGG pathway enrichment analyses (P < 0.05). Same
analysis was undertaken within groups D and C and acquired
DEGs2. The threshold of |log2FC| >0.5 was chosen as a balance
between biological sensitivity and statistical robustness in
RNA-seq data.

2.16 Gene, microorganisms and metabolite
correlation analysis

Intersection of DEMs1 and DEMs2, differential microbial genus
1 and differential microbial genus 2, as well as DEGs1 and DEGs2, was
taken to acquire candidate metabolites, candidate microbial genera and
candidate biomarkers. Subsequently, the mixOmics package (v 6.22.0)
was applied to conduct correlation analysis on candidate metabolites,
candidate microbial genera, and candidate biomarkers in overall, and
then key metabolites, key microbiota, and biomarkers were ascertained
(|cor| >0.8). After that, the expression patterns of the three were
displayed through a heatmap. In light of key metabolites, key
microbiota, and biomarkers, the factoextra package (v 1.0.7) was
employed to perform PCA on three groups (A, C, and D) to
analyze the expression specificity of key metabolites, key microbiota,
and biomarkers. Finally, Spearman analysis was carried out to analyze
correlations among key metabolites, key microbiota and biomarkers, as
well as correlations within TIMP1 and key metabolites, key microbiota
and biomarkers (|cor| >0.3, P < 0.05), and FDR correction was applied

using the Benjamini–Hochberg method to control for multiple
comparisons (Benjamini and Yosef, 1995).

2.17 Statistical analysis

All analyses were performed inR version 4.2. Each rat was treated as
an independent experimental unit, with random group allocation and
separate sampling to ensure independence of observations. Normality
was examined with the Shapiro–Wilk test and homogeneity of
variances with the Levene or Brown–Forsythe tests. When
assumptions were not met, data were log-transformed and re-
evaluated; metabolite intensities had already been log2-transformed
to stabilize variance. If assumptions were satisfied, one-way ANOVA
followed by Tukey’s test was applied. Welch’s ANOVA with
Games–Howell was used for unequal variances, and the
Kruskal–Wallis test with Dunn’s test was used when normality was
violated. Two-group comparisons used Student’s t-test, Welch’s t-test,
or the Mann–Whitney U test, as appropriate. The
Benjamini–Hochberg method was applied to control the false
discovery rate for multiple testing. Differential metabolites were
defined by variable importance in projection values greater than 1, P
values less than 0.05, and an absolute log2 fold change of at least 0.263.
Microbiome β-diversity was assessed with ANOSIM and
PERMANOVA, which are permutation-based and distribution-free
methods not reliant on normality or homoscedasticity. The specific
statistical test used is indicated in each figure legend.

3 Results

3.1 There were 29 candidate genes
ascertained

In GSE114007 datasets, after removing batch effect, overall data
became relatively stable, and data of the OA group and control
group were distinguishable (Figure 1A). There were 2080 DEGs
ascertained, which included 1064 up- and 1016 downregulated
genes (adj.P < 0.05 and |log2FC| >0.5). The top 15 DEGs (P
value) were labeled in volcano plot (Figure 1B). Heatmap
presented expression patterns of top 10 up/downregulated genes
in samples (Figure 1C). Finally, 29 candidate genes were gained by
taking the intersection of 2080 DEGs and 136 NRGs (Figure 1D).
GO functional annotation of candidate genes revealed enrichment to
798 biological processes (BPs, e.g., macrophage activation),
44 cellular components (CCs, e.g., tertiary granule), and
46 molecular functions (MFs, e.g., integrin binding), with graphs
illustrating the top 5 functions (by number of enriched genes) for
each part (Figure 1E). Also, 45 KEGG signalling pathways were
enriched (e.g., TNF signaling pathway). The graph shows the top
5 pathways of results (ground on P value) (Figure 1F).

3.2 ITGB1, ITGB2, MMP9, and TIMP1 were
considered key genes

After removing 7 isolated genes in PPI network, 12 genes
were screened out depending on degree score (Figure 2A).
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Subsequently, 7 SVM-RFE feature genes were ascertained from
12 genes by the SVM-RFE algorithm (Figure 2B). Meanwhile,
12 Boruta feature genes were output in Boruta (Figure 2C). After
taking intersection of two machine learning algorithms,
7 signature genes were derived (Figure 2D). Finally, 4 key
genes (ITGB1, ITGB2, MMP9, and TIMP1) were identified
through ROC curve (Figure 2E) and expression level
verification (Figure 2F).

Afterwards, in order to explore signal pathways linked to key
genes, GSEA enrichment analysis was carried out. Among them,

ITGB1 was enriched in 26 pathways, such as focal adhesion
(Figure 2G). ITGB2 was enriched in 46 pathways, such as
regulation of actin cytoskeleton (Figure 2H). MMP9 was enriched
in 43 pathways, such as regulation of Fc gamma R-mediated
phagocytosis (Figure 2I). TIMP1 was enriched in 25 pathways,
such as oxidative phosphorylation (Figure 2J). The top 5 up- and
downregulated pathways were presented (by NES value). The 4 key
genes were co-replete with multiple pathways, such as circadian
rhythmmammals, indicating that key genes might function together
through this pathway.

FIGURE 1
Identification of candidate NET-related genes in OA. (A) Boxplot of sample distributions after batch effect removal and UMAP plot showing group
separation. (B) Volcano plot of DEGs in OA samples; top 15 genes labeled. (C) Heatmap of the top 10 up- and downregulated genes. (D) Venn diagram
showing the intersection of DEGs andNRGs (29 genes identified). (E)GOenrichment analysis of candidate genes, including BP, CC, andMF categories. (F)
KEGG enrichment of the top 5 signaling pathways.
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FIGURE 2
Screening and validation of key genes. (A) PPI network analysis identified 12 genes based on degree score. (B,C) Seven signature genes were
identified using SVM-RFE and Boruta algorithms. (D) Venn diagram shows overlapping genes between two machine learning methods. (E) ROC curve
analysis of 7 candidate genes in GSE114007 and GSE57218 datasets. (F) Expression levels of candidate genes across the OA and control groups. (G–J)
GSEA enrichment of ITGB1, ITGB2, MMP9, and TIMP1; the top 5 up- and downregulated pathways based on NES value are shown.
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FIGURE 3
Validation of the TIMP1 gene silencingOA ratmodel. (A) Bodyweight changes in four groups duringmodel construction. (B,C) Serum levels of TNF-α
and IL-1β detected by ELISA. (D) Toluidine blue staining of cartilage tissue sections with semiquantitative analysis. (E) HE staining showing histological
changes in cartilage tissue. (F) IHC staining and expression analysis of Collagen II, MMP3, MMP13, and TIMP1 in femoral cartilage tissues.
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3.3 TIMP1 gene silencing in the OA rat model
was successfully constructed

