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Non-Alcoholic Steatohepatitis (NASH) rates are progressively accelerating due to
lifestyle changes, which contribute to increased Hepatocellular carcinoma (HCC)
incidence. HCC accounts for 90% of liver cancer cases, which ranks as the sixth
prevalent, and the third leading cause of cancer-related deaths globally. NASH-
HCC outweighs the decline in viral hepatitis-HCC, leaving a gap in the available
therapies. The limited overall survival in the current treatments invokes the
necessity of exploring novel therapeutic strategies to improve the poor
prognosis of HCC. The pH gradient is a hallmark of cancer and is associated
with increased intracellular sodium. Elevating this accumulation of intracellular
sodium with sodium ionophores, such as Monensin, leads to selective death of
murine HCC cancer cells without affecting the functionality of vital organs and
proliferating activity of normal and transformed tissues. This study synthesizes the
status of HCC risk and management, its molecular landscape, and sheds light on
exploiting the elevated accumulation of intracellular sodium as a novel
therapeutic strategy against HCC.
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1 Introduction

Liver cancer is the sixth most frequently diagnosed cancer and the third leading
cause of death in cancer-related mortalities worldwide. In 2025, about 1 million new
incidents are predicted to occur compared with 840,000 in 2018 whereas fatalities are
foreseen to rise by more than 50% by 2040 (Rumgay et al., 2022). HCC represents
roughly 90% of liver malignancies, with incidence rates increasing with age (Llovet
et al., 2021).

HCC global epidemiology is shifting, with steady increases in the projected
incidence in the upcoming 30 years. Hepatitis B virus (HBV) infection was
considered the most common risk factor for HCC. Recent advances in HBV
vaccination, treatments, and preventive measures for HBV and the Hepatitis C
virus (HCV) have reduced the global incidence. For instance, Direct-acting antiviral
(DAA) reduced the risk of HCC by 50%–80%. While viral hepatitis caused by HBV and
HCV is dipping, NASH-related Hepatocellular Carcinoma (HCC) prevalence is widely
increasing, in a pattern that overweighs the decline in viral hepatitis-related HCC,
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leading to a net increase in overall incidence (Koshy, 2025). These
global trends are mostly attributed to increasing obesity, diabetes,
and NASH prevalence (Llovet et al., 2021). However, up to 25% of
HCC cases occur in patients without a history of cirrhosis or its
associated risk factors (Medscape, 2024).

2 NAFLD development into HCC

Non-alcoholic fatty liver disease (NAFLD) is the most globally
prevalent chronic liver disease, which affects 25% of the global
population. Hepatic steatosis evolves into nonalcoholic

FIGURE 1
NASH progression to HCC and proposed mechanisms involved in the cancer-selective Monensin cytotoxicity. (A) Stages of liver pathologies during
developing NASH-related HCC. (B) Chemical structure of Monensin (C36H61NaO11). (C) Mechanism of action of Monensin. Monensin is a lipophilic
compound that can form a complex with sodium, facilitating its transport through the cell membrane. (D,E) Proposedmechanisms involved in the cancer
selective Monensin cytotoxicity: (D) In hepatocytes, Monensin leads to increased intracellular sodium, which is resolved by sodium-regulating
proteins, mainly Na+/K + ATPase, using ATP produced by oxidative phosphorylation. (E) In HCC cells, Basal high intracellular sodium, related to excessive
production of lactate from aerobic glycolysis, which requires exchange of lactate and protons with sodium. Monensin further elevates the intracellular
sodium accumulation that leads to sodium-dependent mitochondrial dysfunction, continuous ATP loss, and water retention. This leads to an irreversible
energetic and osmotic stress with lysis and death of the HCC cells.
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steatohepatitis (NASH), which is the fastest-growing leading cause of
HCC, through a series of fibrosis and cirrhosis if left untreated
(Figure 1A) (Zhang et al., 2023). 0.5%–2.6% and 0.01%–0.13% of
NASH-related cirrhosis and non-cirrhotic NAFLD evolve into HCC
annually, respectively. Even though the incidence of developing HCC
from NAFLD is lower than developing it from viral hepatitis, the
prevalence of viral hepatitis is much less than the prevalence of NASH
(Huang et al., 2021). Steatosis is a reversible process led by the
accumulation of lipids in the liver. The accumulated lipids can lead
to chronic inflammation, reactive oxygen species (ROS) generation, and
lipid peroxidation. The chronic inflammation and persistent injury
activate hepatic stellate cells, leading to extracellular matrix deposition
and fibrosis. DNA damage from oxidative stress and chronic
inflammation induces mutations in cancer driver genes, leading to
malignant transformation (Figure 1A) (Wegermann et al., 2021).

