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Metabolic diseases—including type 2 diabetes, obesity, non-alcoholic fatty liver
disease, and certain cancers—pose major global public health challenges. These
conditions share common mechanisms such as insulin resistance, chronic
inflammation, and oxidative stress. Although medical advances have improved
disease management, current treatments remain suboptimal. Natural medicines
have gained increasing interest due to their safety, bioactivity, and diverse
mechanisms. This study targets adenosine receptors (ARs), key regulators in
glucose metabolism, lipid homeostasis, and cellular stress. As members of the
G protein-coupled receptor (GPCR) family, ARs include four subtypes—Al, A2A,
A2B, and A3—each with distinct pharmacological profiles. We developed a
multimodal computational strategy to design natural drug candidates that
simultaneously target Al and A2A, using A2A-selective ligands as controls to
explore subtype selectivity. To mitigate toxicity, we incorporated a filtering
criterion for low hERG channel affinity. A random forest-based QSAR model
was constructed using SMILES representations to predict compound activity. A
stacked LSTM neural network was applied to generate plant-derived molecules,
while reinforcement learning and Pareto optimization enabled multi-objective
refinement. Evolutionary operations—crossover, mutation, and selection—were
further introduced to enhance molecular diversity and performance. The
proposed framework successfully generated compounds with high target
selectivity, low toxicity, and it has good drug-likeness and synthetic
accessibility. This work presents a robust and intelligent strategy for natural
drug discovery in metabolic diseases and underscores the promising synergy
between botanical medicine and artificial intelligence in therapeutic innovation.

KEYWORDS

metabolic diseases, adenosine receptors, natural medicines, computational strategy,
artificial intelligence

1 Introduction

Metabolic diseases, such as type 2 diabetes (DeFronzo et al., 2015; Ahmad et al., 2022),
obesity, non-alcoholic fatty liver disease and certain types of cancer, have become major
global public health challenges due to their high incidence and complex pathological
mechanisms. These diseases are often accompanied by metabolic homeostasis disorders
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such as insulin resistance, chronic inflammation and oxidative
stress. Long-term reliance on traditional drug treatments has
limitations in terms of efficacy and safety. Natural medicines,
with their diverse structures, strong biological activities and wide
range of action mechanisms, have shown unique advantages in the
intervention of metabolic diseases. However, the traditional process
of natural drug discovery is time-consuming and has weak target
specificity, which limits the efficiency of clinical transformation
(Atanasov et al, 2021). With the development of artificial
intelligence  and pharmacology,
generation methods combined with multi-objective optimization

computational molecular
strategies are becoming important means for efficient screening and
design of natural drug candidates (Vamathevan et al., 2019). Against
this background, targeting key receptors involved in glucose
metabolism, lipid regulation and cellular stress, such as adenosine
receptors, provides new targets and research paths for the precise
design of natural drugs.

In the field of multi-target pharmacology, drugs can be
combined with multiple specific targets at the same time, aiming
to enhance the therapeutic effect and reduce the development of
drug resistance (Wei et al., 2024a). Studies have shown that multi-
target suppression of a partial target is often more effective than
complete suppression of a single target, and this strategy is especially
suitable for complex and multifactorial disease conditions (Fu et al.,
2025; Zhou et al., 2024). Recent global-local re-interpretation of
drug-protein interactions further corroborates this view, indicating
that balanced modulation across multiple targets can enhance
therapeutic efficacy in metabolic disorders (Zhou et al., 2024).In
addition, when the multiple targets mentioned are actually multiple
mutant forms of a single target, the drug also has the ability to bind
to these mutants simultaneously (Hopkins, 2008).

In addition, since different proteins may share common
structures with similar functions, this increases the risk of non-
specific binding to non-target proteins (Cai et al., 2025; Wang et al.,
2025). Therefore, when working to develop highly targeted drug
molecules, it is important to enhance the targeting selectivity of
drugs to ensure that they avoid improper binding to non-target
proteins. The key to achieving this goal is to accurately identify and
target the uniqueness of the target protein, thereby minimizing the
non-targeted effects and improving the overall safety and
effectiveness of the drug (Tan et al.,, 2025). In this context, deep
learning and reinforcement learning technologies, with their ability
to predict drug binding affinity to target proteins and evaluate
potential non-targeted effects, show great potential and promise
in facilitating highly targeted and selective drug design (Zeng et al.,
2024). Developing highly targeted drugs has become a central goal in
the field of drug discovery, which can not only greatly optimize the
treatment of complex diseases, but also effectively avoid unnecessary
side effects, resulting in safer and more efficient treatment options
for patients. Recent heterogeneous-graph approaches, such as the
interpretable multi-instance model for circRNA-drug sensitivity
prediction (Niu et al, 2025) and the deep multi-instance
framework for drug-disease associations (Gu et al., 2025), have
further demonstrated the value of integrating multi-omics and
network information in computational drug discovery”.