To explore the biological role of TIMP1 in OA, we constructed a
TIMP1 gene silencing model and evaluated model through a series
of experiments. During construction of animal model, body weight
of control group was notably higher than that of the other three
groups (P < 0.05) (Figure 3A). Contents of IL-1β and TNF-α in
serum were detected by ELISA. Compared with the Control group,
expressions of IL-1β and TNF-α in OA group were notably rose.
Compared with OA + sh-NC group, expressions of IL-1β and TNF-
α in OA + sh-TIMP-1 group were declined. This indicated that
inflammatory response was aggravated in OA group, and low
expression of TIMP1 gene would reduce inflammatory response
in OA (Figures 3B,C). Toluidine blue staining demonstrated that
compared with Control group, expression in OA group declined
markedly. Compared with OA + sh-NC group, expression in OA +

sh-TIMP-1 group rose significantly (Figure 3D), indicating that
TIMP-1 gene improved condition of cartilage tissue. Meanwhile, in
H&E staining, compared with Control group, cells in cartilage layer
of OA group were arranged in a disordered manner, tissues were
severely damaged, and the number of inflammasomes rose. Tissues
in OA + rAAV-NC group were severely damaged and there was
obvious infiltration of inflammatory cells. Compared with OA +
rAAV-NC group, cartilage damage in OA + rAAV-TIMP-1 group
was alleviated (Figure 3E). Afterwards, expression amounts of
Collagen II, MMP3, MMP13 and TIMP1 gene were detected by
IHC. Among them, Collagen II is a key component of cartilage
tissue, and its content can directly reflect degree of cartilage
damage. MMP3 and MMP13 are marker genes for degradation
of cartilage matrix. Compared with control group, MMP3,
MMP13, and TIMP1 were notably overexpressed while Collagen
II was markedly underexpressed in OA group. Compared with OA
+ rAAV-NC group, expression trends of 4 genes in OA

FIGURE 4
Validation of key gene expression levels by RT-qPCR. (A–D) Relative mRNA expression levels of ITGB1, ITGB2, MMP9, and TIMP1 in Normal, OA,
OA + sh-NC, and OA + sh-TIMP1 groups P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), P < 0.0001 (****).
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FIGURE 5
Metabolomics analysis of OA-related differential metabolites. (A) Pearson correlation analysis indicates sample stability. (B–D) PLS-DA plots and
permutation tests showing group separations: D vs. A, D vs. C. (E) Heatmap of metabolite abundance across samples. (F,G) Volcano plot, clustering
heatmap, and KEGG enrichment of DEMs between group D and A. (H–I) Volcano plot, clustering heatmap, and KEGG enrichment of DEMs between
group D and C.
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FIGURE 6
Microbiota diversity analysis based on 16S rRNA sequencing. (A) Venn diagram showing shared and unique ASVs among groups A, C, and D. (B)
Rarefaction curves for alpha diversity indices, demonstrating sufficient sequencing depth. (C) PCoA plots illustrating distinct clustering patterns among
groups. (D) NMDS plots showing significant compositional differences across samples (stress <0.2). (E) Results of Anosim analyses confirming statistical
significance and group clustering reliability.
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+ rAAV-TIMP1 group were opposite to results in OA vs. Control
comparison (Figure 3F). Above results indicated that OAmodel and
TIMP1 gene silencing model were successfully constructed, and
TIMP1 gene was a risk factor in OA (Figure 3F).

3.4 Expression amounts of key genes were
validated via RT-qPCR

RT-qPCR analysis revealed that, compared with the normal
group, the expression levels of ITGB1, ITGB2, MMP9, and
TIMP1 were all elevated in the OA group (P < 0.05). However,
after silencing TIMP-1, the expression levels of ITGB1, ITGB2,
MMP9, and TIMP1 decreased (P < 0.05). These results were
consistent with the previous findings, indicating that TIMP1 was
a risk factor for OA (Figures 4A–D).

3.5 There were multiple DEMs concerned
with various signaling pathways

In light of acquired metabolomics data, the results of Pearson
correlation analysis presented that the instrument was relatively
stable throughout the detection process (Figure 5A). PLS-DA
analysis presented that 3 groups of samples were clearly separated
and could be effectively distinguished (Figure 5B). Results of the
permutation test indicated that the model was not overfitted
(Figure 5B). The same results of PLS-DA analysis and
permutation test were attained within groups D and A
(Figure 5C) and groups D and C (Figure 5D). Clustering
heatmap displayed abundances of metabolites in each sample
(Figure 5E). The above results demonstrated that the quality of
metabolomics data was good and could be applied for
subsequent analysis.

In group D and group A, 99 DEMs1 were ascertained, among
which there were 46 upregulated metabolites and
53 downregulated metabolites (Figure 5F). The 99 differential
metabolites were enriched in 46 pathways, such as lipid
metabolism. Figure presents the top 5 secondary classification
pathways (ranked by P value) within each KEGG first-level
classification (Figure 5G).

In group D and group C, a total of 58 DEMs2 were identified.
Among these DEMs2, 31 were upregulated metabolites, while
27 were downregulated ones (Figure 5H). These 58 DEMs2 were
found to be replete with 31 pathways, such as cell growth and death.
Moreover, within each KEGG first-level classification, the figure
demonstrated the top 5 secondary classification pathways that were
ranked by P value (Figure 5I).

3.6 Multiple differential microorganism
genera were identified

Ground on acquired 16S rRNA gene sequencing data, the
number of ASVs shared by group A, group C and group D was
1,104 (Figure 6A). Rarefaction curves of various indices gradually
became flat as amount of sequencing data rose, indicating that
microbiome data had sufficient sequencing depth at both overall

level and level of each group and could be applied for subsequent
analysis (Figure 6B). Results of PCoA demonstrated that samples
could be clearly distinguished (Figure 6C). In NMDS, stress
values of four indicators were all under 0.2, indicating that
species composition in samples was of certain significance
(Figure 6D). Results of Anosim demonstrated that grouping
was statistically significant (R > 0 and P < 0.05) (Figure 6E).
Results of Adonis analysis further confirmed that grouping was
reasonable (R2 = 1) and results had a relatively high
credibility (P < 0.01).

Species with the top 30 relative abundances at the genus level
were presented in figure (Figure 7A). Among them, those with
relatively high relative abundances included g ligilactobacillus, g
firmicutes, and g muribaculaceae. In group A and group D, a total
of 69 differential microbiota 1 were identified, among which
21 were upregulated and 48 were downregulated (Figures 7B,C).
Subsequently, a total of 51 pathways were enriched at the KEGG
tertiary classification level. The top 30 significant pathways were
presented in a figure, such as adipocytokine signaling pathway
(Figure 7D). In addition, 23 differential microbiota genera 1 were
displayed through a heatmap, among which 4 were upregulated
and 19 were downregulated (Figure 7E).

In both group D and group C, comprehensive analyses led to
recognition of 16 differential microbiota 2. Out of these,
8 exhibited upregulated patterns while other 8 demonstrated
downregulated characteristics (Figures 7F,G). Following this
initial discovery, further investigations at the KEGG tertiary
classification level unveiled a total of 13 pathways that were
markedly enriched. The top 30 significant pathways were
presented in figure, such as african trypanosomiasis
(Figure 7H). In addition, 7 differential microbiota genus
2 were displayed through a heatmap, among which 3 were
upregulated and 4 were downregulated (Figure 7I).

3.7 A total of 2021 DEGs1 and 7 DEGs1 were
associated with diverse signaling pathways

In transcriptomics data, samples from three groups could be
distinguished, and expression amounts of 18 samples were all at the
same level, which could be applied for subsequent analysis
(Figure 8A). In comparison within group D and group A, a total
of 2,021 DEGs1 were identified. Among them, 1,033 genes were
upregulated and 998 genes were downregulated. The top
10 upregulated and downregulated genes were labeled in a
volcano plot, and the expression patterns of these 20 genes were
displayed through a heatmap (Figure 8B). Furthermore, enrichment
analysis yielded a total of 640 GO terms, comprising 416 biological
processes (BPs, e.g., muscle cell development), 165 cellular
components (CCs, e.g., contractile fiber), and 59 molecular
functions (MFs, e.g., actin binding), in addition to 55 KEGG
pathways (e.g., nucleotide excision repair). The top 30 significant
GO functions and KEGG pathways were presented in
figures (Figure 8C).