3 Diagnostics and clinical
manifestations

Typical cases of HCC progress without visible symptoms,
complicating the early detection. Cirrhosis can usually be
accompanied by liver reserve reduction, resulting in decompensation
symptoms like jaundice, encephalopathy, ascites, or variceal bleeding,
often associated with portal invasion. While non-cirrhotic patients,
more common in high-incidence areas, exhibit serious symptoms
including cachexia, abdominal pain, hepatomegaly, or jaundice due
to unrestricted tumor growth. Tumor rupture is rare, but it results in
hypotension, acute pain, and peritoneal irritation. The most common
metastasis locations associated with HCC include abdominal organs,
lungs, and bones. HCC can sometimes cause paraneoplastic effects such
as hypoglycemia, diarrhea, or cutaneous signs. Porphyria cutanea tarda,
linked to hepatitis C, is associated with an increased risk of HCC
(Bialecki and Di Bisceglie, 2005).

High plasma levels of Alpha-fetoprotein (AFP) can indicate
malignant growth from the same endodermal lining as the hepatic
diverticulum, such as the stomach and pancreas. AFP has almost
100% specificity, but low sensitivity. Half the patients may not have
diagnostic levels of AFP (400–500 ng/mL), with 30% of patients
showing normal serum levels of AFP (below 10 ng/dL) when
diagnosis is established (Ayuso et al., 2018). AFP can be replaced
or combined with ultrasound imaging, increasing the Positive
Predictive Value to 94%, it can also detect masses smaller than
3 cm (Bialecki and Di Bisceglie, 2005). Ultrasonography (US) is
recommended every 6 months alone or with AFP to screen cirrhotic
and high-risk patients. magnetic resonance imaging (MRI),
multiphase computed tomography (CT), or a biopsy can be
indicated to confirm the ultrasonography results.

Liver function tests (LFTs), complete blood cell count (CBC),
electrolyte levels, and coagulation tests are indicated for recently
diagnosed patients for severity assessment. Diagnosis can be
established based on non-invasive imaging alone, regardless of
the biopsy; it is also necessary to guide the biopsy if indicated
(medscape, 2024). Key histological characteristics of HCC identified
by the International Consensus Group for Hepatocellular Neoplasia
include widespread fatty changes, intra-tumoral portal tracts,
stromal invasion, pseudo-glandular architecture, elevated cell
density, and unpaired arteries (RONCALLI, 2009). Barcelona

Clinic Liver Cancer (BCLC) staging system and the National
Comprehensive Cancer Network (NCCN) guidelines are
generally followed to stage andmanage the disease (Reig et al., 2022).

4 Current therapies

4.1 Surgical and locoregional approaches

The current gold-standard treatment for HCC in its early stages
is Orthotopic liver transplantation (OLT), yet less than 10% of
patients are eligible. Locoregional therapies are therefore crucial,
including Transarterial embolisation (TAE) and chemoembolisation
(TACE) that obstruct arterial supply, and deliver local
chemotherapy with TACE, which is effective for tumors 3–5 cm.
Whereas Radioembolisation (TARE) delivers internal radiation via
hepatic arteries. Ablative techniques such as radiofrequency ablation
(RFA), cryoablation, microwave ablation, and newer methods like
IRE, HIFU, and LITT, can be selected based on tumor size, location,
and liver function (Makary et al., 2020).