As early as the 1970s, statistical mathematical modeling based
on perceptrons has been used for computer-assisted medicine.
Design, this kind of mathematical method belongs to supervised
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machine learning. However, until now, unsupervised deep learning
drug design research has begun to emerge. Among them, generative
deep learning can break through the technical bottleneck of
traditional computer-aided drug design by extracting hidden
features from molecules. In Zhavoronkov et al. (2019) used a
deep generation model to successfully discover high-quality lead
compounds from target screening to nanomolar activity in just
46 days, marking a milestone in the application of generative deep
learning to new molecular design (Xu et al., 2025).

The core of the program is focused on developing drugs that can
bind
(AR)(Ijzerman et al., 2022), as a class of receptors similar to G
protein-coupled receptors (GPCRS)(Weis and Kobilka, 2018), are
endogenous to adenosine (Wang et al., 2023). Adenosine and AR are
widely distributed in various tissues of the human body, and their

efficiently to specific targets. adenosine receptors

interaction triggers a wide range of physiological and pathological
processes. The AR family consists of four subtypes, Al, A2A, A2B
and A3, each of which exhibits unique pharmacological properties,
tissue distribution patterns and effect coupling mechanisms
(Fredholm, 2010; Chen et al, 2024). This project will focus on
drug molecules that generate Adenosine receptor A1 and Adenosine
receptor A2A, as well as drug molecules that only affine A2A
while serving as control affinity Al. In addition, to reduce the
risk of toxicity and adverse events, drugs should be designed to
exhibit low affinity for member H 2 of the potassium voltage-gated
channel subfamily (often referred to simply as the hERG
channel, or human Ether-a-go-go-Related Gene Channel) (Cai
et al,, 2021). This can effectively prevent the drug from binding
with non-target.

2 Methods
2.1 Data sets and molecular selection

The ChEMBL database (Gaulton et al, 2011) is a publicly
available drug molecule database developed by the European
(EBI) in with
pharmaceutical companies and other partners. It contains a large

Bioinformatics  Institute collaboration
number of small molecule compounds and their biological activity
data, including the biological activity and pharmacological
properties of the compounds, the structure and chemical
information of the compounds, the structure and physiological
function of biomolecules and other data (Zdrazil et al., 2023).
These data are derived primarily from journals and papers,
partner data, and are integrated with data on today’s approved
drugs, current clinical development candidates in medicine, and
other public databases. Together, it brings together chemical and
biological information from multiple sources, covering multiple
species and multiple disease domains. If the information in the
ChEMBL database is fully utilized, it can help deep learning models
for drug screening, design, and optimization.

At present, the latest version of the ChEMBL database is the
ChEMBL35 database updated in December 2024 (Zdrazil, 2025). In
order to ensure the reliability of the data, we need to reasonably
control the number of data sets to meet the specific needs of the
research, we choose ChEMBL34 as the data set for this research.
ChEMBL34 contains data on approximately 2.4 million unique
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drug-like compounds and over 20 million bioactivity data points
related to these compounds. After downloading the database file, the
data set needs to be preprocessed: For charged molecules, the charge
should be standardized, metals, small molecules and super-large
molecules removed, the entire data set should be checked, and
duplicate data should be removed. Finally, a total of about
2.1 million data were obtained, which was used as the ChEMBL
data set for pre-training of the generation model, so that the
generation model could generate legitimate drug molecules. Data
preprocessing can be implemented using RDKit.

The molecules selected in this study have corresponding
CHEMBL ID in ChEMBL: adenosine receptor Al is
CHEMBL226, adenosine receptor A2A is CHEMBL251, and
hERG channel is CHEMBL240 (Mendez et al, 2018). By
extracting CHEMBL ID, 23,000
biologically active to the above molecules are extracted from the
processed ChEMBL data set and constructed into LIGAND data set
for fine-tuning the generation model.

about ligands that are

In order to concretely quantify the biological activity of drug
molecules, the ChEMBL database also provides PCHEMBL VALUE
(in the ChEMBL database, the value is given by the negative
logarithm of IC50, EC50, XC50, AC50, Ki, Kd, Potency).
(hereinafter referred to as pX value) for reference (Lenselink
et al, 2017). In relevant studies, the threshold of biological
activity was defined as pX = 6.5. If the pX value of a molecule is
lower than 6.5, it can be determined that the molecule lacks affinity
for a specific target or has only a low affinity, that is, it does not meet
our needs. Conversely, if the pX value is equal to or higher than 6.5,
it indicates that the molecule has a high affinity.