In comparison, within group D and group C, a total of
7 DEGs2 were identified. Among them, 7 genes were
upregulated. DEGs2 were labeled in the volcano plot, and
expression patterns of DEGs2 were displayed through a
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FIGURE 7
Differential microbiota and functional pathway analysis based on 16S rRNA sequencing. (A) Relative abundance and clustering of the top 30 genera
across groups. (B,C) LEfSe analysis of differential microbiota between group A and D. (D) KEGG enrichment (tertiary level) of 69 differential microbiota
between group A and D. (E)Heatmap of 23 significant genera in group A vs. D comparison. (F,G) LEfSe analysis of 16 differential genera between group D
and C. (H) KEGG enrichment (tertiary level) of 13 pathways between group D and C. (I)Heatmap of 7 significant genera in group D vs. C comparison.
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FIGURE 8
Transcriptomic analysis of DEGs between groups. (A) Boxplot and PCA showing expression distribution and sample clustering across groups. (B)
Volcano plot and heatmap of the top 20 DEGs between group D and A. (C)GO and KEGG enrichment of DEGs1 between group D and A. (D) Volcano plot
and heatmap of 7 DEGs2 between group D and C. (E) GO and KEGG enrichment of DEGs2 between group D and C.
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heatmap (Figure 8D). Furthermore, enrichment analysis yielded
a total of 174 GO terms, comprising 122 biological processes
(BPs, e.g., regulation of protein folding), 31 cellular components
(CCs, e.g., prp19 complex), and 21 molecular functions (MFs,
e.g., protein-containing complex destabilizing activity), in
addition to 6 KEGG pathways (e.g., protein export). The top
30 significant GO functions and all KEGG pathways were
presented in figures (Figure 8E).

3.8 A correlation was demonstrated within
6 biomarkers, 1 key, microorganism and
9 key metabolites

A total of 6 candidate biomarkers, 1 candidate microbial genus,
and 20 candidate metabolites were acquired (Figure 9A). Through
correlation analysis, candidate metabolites had the highest
correlation with candidate microbial communities overall

FIGURE 9
Correlation analysis of key biomarkers, microorganisms, and metabolites. (A) Venn diagrams showing overlap of differential genes, genera, and
metabolites across comparisons. (B) Correlation matrix showing strongest associations between metabolites and microbial genera. (C) Network of
6 biomarkers, 1 key genus, and 9 key metabolites identified through integrated analysis. (D) PCA based on combined expression profiles of biomarkers,
genus, and metabolites. (E) Correlation heatmap of top key variables; red and blue indicate positive and negative correlations, respectively. (F)
TIMP1-associated correlations with key metabolites and genus, ranked by coefficient strength.
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(cor = 0.75, P < 0.05) (Figure 9B). At the same time, 6 biomarkers,
1 key microbial genus, and 9 key metabolites were identified
(Figure 9C). Results of PCA indicated that expressions of
biomarkers, key microbial genera, and key metabolites were
specific among the three groups (A, C, and D) (Figure 9D). In
addition, there was a conspicuous positive correlation within key
metabolites and biomarkers (cor >0.3, P < 0.05) (Figure 9E).
Xanthosine and Ginkgolic acid I demonstrated the highest
apparent positive correlation (cor = 0.92, P < 0.05), while
Xanthosine and 5′-S-Methylthioadenosine presented the lowest
marked negative correlation (cor = −0.88, P < 0.05) (Figure 9E).
TIMP1 revealed the lowest marked negative correlation with
FAHFA 19:0; FAHFA (16:0/3:0) (cor = −0.48, P < 0.05), and the
highest marked positive correlation with 12-HETE (cor = 0.34, P <
0.05) (Figure 9F).

4 Discussion

OA is a leading cause of disability worldwide, yet current
therapies mainly offer symptomatic relief and fail to prevent
disease progression. NETs, initially recognized as antimicrobial
structures, have recently been implicated in chronic inflammation
and tissue degradation, including in joint diseases, both of which are
hallmarks of OA. While the precise contribution of NETs to OA
remains elusive, their links to immune activation and ECM
breakdown suggest a potential pro-degenerative role (Delgado-
Rizo et al., 2017). In this study, we focused on the NET-associated
gene TIMP1 by combining transcriptomic data mining with in vivo
gene silencing in an OA rat model. Through multi-omics
approaches—including transcriptomics, metabolomics, and 16S
rRNA microbiome profiling—we identified key genes, metabolites,
and microbial taxa influenced by TIMP1 expression. These results
suggest that TIMP1 may function as a central node in the
immunometabolic network, bridging ECM remodeling,
inflammation, and gut–joint crosstalk, offering new insights into
OA pathophysiology. Notably, prognostic work in ACL injury has
linked clinical and MRI features to long-term outcomes,
underscoring the value of coupling molecular markers with
imaging/clinical indicators when constructing predictive models
(Romero et al., 2021). These mechanistic insights not only expand
our understanding of OA immunometabolic networks but also
provide a theoretical foundation for future pharmacological
investigations, including virtual drug screening, molecular docking,
and the development of TIMP1- or NETs-targeted therapies.

TIMP1 (Tissue Inhibitor of Metalloproteinases 1) is a secreted
glycoprotein of the TIMP family, primarily responsible for
regulating extracellular matrix (ECM) turnover by inhibiting
matrix metalloproteinases (MMPs). Structurally, it contains two
functional domains: an N-terminal domain that directly inhibits
MMPs, and a C-terminal domain involved in cell survival and
signaling (Zhang et al., 2024). In OA, TIMP1 plays a paradoxical
role. On one hand, it inhibits MMPs such as MMP9 and MMP13 to
prevent excessive ECM degradation, thereby preserving cartilage
structure (Jayadev et al., 2020). On the other hand, persistent
overexpression may impair matrix turnover and induce synovial
fibrosis and joint stiffness—hallmarks of late-stage OA (Wei et al.,
2021; Zhang et al., 2019). In our study, TIMP1 was markedly

upregulated in OA tissues and identified as a NETs-associated
gene. In vivo silencing of TIMP1 significantly reduced IL-1β,
TNF-α, MMP3, and MMP13 levels, and ameliorated
histopathological damage, supporting its pathological role in OA.
Additionally, persistent TIMP1 secretion by mesenchymal stem cells
(MSCs)—independent of their differentiation state—has been
shown to maintain trophic repair functions, further emphasizing
its role in inflammation and tissue remodeling (Salerno et al., 2020).
Mechanistic studies also reveal that TIMP1 can promote NET
formation through signaling in neutrophils, independent of MMP
inhibition (Schoeps et al., 2021). Thus, TIMP1 emerges not only as
an ECM regulator but also as an upstream inducer of inflammation.
Our findings support the view that TIMP1 contributes to OA
through both structural disruption and immune activation,
making it a promising target for therapeutic intervention.