4.2 Targeted therapies

Targeted therapy has provided a substantial advancement in
HCC management, namely, anti-angiogenic agents, such as
Vascular Endothelial Growth Factor (VEGF) signaling targeted
agents. Bevacizumab is a humanized monoclonal antibody that
binds and inhibits VEGF-A, which has demonstrated a better
outcome in combination with immunotherapies. Ramucirumab is
a fully human IgG1 that targets VEGFR-2, which in Phase III
REACH-2 trial achieved a higher response and disease control
rates (5% vs. 1%, 60% vs. 39%, respectively), and improved
overall survival (OS) (8.5 vs. 7.3 months; HR 0.71; 95% CI
0.531–0.949) against placebo in HCC patients with post-sorafenib
progression (Zhu et al., 2019). The multi-kinase inhibitor (TKI)
sorafenib has shown superior efficacy in HCV-related HCC (14 vs.
7.4 months), and its survival benefits were confirmed in SHARP and
a phase III Asia-Pacific region trials (10.7 vs. 7.9 months and 6.5 vs.
4.2 months, respectively) (Llovet et al., 2008; Cheng et al., 2009).
While Orantinib did not improve OS in phase-III ORIENTAL
(Taiho Pharmaceutical Co., Ltd, 2019). Apatinib (targets VEGF-
2) and lenvatinib (multi-TKI) have shown outcomes like sorafenib.
Other TKIs like regorafenib and cabozantinib can be considered in
second-line treatment following post-sorafenib progression, with
favorable pharmacokinetic properties associated with donafenib
(Niu et al., 2021). Another novel approach is inhibiting
telomerase activity leading to disrupting cacner cell immortality
with imetelstat, perifosine, KML001, and BIBR1532, or with
immunotherapeutic peptides targeting the catalytic subunit
hTERT, including GV1001, P540, GX301, and Vx-001 (Niu et al.,
2021; Wang and Deng, 2023).

4.3 Immunotherapies

HCC responds to immunotherapies, mainly immune
checkpoint inhibitors (ICIs), which demonstrated superior
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effectiveness to sorafenib alone when combined with anti-
angiogenic agents (Niu et al., 2021). This was confirmed by
IMbrave150 (atezolizumab and bevacizumab), HIMALAYA/
STRIDE (durvalumab and tremelimumab), and rivoceranib and
camrelizumab have significantly improved OS compared to
sorafenib. ICIs can complement or follow locoregional treatments
to eliminate residual disease (Li et al., 2024). Eight trials comprising
6,290 patients were integrated into a meta-analysis to find that the
atezolizumab/bevacizumab combination significantly outperformed
sorafenib (HR 0.58), nivolumab (HR 0.68), and lenvatinib (HR 0.63)
in terms of OS (Wang and Deng, 2023). Therefore, this combination
is the current preferred first-line therapy for unresectable or
advanced HCC (medscape, 2024). Despite these advancements,
challenges remain due to modest survival benefits, high treatment
costs, and substantial toxicity, highlighting a persistent need for
more effective and accessible therapies.

5 Sodium homeostasis: a novel target
for HCC therapy?

Sodium homeostasis is an under-researched field in cancer.
Several indirect and direct evidence, however, associate [Na+]i
variations with crucial features of transformed tissue and suggest
that disruption of Na + homeostasis might be a potential molecular
mechanism for therapeutic interventions for HCC and cancer
in general.

5.1 Na+ and reverse pH gradient in cancer

In cancer, the intracellular alkalosis and the acidic extracellular
environment create a reverse pH gradient compared with
untransformed tissue. This reverse pH gradient favors cancer cell
division, migration and resistance to chemotherapy and hypoxia.
pH-regulating proteins are, thus, receiving growing scientific
attention as oncologic targets. Their critical importance in
untransformed tissue, however, makes it difficult to safely
manipulate their functionality.

Intracellular alkalosis occurs as a paradoxical reaction to the
increase of acidic molecules produced by the glycolytic ATP
production (Warburg effect) and it is due to the augmented
expression of Na+-independent and Na+-dependent
pH controlling systems (i.e., Na+/H+ and Na+-HCO3-
exchanger) (Webb et al., 2011; Parks et al., 2013). Together with
Na+-dependent pH regulatory proteins, Na + transporters are
generally upregulated in HCC and cancer in general (i.e., Na+/
Ca2+ exchanger, Na+/K+/2Cl- and Na+/glucose co-transporters) or
are expressed in HCC but not in the corresponding un-transformed
tissue (acid sensitive ion channels). They all operate favoring a net
Na + influx from the extracellular space into the cytosol, thus
elevating [Na+]i. (Leslie et al., 2019). Significantly, this
phenomenon was recently demonstrated in human cancers. Non-
invasive 23Na-magnetic resonance imaging analysis of human
malignant gliomas, breast and prostate tumors confirmed a
higher concentration of Na+i and Na+e compared to
surrounding normal tissues (Ouwerkerk et al., 2003; Jacobs et al.,
2004; Barrett et al., 2018; Ruggiero et al., 2018; Mohamed et al.,

2021). Studies employing “in vivo Field-Cycling Relaxometry”,
parallelly, evidenced an augmented water exchange in human
cancer tissues, indicating an increased intracellular osmotic
pressure in tumors that correlated to cancer aggressiveness (28).
These observations showed that the reverse pH gradient is associated
with the tendency of cancer cells to accumulate and maintain high
levels of intracellular sodium.

5.2 Na+ and death and survival of primary
hepatocytes

Early studies explored the role of [Na+]i variations in death and
resistance to death of un-transformed rodent hepatocytes. They
demonstrated that Na + overload preceded primary hepatocyte
death induced by various toxic conditions affecting mitochondrial
activity and energy production, and that preventing Na + increase
delayed the appearance of cell death. They also showed that the
irreversible increase of intracellular Na+ was associated to volume
deregulation and to the appearance of cell death following ATP
depletion (Carini et al., 1995; Carini et al., 1999). Subsequent
investigations on the intrinsic protective mechanisms of hepatic
preconditioning additionally demonstrated that the increased
resistance to hypoxic damage of preconditioned hepatocytes was
causally associated with the maintenance of Na + homeostasis
(Carini et al., 2000; Alchera et al., 2008).

5.3 Anticancer activity of the sodium
ionophore Monensin

Monensin is a sodium and proton selective ionophore that
facilitates sodium ion entrance into the cells (PubChem, 2025). It
works by forming complexes with sodium ions (Na+), which pass
through the cell membrane due to the high lipophilicity, then release
the sodium ion in the cytoplasm (Figures 1B,C). It is classified as a
coccidiostat and nonhormonal growth promoter in veterinary
medicine (Aowicki and Huczyński, 2013). The activity of
Monensin against several tumors has been demonstrated in many
studies on cancer cells and animal models. These studies include
HCC (Clemente et al., 2023), breast cancer (Fiorilla et al., 2025),
ovarian cancer (Yao et al., 2021), neuroblastoma (Serter Kocoglu
et al., 2023), chemo-resistant pancreatic cancer (Wang et al., 2018),
prostate cancer (Barrett et al., 2018), ovarian and pancreatic tumors
and colorectal cancer (Zhou et al., 2023).

Previously, the anticancer effect of Monensin was thought to be
based on cytostatic properties, modifying intracellular signaling
such as Wnt/β-catenin and/or growth factor-activated signal
pathways (particularly, EGFR) (Deng et al., 2015; Wang et al., 2018).

However, novel observations appeared to rule out this theory,
showing that the cytostatic action of Monensin described in the
in vitro studies depended by the cell colture settings and was not
detectable in vivo (Fiorilla et al., 2025). In particular Monensin
demonstrated to reduce triple-negative breast cancer (TNBC)
development without displaying anti-proliferative effect on
malignant tissues, evident by no significant changes in
Proliferating Cell Nuclear Antigen (PCNA) and Ki-67 expression
(Fiorilla et al., 2025). Moreover, in previous experiments on HCC
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allograft, Monensin showed to significantly reduce tumor growth
without changing Ki-67 levels in the tumors, bone marrow, or
intestines and without affecting hemopoiesis (Clemente et al., 2023).

Monensin’s activity resulted instead related to a tumor-selective
sodium-dependent cytotoxicity, which was not associated to the
alteration of the integrity of normal tissues. Monensin caused in fact
intracellular sodium overload and ATP depletion in cancer cells,
leading to expansion of the necrotic area in the tumor mass
(Clemente et al., 2023; Fiorilla et al., 2025).

5.4 Monensin inhibits HCC by inducing a
specific and sodium-dependent HCC
cells killing

In the HCC allograft model, Monensin selectively and furtherly
increased intracellular sodium in mice hepatocarcima cells and in
HCC mice allograft but not in primary hepatocytes and in healthy
tissues. This cancer-specific sodium increase was directly related
“in vitro” with energy depletion, increase of mitochondrial sodium
content and decrease of basal and ATP- linked mitochondrial O2

consumption, enhancement of intracellular water life-time and
killing of mice hepatoma cells and “in vivo” with the regression
of allograft tumors in immunodeficient mice, with extensive necrosis
of tumors and no effect on healthy tissues (Clemente et al., 2023).
These findings suggest that in HCC, the already high intracellular
sodium concentration and the continuous sodium influx consequent
to the glycolytic metabolism, make the cancer cells unable to
energetically cope to the additional sodium influx induced by
Monensin with irreversible sodium overload. Such condition
initiates a death cascade involving mitochondrial impairment and
ATP depletion that ultimately leads to an uncontrolled osmotic
swelling and cell death (Figures 1D,E). The tumor-specific action of
Monensin, along with its non-measurable toxicity in healthy tissues,
highlights its promise as a therapeutic agent for liver cancer.