The gut microbiota has emerged as a key modulator of OA
through mechanisms involving systemic inflammation, immune
priming, and metabolic reprogramming—collectively known as
the “gut–joint axis” (Yang et al., 2025). In our study, 16S rRNA
sequencing revealed distinct microbial compositions between OA
and TIMP1-silenced groups. Functional predictions based on KEGG
enrichment showed significant involvement of pathways related to
adipocytokine signaling and lipid metabolism. Adipocytokines such
as leptin, adiponectin, and resistin are critical mediators linking
metabolic state with inflammatory responses, directly affecting
chondrocyte catabolism, immune cell infiltration, and ECM
turnover (Turpin et al., 2023). Of particular interest, we observed
enrichment of Muribaculaceae—a genus known for butyrate
production—in TIMP1-silenced rats. Butyrate has been shown to
promote granzyme B expression in IL-10-producing Th1 cells via
HDAC inhibition and GPR43 signaling, enhancing regulatory T cell
responses and reducing intestinal inflammation (Yang et al., 2024).
These findings suggest that butyrate may exert systemic anti-
inflammatory effects, potentially extending to joint tissues. In line
with this, the present review highlights that gut microbiota–derived
short-chain fatty acids, particularly butyrate, can suppress osteoclast
differentiation and regulate Th17/Treg immune balance, thereby
attenuating systemic inflammation and contributing to the
mitigation of OA-related pain and structural deterioration
(Meléndez-Oliva et al., 2025). In parallel, our results align with
prior reports that microbial SCFAs regulate host lipid metabolism,
thereby influencing chondrocyte energy homeostasis and synovial
inflammation (Xu et al., 2024). Altogether, these observations imply
that gut microbial modulation of adipocytokine and lipid-related
pathways—potentially mediated by SCFAs like butyrate—could
represent a mechanistic link between TIMP1 suppression and
improved OA outcomes. Beyond intrinsic molecular and
microbial mechanisms, external environmental influences also
shape musculoskeletal pain trajectories. A 14-year retrospective
cohort study in Spanish primary care demonstrated that climatic
variables, particularly temperature and barometric pressure,
significantly impacted chronic musculoskeletal pain referrals,
underscoring the broader interplay between biological regulation
and environmental stressors in modulating pain perception and
healthcare demand (Zaldívar et al., 2025). Moreover, KEGG
pathway enrichment identified 13 significantly altered pathways
between the TIMP1-silenced and OA control groups (Group D
vs. C), including lysine biosynthesis, amino sugar metabolism, and
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immune-related signaling. Although these pathways differ from
those altered in the D vs. A comparison, their distinctiveness
highlights the specific regulatory impact of TIMP1 silencing on
microbial function and its potential to rebalance host metabolic and
immune homeostasis. Metabolomic profiling identified nine
TIMP1-associated differential metabolites, primarily enriched in
pathways related to lipid metabolism, nucleotide turnover, and
immune signaling—all closely linked to OA progression. Recent
studies underscore the pathological relevance of these pathways;
mitochondrial oxidative stress has been shown to trigger excessive
formation of NETs, thereby aggravating vascular inflammation and
tissue injury in aged models (Wang et al., 2017). Similarly, altered
extracellular nucleotide metabolism may enable pathogens to evade
NET-mediated clearance, a mechanism that could be co-opted in
OA tomodulate local immune activation (Afonso et al., 2021). These
findings suggest that TIMP1 may contribute to OA not only by
modulating ECM structure, but also through systemic
immunometabolic disruption. Among these, fatty acid esters of
hydroxy fatty acids (FAHFAs) tended to decrease in OA rats and
were relatively increased after TIMP1 silencing. FAHFAs are known
to enhance insulin sensitivity and suppress adipose inflammation by
promoting glucose uptake and attenuating pro-inflammatory
cytokine production via the IRF3–AIG1 axis (Yan et al., 2024).
Their reduction may reflect a pro-inflammatory, insulin-resistant
state associated with high TIMP1 expression. In contrast, 12-
HETE—a pro-inflammatory metabolite derived from arachidonic
acid—showed an opposite trend, being more abundant in OA tissues
and reduced upon TIMP1 knockdown. 12-HETE has been
implicated in activating p38 MAPK and NF-κB pathways,
thereby promoting immune cell recruitment and tissue
degradation in both vascular and articular contexts (Chen et al.,
2024). This inverse regulation of FAHFAs and 12-HETE suggests
that TIMP1 may skew lipid metabolism toward a catabolic and
inflammatory profile. These findings may hold translational
significance. Restoration of FAHFAs—a lipid class with anti-
inflammatory and insulin-sensitizing properties—may represent a
metabolic biomarker indicative of therapeutic response in
osteoarthritis. Conversely, increased levels of 12-HETE, a pro-
inflammatory lipid mediator, could serve as a predictor of disease
activity or treatment resistance. The genusMuribaculaceae, enriched
following TIMP1 silencing and known for its capacity to produce
butyrate and promote immune tolerance, may offer a novel
microbial target for modulating the gut–joint axis in
osteoarthritis management (Liu et al., 2025). Such molecular
candidates may ultimately support precision medicine strategies
in OA, enabling earlier diagnosis, stratified treatment, and
monitoring of therapeutic efficacy (Zhai, 2021). Integration of
such markers into clinical workflows—particularly through non-
invasive serum or microbiome profiling—could help tailor
interventions based on individual metabolic or microbial profiles.
In addition to lipid- and microbiota-related candidates, other classes
of metabolites identified in our multi-omics analysis may also hold
clinical value. Nucleotide- and methylation-related compounds,
such as xanthosine and 5′-S-methylthioadenosine (MTA), may
reflect systemic metabolic states that influence inflammation and
tissue remodeling in OA. These metabolites are not only
mechanistically linked to oxidative stress and immune signaling,
but may also serve as emerging molecular indicators of disease

severity or progression. Consistent with this, we also observed
significant alterations in nucleotide- and methylation-related
compounds, including xanthosine and 5′-S-methylthioadenosine
(MTA). MTA, a byproduct of microbial methionine metabolism
and salvage pathways, suppresses PRMT5-mediated arginine
methylation and regulates lipid metabolism and insulin signaling.
Its depletion in OA may contribute to epigenetic dysregulation and
foster a fibrotic, pro-inflammatory microenvironment (Lyu et al.,
2024). Collectively, our data indicate that TIMP1 modulates OA
development through coordinated metabolic reprogramming,
affecting inflammation, tissue remodeling, and oxidative
stress responses.

Transcriptomic profiling identified two distinct sets of DEGs:
2021 genes associated with OA pathology (DEGs1), and 7 genes
modulated by TIMP1 silencing (DEGs2). Enrichment analysis of
DEGs1 indicated strong involvement of extracellular matrix
(ECM)–receptor interaction and focal adhesion pathways, both
critical for chondrocyte–matrix communication,
mechanotransduction, and structural maintenance of the joint.
Disruption of these pathways is a well-recognized driver of
cartilage degradation and biomechanical dysfunction in OA
(Chun et al., 2024; Yao et al., 2023). TIMP1 itself, as a known
ECM regulator, may disturb the fine balance between matrix
synthesis and degradation when overexpressed, thereby
exacerbating joint damage. In addition to matrix-related
pathways, nucleotide excision repair emerged as a top-enriched
category, likely reflecting increased DNA repair activity in
response to oxidative stress and genotoxic damage in OA
chondrocytes (Ni et al., 2023). Ribosomal and translational
pathway enrichment may further suggest heightened protein
synthesis demand during tissue remodeling. In contrast, analysis
of DEGs2—genes responsive to TIMP1 silencing—highlighted
enrichment in pathways related to protein processing in the
endoplasmic reticulum and RNA splicing (including the
prp19 complex), with possible involvement in lysosomal and
post-transcriptional regulation. These pathways are vital for
maintaining proteostasis and RNA quality control under
metabolic stress. Their dysregulation has been linked to enhanced
ER stress, chondrocyte apoptosis, and OA progression (Kim et al.,
2010;Wang et al., 2022). Together, these transcriptomic data suggest
that TIMP1 exerts a broad regulatory influence—extending beyond
ECM remodeling to include DNA repair, protein homeostasis, and
RNA processing—underscoring its central role in coordinating
cellular stress responses in OA.