5.5 Challenges of translating the disruption
of cancer sodium homeostasis for
HCC therapy

Currently, there are no approved therapies based on sodium
homeostasis de-regulations for the treatment of NASH or HCC and
cancer in general.

Clinical studies have tested the efficacy of Na+/K+ ATPase
inhibitors alone or in combination with other anticancer drugs in
cancer patients. Na+/K+ ATPase is upregulated in cancer, and its
inhibition has potent anticancer effects in pre-clinical models
(Durlacher et al., 2015). Na+/K+ ATPase ubiquity and its
fundamental role for cell volume and cation gradient
maintenance, however, argues against the safety of its generalized
employment in therapy.

Epithelial Sodium Channel (ENaC), and ASIC (acid-sensing ion
channel) are constitutively active and proton-gated Na + channels
that transfer Na+ ions into the cytoplasm from the extracellular
spaces (Hanukoglu, 2017). Both EnaC and ASIC are overexpressed
in HCC and other extrahepatic cancers (Wang et al., 2022) but, in
normal tissues, EnaC are widely represented in several organs while

ASIC are mainly confined to nervous systems (Gründer et al., 2024).
The restricted localization of ASIC and the possible repositioning of
the ASIC inhibitor drugs clinically used for epilepsy and psychiatric
diseases make ASIC particularly attractive onco-targets (Wang et al.,
2022). However, ASIC inhibitors appear effective in preventing
EMT and cancer or HCC cells migration by altering the acidic
extracellular pH (Jin et al., 2015) but are not likely to massively affect
intracellular sodium concentration and are not reported to inhibit
cancer growth. Moreover, these drugs are prone to causing QT
interval prolongation, and NASH patients often have comorbid
cardiovascular diseases, which could be a significant obstacle to
clinical application.

Sodium ionophores like Monensin demonstrated potent
anticancer effects in animals models but they have been not yet
tested in clinical studies and Monensin safety studies in humans are
limited. A case report (Blain et al., 2017) described 8 days of
abdominal pain combined with vomiting in a 58-year-old man
who orally took 300 mg (4.6 mg/kg) of Monensin. The patient
suffered from increased rhabdomyolysis and creatinine kinase, but
the effects were resolved 2 months following his discharge. However,
the patient already had toxoplasmosis, which could have affected his
system before the Monensin exposure. Another report included two
patients, one of whom had irreversible cardiopulmonary disease,
while the other recovered (Zhang et al., 2021). The toxic dose of
Monensin varies based on species, with 2–3, 26, and 200 mg/kg
considered lethal for horses, cattle, and chickens, respectively (Todd
et al., 1984). Yet no clear data is available about the usage of
Monensin in therapeutic doses in humans, or a detailed
description of the clinical manifestations upon direct
administration under medical monitoring.

6 Discussion

This study summarizes the available therapeutic approaches for
HCC and highlights the potentiality of exploring the higher basal
sodium concentration in cancer cells, with sodium ionophores, such
as Monensin as a novel targetable biomarker. Monensin is showing
significant activity against several tumors, many of which lack
effective therapies and have a poor prognosis, such as HCC. Its
precise molecular mechanism of action, toxicity in humans, and
effectiveness in translationally relevant animal models are
underexplored. The intracellular alkaline pH of cancer cells is a
paradoxical response to the acidic species produced by the Warburg
effect and involves the activation or increased expression of cation
transporters, including sodium transporters. Thus, the observed
increase in intracellular sodium of cancer tissue is proposed to be
a correlated consequence.

Available in vivo evidence indicates that Monensin has
negligible adverse effects in mice and no cytostatic properties.
These supports conducting deeper research in an interdisciplinary
approach to better characterize Monensin molecular effects,
employing drug discovery tools to develop novel molecules, and
identifying further clinical biomarkers indicative of sodium
ionophore sensitivity, aligned with precision medicine
principles. Besides leading to plasma membrane mechanical
lysis, the disruption of sodium homeostasis may affect
intracellular calcium concentrations. The latter might produce
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additional anti-cancer effects, such as modulating autophagy,
lipogenesis, or activating immune cells. Future research devoted
to such still unexplored aspects of Monensin activity might
enlighten novel therapeutic properties of sodium ionophores
that can either potentiate their cancer-selective cytotoxic action
or compensate possible rising resistant genotypes of HCC cells to
cell death by sodium and water overload.
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