Through multi-omics integration, we identified a core set of six
potential biomarkers, nine differential metabolites, and one key
microbial genus—Muribaculaceae—that were significantly
associated with TIMP1 expression and OA progression. These
results collectively reflect the multifactorial nature of OA and
highlight the regulatory influence of TIMP1 across molecular,
metabolic, and microbial domains. Beyond molecular and
microbial signatures, functional markers also merit attention. A
recent meta-analysis showed that quantitative sensory testing (QST)
can stratify OA patients by pain and disability outcomes,
underscoring the translational value of combining patient-
centered functional assessments with molecular findings (Murphy
et al., 2025). Among the candidate biomarkers, SPP1 (osteopontin)
and A2M (alpha-2-macroglobulin) are particularly notable.
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SPP1 acts as a pro-inflammatory mediator that promotes
macrophage infiltration and MMP expression in synovial tissues,
exacerbating joint damage. In contrast, A2M has been proposed as a
disease-modifying OA therapy due to its ability to inhibit proteolytic
enzymes and inflammatory cytokines (Dai et al., 2023; Zheng et al.,
2023). The differential metabolites—especially FAHFAs, 12-HETE,
MTA, and xanthosine—represent central metabolic nodes involved
in lipid signaling, oxidative stress, and nucleotide metabolism. Of
these, FAHFAs and MTA, which are rarely reported in OA
literature, emerged as potential anti-inflammatory mediators
suppressed in high-TIMP1 states, indicating their novelty and
potential as diagnostic markers (Wu et al., 2020; Tang et al.,
2022). The genus Muribaculaceae, known for producing short-
chain fatty acids and modulating regulatory T cells, was enriched
in TIMP1-silenced rats, suggesting a protective, microbiota-
mediated immunoregulatory role (Zhu et al., 2024). Conversely,
Escherichia-Shigella was the most TIMP1-associated genus in the
integrated network, correlating with pro-inflammatory metabolites
and supporting its link to gut-derived systemic inflammation and
OA exacerbation (Wang et al., 2021). Recent multi-omics studies in
other inflammatory diseases support our findings. In colorectal
cancer, TIMP1 was shown to promote disease progression by
modulating ferroptosis, immune infiltration, and redox-related
metabolism (Jin et al., 2025). Similarly, in lung adenocarcinoma,
NET-associated multi-omics signatures—also involving
TIMP1—were linked to metabolic remodeling and
immunosuppression (Shan et al., 2025). These results highlight
TIMP1’s shared role in neutrophil activation and
immune–metabolic dysregulation across diverse pathologies,
echoing its function in OA. These results highlight TIMP1’s
shared role in neutrophil activation and immune–metabolic
dysregulation across diverse pathologies, echoing its function in
OA. Altogether, these integrated findings position TIMP1 as a
central hub orchestrating cross-talk between immune signaling,
metabolic remodeling, and microbial dysbiosis—uncovering novel
therapeutic and diagnostic targets in OA. This perspective resonates
with frailty research, where aging-related vulnerability is defined as a
multidimensional syndrome shaped by systemic inflammation and
tissue remodeling. Such holistic frameworks support our systems
biology approach and emphasize the need for multi-level strategies
in OA (Fernández-Carnero et al., 2024). Recent advances further
indicate that machine learning–based systemic approaches can
optimize frailty detection, a condition closely linked with
musculoskeletal decline, thereby positioning OA research within
the broader landscape of precision and predictive medicine
(Fernández-Carnero et al., 2025).

In summary, this study identifies TIMP1 as a pivotal
immunometabolic regulator in osteoarthritis (OA),
orchestrating extracellular matrix remodeling, inflammatory
signaling, metabolic reprogramming, and gut microbiota
dynamics. By integrating transcriptomic, metabolomic, and
microbial profiling with in vivo gene silencing, we provide
compelling evidence that TIMP1 serves as a molecular hub
linking structural damage with systemic dysregulation, thereby
offering novel avenues for disease stratification and targeted
intervention in OA. Nevertheless, several limitations should be
acknowledged. First, reliance on a rat model may limit
translational relevance due to interspecies differences in gene

expression and immune–microbiota interactions. Second, the
multi-omics associations identified here are primarily
correlative; causal relationships among TIMP1, metabolic
alterations, and microbial shifts remain to be experimentally
validated. Third, the relatively small sample size may affect
the generalizability of certain findings. Future work should
include validation in larger, well-characterized human cohorts,
along with advanced systems such as organoids or humanized
models, to clarify mechanistic pathways and assess their value as
biomarkers or therapeutic targets. Although TIMP1 was
identified as a NETs-associated gene, the present study did not
directly quantify NETs formation. Future investigations should
address this gap to establish a more complete causal link between
TIMP1 and NET biology in OA.

5 Conclusion

This study highlights TIMP1 as a central immunometabolic
regulator in osteoarthritis, integrating extracellular matrix
remodeling with inflammatory signaling, metabolic
reprogramming, and gut microbiota alterations. Through multi-
omics analysis and in vivo validation, we reveal a TIMP1-centered
network of biomarkers, metabolites, and microbial taxa that
collectively drive OA progression. These findings not only deepen
our mechanistic understanding of OA but also provide a
pharmacological basis for targeting TIMP1-associated pathways,
supporting the development of precision diagnostics and novel
disease-modifying therapies.

Data availability statement

The datasets generated and analyzed in this study are available
within the article and its Supplementary Material. Public
transcriptomic datasets were obtained from GEO (GSE114007
and GSE57218). Additional data supporting the findings of this
study are available from the corresponding author upon
reasonable request.

Ethics statement

The animal studies were approved by Ethics Committee of the
First Affiliated Hospital of KunmingMedical University. The studies
were conducted in accordance with the local legislation and
institutional requirements. Written informed consent was
obtained from the owners for the participation of their animals
in this study.

Author contributions

YX: Conceptualization, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision,
Validation, Visualization, Writing – original draft,
Writing – review and editing. JL: Investigation, Resources,
Software, Visualization, Writing – original draft,

Frontiers in Pharmacology frontiersin.org19

Xiang et al. 10.3389/fphar.2025.1665228

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1665228


Writing – review and editing. XH: Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Supervision, Writing – review and editing. XY: Investigation,
Project administration, Software, Supervision, Visualization,
Writing – review and editing. FS: Data curation, Methodology,
Project administration, Resources, Software, Validation,
Visualization, Writing – review and editing. JY: Data curation,
Formal Analysis, Methodology, Project administration,
Validation, Writing – review and editing. WG: Data curation,
Formal Analysis, Methodology, Project administration,
Supervision, Validation, Visualization, Writing – review and
editing. TZ: Data curation, Formal Analysis, Methodology,
Project administration, Supervision, Writing – review and
editing. ES: Conceptualization, Funding acquisition, Investigation,
Resources, Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Yunnan Provincial Science and Technology Department
(Basic Research Program–Youth Project, No. 202201AU070075)
and the Yunnan Revitalization Talent Support Program, and the
Yunnan Health Training Project of High-Level Talents (No.
H-2024084).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Afonso, M., Mestre, A. R., Silva, G., Almeida, A. C., Cunha, R. A., Meyer-Fernandes,
J. R., et al. (2021). Candida extracellular nucleotide metabolism promotes neutrophils
extracellular traps escape. Front. Cell. Infect. Microbiol. 11, 678568. doi:10.3389/fcimb.
2021.678568

Benjamini, Y., and Yosef, H. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1),
289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

Binvignat, M., Sellam, J., Berenbaum, F., and Felson, D. T. (2024). The role of obesity
and adipose tissue dysfunction in osteoarthritis pain. Nat. Rev. Rheumatol. 20 (9),
565–584. doi:10.1038/s41584-024-01143-3

Carmona-Rivera, C., Carlucci, P. M., Goel, R. R., James, E., Brooks, S. R., Rims, C.,
et al. (2020). Neutrophil extracellular traps mediate articular cartilage damage and
enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight 5
(13), e139388. doi:10.1172/jci.insight.139388

Chen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., et al. (2023). Applications
of multi-omics analysis in human diseases. Medcomm 4 (4), e315. doi:10.1002/
mco2.315

Chen, Y., Liu, P., Zhang, Z., Ye, Y., Yi, S., Fan, C., et al. (2024). Genetic overlap and
causality between COVID-19 and multi-site chronic pain: the importance of immunity.
Front. Immunol. 15, 1277720. doi:10.3389/fimmu.2024.1277720

Chen, L., Zhang, Z., Ma, X., Zhang, D., Xu, Q., Wang, Q., et al. (2025). Radial
extracorporeal shockwave therapy reduces subchondral osteoblast senescence in knee
osteoarthritis. Am. J. Sports Med. 53 (10), 2352–2362. doi:10.1177/03635465251355245

Chun, J. M., Kim, J.-S., and Kim, C. (2024). Integrated analysis of DNA methylation
and gene expression profiles in a rat model of osteoarthritis. Int. J. Mol. Sci. 25 (1), 594.
doi:10.3390/ijms25010594

Corsiero, E., Caliste, M., Jagemann, L., Fossati-Jimack, L., Goldmann, K., Cubuk, C.,
et al. (2024). Autoimmunity to stromal-derived autoantigens in rheumatoid ectopic
germinal centers exacerbates arthritis and affects clinical response. J. Clin. Investigation
134 (12), e169754. doi:10.1172/JCI169754

Courties, A., Kouki, I., Soliman, N., Mathieu, S., and Sellam, J. (2024). Osteoarthritis
year in review 2024: epidemiology and therapy. Osteoarthr. Cartil. 32 (11), 1397–1404.
doi:10.1016/j.joca.2024.07.014

Dai, B., Zhu, Y., Li, X., Liang, Z., Xu, S., Zhang, S., et al. (2023). Blockage of
osteopontin-integrin β 3 signaling in infrapatellar fat pad attenuates osteoarthritis in
mice. Adv. Sci. 10 (22), 2300897. doi:10.1002/advs.202300897

Delgado-Rizo, V., Martínez-Guzmán, M. A., Iñiguez-Gutierrez, L., García-Orozco,
A., Alvarado-Navarro, A., and Fafutis-Morris, M. (2017). Neutrophil extracellular traps
and its implications in inflammation: an overview. Front. Immunol. 8, 81. doi:10.3389/
fimmu.2017.00081

Deng, M., Tang, C., Yin, L., Jiang, Y., Huang, Y., Feng, Y., et al. (2025). Clinical and
omics biomarkers in osteoarthritis diagnosis and treatment. J. Orthop. Transl. 50,
295–305. doi:10.1016/j.jot.2024.12.007

Feng, S.-Y., Cao, M.-N., Gao, C.-C., Li, Y.-X., Lei, J., and Fu, K.-Y. (2025).
Akt2 inhibition alleviates temporomandibular joint osteoarthritis by preventing
subchondral bone loss. Arthritis Res. Ther. 27 (1), 43. doi:10.1186/s13075-025-
03506-x

Fernández-Carnero, S., Martínez-Pozas, O., Nicolás Cuenca-Zaldívar, J., and
Sánchez-Romero, E. A. (2024). Addressing frailty in older adults: an integrated
challenge for health, science, and society. Aging. ahead of print, November 27.
doi:10.18632/aging.206162

Fernández-Carnero, S., Martínez-Pozas, O., Pecos-Martín, D., Pardo-Gómez, A.,
Nicolás Cuenca-Zaldívar, J., and Sánchez-Romero, E. A. (2025). Update on the
detection of frailty in older adults: a multicenter cohort machine learning-based
study protocol. Aging 17 (5), 1328–1339. doi:10.18632/aging.206254

Jayadev, C., Hulley, P., Swales, C., Snelling, S., Collins, G., Taylor, P., et al. (2020).
Synovial fluid fingerprinting in end-stage knee osteoarthritis: a novel biomarker
concept. Bone Jt. Res. 9 (9), 623–632. doi:10.1302/2046-3758.99.BJR-2019-0192.R1

Jin, Y., Liao, L., Chen, Q., Tang, B., Jiang, J., Zhu, J., et al. (2025). Multi-omics analysis
reveals that neutrophil extracellular traps related gene TIMP1 promotes CRC
progression and influences ferroptosis. Cancer Cell Int. 25 (1), 31. doi:10.1186/
s12935-025-03643-y

Kim, E.-M., Shin, E.-J., Choi, Ji H., Son, H. J., Park, I. S., Joh, T. H., et al. (2010). Matrix
Metalloproteinase-3 is increased and participates in neuronal apoptotic signaling
downstream of Caspase-12 during endoplasmic reticulum stress. J. Biol. Chem. 285
(22), 16444–16452. doi:10.1074/jbc.M109.093799

Liu, S., Xu, H., Liu, L., Ma,W., Fan, H., Liu, F., et al. (2025). Gut microbiome dysbiosis
accelerates osteoarthritis progression by inducing IFP-SM inflammation in ‘Double-
Hit’ mice. Arthritis Res. Ther. 27 (1), 137. doi:10.1186/s13075-025-03602-y

Lyu, Q., Chen, R.-A., Chuang, H.-L., Zou, H. B., Liu, L., Sung, L. K., et al. (2024).
Bifidobacterium alleviate metabolic disorders via converting methionine to 5’-
Methylthioadenosine. Gut Microbes 16 (1), 2300847. doi:10.1080/19490976.2023.
2300847

Frontiers in Pharmacology frontiersin.org20

Xiang et al. 10.3389/fphar.2025.1665228

https://doi.org/10.3389/fcimb.2021.678568
https://doi.org/10.3389/fcimb.2021.678568
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/s41584-024-01143-3
https://doi.org/10.1172/jci.insight.139388
https://doi.org/10.1002/mco2.315
https://doi.org/10.1002/mco2.315
https://doi.org/10.3389/fimmu.2024.1277720
https://doi.org/10.1177/03635465251355245
https://doi.org/10.3390/ijms25010594
https://doi.org/10.1172/JCI169754
https://doi.org/10.1016/j.joca.2024.07.014
https://doi.org/10.1002/advs.202300897
https://doi.org/10.3389/fimmu.2017.00081
https://doi.org/10.3389/fimmu.2017.00081
https://doi.org/10.1016/j.jot.2024.12.007
https://doi.org/10.1186/s13075-025-03506-x
https://doi.org/10.1186/s13075-025-03506-x
https://doi.org/10.18632/aging.206162
https://doi.org/10.18632/aging.206254
https://doi.org/10.1302/2046-3758.99.BJR-2019-0192.R1
https://doi.org/10.1186/s12935-025-03643-y
https://doi.org/10.1186/s12935-025-03643-y
https://doi.org/10.1074/jbc.M109.093799
https://doi.org/10.1186/s13075-025-03602-y
https://doi.org/10.1080/19490976.2023.2300847
https://doi.org/10.1080/19490976.2023.2300847
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1665228


Meléndez-Oliva, E., Martínez-Pozas, O., Sinatti, P., Martín Carreras-Presas, C.,
Cuenca-Zaldívar, J. N., Turroni, S., et al. (2025). Relationship between the gut
microbiome, tryptophan-derived metabolites, and osteoarthritis-related pain: a
systematic review with meta-analysis. Nutrients 17 (2), 264. doi:10.3390/nu17020264

Meng, S., Chen, X., Zhao, J., Huang, X., Huang, Y., Huang, T., et al. (2024). Reduced
FNDC5-AMPK signaling in diabetic atrium increases the susceptibility of atrial fibrillation
by impairing mitochondrial dynamics and activating NLRP3 inflammasome. Biochem.
Pharmacol. 229, 116476. doi:10.1016/j.bcp.2024.116476

Minnig, M. C. C., Golightly, Y. M., and Nelson, A. E. (2024). Epidemiology of
osteoarthritis: literature update 2022–2023. Curr. Opin. Rheumatology 36 (2), 108–112.
doi:10.1097/BOR.0000000000000985

Murphy, M. C., Mosler, A. B., Rio, E. K., Coventry, M., Raj, I. S., Chivers, P. T., et al.
(2025). Can quantitative sensory testing predict treatment outcomes in hip and knee
osteoarthritis? A systematic review and meta-analysis of individual participant data.
Pain 166, 2261–2280. ahead of print, April 29. doi:10.1097/j.pain.0000000000003627

Newton, M. D., Swahn, H., Orange, D. E., Lesnak, J. B., Price, T. J., Malfait, A. M., et al.
(2025). Cross-platform transcriptomic data integration identifies an overactive neuro-
immune signature in human osteoarthritis synovium. Osteoarthr. Cartil.
S1063458425011239. doi:10.1016/j.joca.2025.08.013

Ni, W., Zhang, H., Mei, Z., Hongyi, Z., Wu, Y., Xu, W., et al. (2023). An inducible long
noncoding RNA, LncZFHX2, facilitates DNA repair to mediate osteoarthritis
pathology. Redox Biol. 66, 102858. doi:10.1016/j.redox.2023.102858

Romero, S., Lim, T., Luis Alonso Pérez, J., Castaldo, M., Lozano, P. M., and Villafañe,
J. H. (2021). Identifying clinical andMRI characteristics associated with quality of life in
patients with anterior cruciate ligament injury: prognostic factors for long-term. Int.
J. Environ. Res. Public Health 18 (23), 12845. doi:10.3390/ijerph182312845

Salerno, A., Brady, K., Rikkers, M., Li, C., Caamaño-Gutierrez, E., Falciani, F., et al.
(2020). MMP13 and TIMP1 are functional markers for two different potential modes of
action by mesenchymal stem/stromal cells when treating osteoarthritis. Stem Cells 38
(11), 1438–1453. doi:10.1002/stem.3255

Schoeps, B., Eckfeld, C., Prokopchuk, O., Böttcher, J., Häußler, D., Steiger, K., et al.
(2021). TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer.
Cancer Res. 81 (13), 3568–3579. doi:10.1158/0008-5472.CAN-20-4125

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12 (6), R60.
doi:10.1186/gb-2011-12-6-r60

Shan, M., Xu, L., Yang, W., Sui, L., Sun, P., Zhuo, X., et al. (2025). Identification of
common hub genes and construction of immune regulatory networks in aplastic
anemia, myelodysplastic syndromes, and acute myeloid leukemia. Front. Immunol.
16, 1547289. doi:10.3389/fimmu.2025.1547289

Tang, B., Lee, H.-O., Gupta, S., Wang, L., Kurimchak, A. M., Duncan, J. S., et al.
(2022). Extracellular 5′-Methylthioadenosine inhibits intracellular symmetric
dimethylarginine protein methylation of FUSE-binding proteins. J. Biol. Chem. 298
(9), 102367. doi:10.1016/j.jbc.2022.102367

Tang, S., Zhang, C., Oo, W. M., Fu, K., Risberg, M. A., Bierma-Zeinstra, S. M., et al.
(2025). Osteoarthritis. Nat. Rev. Dis. Prim. 11 (1), 10. doi:10.1038/s41572-025-00594-6

Turpin, T., Thouvenot, K., and Gonthier, M.-P. (2023). Adipokines and bacterial
metabolites: a pivotal molecular bridge linking obesity and gut microbiota dysbiosis to
target. Biomolecules 13 (12), 1692. doi:10.3390/biom13121692

Wang, Y., Wang, W., Wang, N., Tall, A. R., and Tabas, I. (2017). Mitochondrial
oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged
mice. Arteriosclerosis, Thrombosis, Vasc. Biol. 37 (8), e99–e107. doi:10.1161/
ATVBAHA.117.309580

Wang, X., Ning, Y., and Cheng, L. (2021). Alterations in the gut microbiota and
metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in
China. Cell Death Dis. 12 (11), 1015. doi:10.1038/s41419-021-04322-2

Wang, W., Zhang, J., Huo, Y., Zheng, Y., and Gui, Y. (2022). Effects of the leptin-
mediated MAPK/ERK signaling pathway on collagen II expression in knee cartilage of
newborn Male mice from Obese maternal offspring. Biomolecules 12 (3), 477. doi:10.
3390/biom12030477

Wang, H., Kim, S. J., Lei, Y., Wang, S., Huang, H., et al. (2024). Neutrophil
extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 9 (1),
235. doi:10.1038/s41392-024-01933-x

Wang, Y., Wang, Z., Yu, X., Song, J., Yu, D. J., et al. (2024). MORE: a multi-omics
data-driven hypergraph integration network for biomedical data classification and
biomarker identification. Briefings Bioinforma. 26 (1), bbae658. doi:10.1093/bib/
bbae658

Wei, Q., Kong, N., Liu, X., Tian, R., Jiao, M., Li, Y., et al. (2021). Pirfenidone attenuates
synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and
anti-inflammatory properties in vivo and in vitro. J. Transl. Med. 19 (1), 157. doi:10.
1186/s12967-021-02823-4

Wood, G., Neilson, J., Cottrell, E., Hoole, S. P., and Guideline Committee (2023).
Osteoarthritis in people over 16: Diagnosis and management—updated summary of
NICE guidance. BMJ 24, p24. doi:10.1136/bmj.p24

Wu, P., Huang, Z., Shan, J., Luo, Z., Zhang, N., Yin, S., et al. (2020). Interventional
effects of the direct application of ‘Sanse Powder’ on knee osteoarthritis in rats as
determined from lipidomics via UPLC-Q-Exactive orbitrap MS. Chin. Med. 15 (1), 9.
doi:10.1186/s13020-020-0290-5

Xu, S., Lu, F., Gao, J., and Yi, Y. (2024). Inflammation-mediated metabolic regulation
in adipose tissue. Obes. Rev. 25 (6), e13724. doi:10.1111/obr.13724

Yan, S., Santoro, A., Niphakis, M. J., Pinto, A. M., Jacobs, C. L., Ahmad, R., et al.
(2024). Inflammation causes insulin resistance in mice via interferon regulatory factor 3
(IRF3)-mediated reduction in FAHFA levels. Nat. Commun. 15 (1), 4605. doi:10.1038/
s41467-024-48220-5

Yang, W., Yu, T., Liu, X., Yao, S., Khanipov, K., Golovko, G., et al. (2024). Microbial
metabolite butyrate modulates granzyme B in tolerogenic IL-10 producing Th1 cells to
regulate intestinal inflammation. Gut Microbes 16 (1), 2363020. doi:10.1080/19490976.
2024.2363020

Yang, Y., Cong, H., Jiao, T., Yang, Z., Li, H., Zhang, Y., et al. (2025). Osteoarthritis
treatment via the GLP-1–Mediated gut-joint axis targets intestinal FXR signaling.
Science 388 (6742), eadt0548. doi:10.1126/science.adt0548

Yao, Q., Wu, X., Tao, C., Gong, W., Chen, M., Qu, M., et al. (2023). Osteoarthritis:
pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 8
(1), 56. doi:10.1038/s41392-023-01330-w

Zaldívar, C., Nicolás, J., Villar, C. D. C., Araujo-Zamora, R., Gragera-Peña, P.,
Martínez-Lozano, P., et al. (2025). Fourteen-year retrospective cohort study on the
impact of climatic factors on chronic musculoskeletal pain: a Spanish primary care
analysis. Int. J. Rheumatic Dis. 28 (3), e70125. doi:10.1111/1756-185X.70125

Zhai, G. (2021). The role of metabolomics in precision medicine of osteoarthritis:
how far are we? Osteoarthr. Cartil. Open 3 (4), 100170. doi:10.1016/j.ocarto.2021.
100170

Zhang, W., Zhang, C., Luo, C., Zhan, Y., and Zhong, B. (2019). Design, cyclization,
and optimization of MMP13–TIMP1 interaction-derived self-inhibitory peptides
against chondrocyte senescence in osteoarthritis. Int. J. Biol. Macromol. 121,
921–929. doi:10.1016/j.ijbiomac.2018.10.141

Zhang, H., Xiao, X., Wang, L., Shi, X., Fu, N., Wang, S., et al. (2024). Human adipose
and umbilical cord mesenchymal stem cell-derived extracellular vesicles mitigate
photoaging via TIMP1/Notch1. Signal Transduct. Target. Ther. 9 (1), 294. doi:10.
1038/s41392-024-01993-z

Zhao, M., Wu, Q., Zhao, Y., Nian, R., Li, W., and Lu, H. (2025). Tissue metabolomics
reveals metabolic dysregulation associated with intimal hyperplasia in arteriovenous
fistula stenosis. Front. Physiology 16, 1638179. doi:10.3389/fphys.2025.1638179

Zheng, W., Tong, Z., Zhang, Y., Ding, J., Xie, J., Wang, S., et al. (2023). Simplified A2-
Macroglobulin as a TNF-α inhibitor for inflammation alleviation in osteoarthritis and
myocardial infarction therapy. Biomaterials 301, 122247. doi:10.1016/j.biomaterials.
2023.122247

Zhu, X., Zhang, X., Shen, J., Zheng, S., Li, H., Han, B., et al. (2024). Gut microbiota-
dependent modulation of pre-metastatic niches by Jianpi Yangzheng decoction in the
prevention of lungmetastasis of gastric cancer. Phytomedicine 128, 155413. doi:10.1016/
j.phymed.2024.155413

Frontiers in Pharmacology frontiersin.org21

Xiang et al. 10.3389/fphar.2025.1665228

https://doi.org/10.3390/nu17020264
https://doi.org/10.1016/j.bcp.2024.116476
https://doi.org/10.1097/BOR.0000000000000985
https://doi.org/10.1097/j.pain.0000000000003627
https://doi.org/10.1016/j.joca.2025.08.013
https://doi.org/10.1016/j.redox.2023.102858
https://doi.org/10.3390/ijerph182312845
https://doi.org/10.1002/stem.3255
https://doi.org/10.1158/0008-5472.CAN-20-4125
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.3389/fimmu.2025.1547289
https://doi.org/10.1016/j.jbc.2022.102367
https://doi.org/10.1038/s41572-025-00594-6
https://doi.org/10.3390/biom13121692
https://doi.org/10.1161/ATVBAHA.117.309580
https://doi.org/10.1161/ATVBAHA.117.309580
https://doi.org/10.1038/s41419-021-04322-2
https://doi.org/10.3390/biom12030477
https://doi.org/10.3390/biom12030477
https://doi.org/10.1038/s41392-024-01933-x
https://doi.org/10.1093/bib/bbae658
https://doi.org/10.1093/bib/bbae658
https://doi.org/10.1186/s12967-021-02823-4
https://doi.org/10.1186/s12967-021-02823-4
https://doi.org/10.1136/bmj.p24
https://doi.org/10.1186/s13020-020-0290-5
https://doi.org/10.1111/obr.13724
https://doi.org/10.1038/s41467-024-48220-5
https://doi.org/10.1038/s41467-024-48220-5
https://doi.org/10.1080/19490976.2024.2363020
https://doi.org/10.1080/19490976.2024.2363020
https://doi.org/10.1126/science.adt0548
https://doi.org/10.1038/s41392-023-01330-w
https://doi.org/10.1111/1756-185X.70125
https://doi.org/10.1016/j.ocarto.2021.100170
https://doi.org/10.1016/j.ocarto.2021.100170
https://doi.org/10.1016/j.ijbiomac.2018.10.141
https://doi.org/10.1038/s41392-024-01993-z
https://doi.org/10.1038/s41392-024-01993-z
https://doi.org/10.3389/fphys.2025.1638179
https://doi.org/10.1016/j.biomaterials.2023.122247
https://doi.org/10.1016/j.biomaterials.2023.122247
https://doi.org/10.1016/j.phymed.2024.155413
https://doi.org/10.1016/j.phymed.2024.155413
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1665228

	Combined multi-omics approach to identify the key metabolites, key microorganisms and biomarkers correlated with the neutro ...
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Differential expression analysis
	2.3 Recognition and analysis of candidate genes
	2.4 Determination of key genes and gene set enrichment analysis (GSEA)
	2.5 Construction of rat model and sample collection
	2.6 Enzyme-linked immunosorbent assay (ELISA)
	2.7 Toluidine blue staining, hematoxylin-eosin (H&E) staining, and immunohistochemical (IHC) analysis
	2.8 Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis
	2.9 Metabolomics sequencing and data preprocessing
	2.10 Confirmation and enrichment analysis of differential metabolites
	2.11 16S rRNA gene sequencing and data preprocessing
	2.12 Diversity analysis and abundance analysis of gut microbiota
	2.13 Determination and function prediction of differential microorganisms
	2.14 Transcriptome sequencing and data preprocessing
	2.15 Confirmation and enrichment analysis of differentially expressed genes
	2.16 Gene, microorganisms and metabolite correlation analysis
	2.17 Statistical analysis

	3 Results
	3.1 There were 29 candidate genes ascertained
	3.2 ITGB1, ITGB2, MMP9, and TIMP1 were considered key genes
	3.3 TIMP1 gene silencing in the OA rat model was successfully constructed
	3.4 Expression amounts of key genes were validated via RT-qPCR
	3.5 There were multiple DEMs concerned with various signaling pathways
	3.6 Multiple differential microorganism genera were identified
	3.7 A total of 2021 DEGs1 and 7 DEGs1 were associated with diverse signaling pathways
	3.8 A correlation was demonstrated within 6 biomarkers, 1 key, microorganism and 9 key metabolites

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