2.2 Deep learning

Today’s deep learning models show excellent performance in
many areas, including widely used predictive models and generative
model structures (Wei et al, 2024b). Predictive model and
generative model are two important application directions of
deep learning in drug molecule discovery. The predictive model
is mainly trained for predictive analysis of a given molecule,
including predicting the biological activity, drug efficacy, toxicity
and other information of the molecule (Lai et al., 2025). Generative
models automatically synthesize new molecular structures through
deep learning models, providing important support for the design of
new drugs (Wang et al,, 2024).

In this project, the predictive model is trained first, aiming to
make it have the ability to calculate pX value for a given molecule.
By accumulating large amounts of training data and continuously
optimizing the model, we can gradually improve the performance of
the predictive model, and the biological activity of the molecule can
be predicted more accurately. The generated model is then pre-
trained and optimized using the strategy gradient and loss function
to reduce the error rate of molecular generation and ensure that the
generated molecule has the correct SMILES format. After pre-
training, the generative model already has some generative
ability, but it needs to be fine-tuned to the specific research task
to ensure that the resulting molecules can meet the requirements of
the research purpose. After fine-tuning the three target ligands of
this research, the generative model can generate high-quality

Frontiers in Pharmacology

10.3389/fphar.2025.1671415

molecules suitable for research purposes. Through the above
training and optimization, an efficient molecular generation and
prediction model is successfully constructed, which is ready for the
reinforcement learning. The process of reinforcement learning is
shown in Figure 1, this diagram illustrates a chemical molecule data
processing workflow, where the molecular structure is first
converted into feature vectors, then normalized through Minmax
scaling, fed into a QSAR model for prediction, and finally generates
SMILES
gradient functions.

strings through multi-head attention and policy

2.2.1 Prediction model

Quantitative Structure-Activity Relationship (QSAR) model is
one of the commonly used prediction models in drug molecular
development (Kiralj and Ferreira, 2009). The regression QSAR
model uses a series of molecular descriptors to describe the
physical and chemical structural properties of drug molecules
with the help of mathematical means. By constructing linear or
nonlinear correlations between the structure and activity of
molecular  compounds, the model can predict the
pharmacodynamic activity of new drug molecules. Regression
QSAR model has been widely used in drug discovery field. It can
screen drug molecules in the early drug development stage, improve
screening efficiency and reduce costs. In addition, by analyzing the
construction relationship of the regression QSAR model, researchers
can better understand the relationship between drug molecular
structure and activity, and provide guidance for further drug design.

In this project, we adopted a regression QSAR model as a
predictive tool to predict the pX value of each molecule
generated for a specific target. To enhance the fault tolerance of
the QSAR model and enable it to make predictions about more
chemical molecules, we added low-quality data to the dataset with
no pChEMBL value, i.e., molecules labeled as not biologically active
or with no defined pX value. For these data, define the pX value of
these data to be 3.99, which is slightly less than 4, thus eliminating
the imbalance of the data set and ensuring that the trained regression
QSAR model has the ability to predict negative samples. In the
model-training phase, we explicitly addressed the class imbalance
between positive (pX > 6.5 or pX = 6.5) and negative (pX < 6.5 or
undefined) samples by assigning sample weights: positives received a
weight of 1.0, while negatives were down-weighted to 0.1 in both the
Random-Forest loss and the reinforcement-learning reward, thereby
preventing the model from being dominated by the larger negative
set. In this way, the chemical diversity of acceptable molecules can be
ensured without reducing the quality of the model.

Labels such as CHEMBL ID, SMILES, pX value, comment,
Standard Type, Standard Relation are extracted from the ligand
data set for target molecules, and pX value is set to 3.99 for low-
quality data. For each molecule its ECFP6 fingerprint is calculated by
the RDKit Morgan fingerprint algorithm (Rogers and Hahn, 2010),
as an input to the predictive model, with 2048 bits (i.e., a vector with
2048 dimensions). In addition, in order to describe the properties of
molecules, it is necessary to add a 19-dimensional physicochemical
descriptor: Molecular weight, logP, number of hydrogen bond
acceptors and donors, number of rotatable bonds, number of
bonds,
heteroatoms, number of helix atoms, number of heavy atoms,

amide number of bridgehead atoms, number of

SP3 The fraction of hybrid carbon atoms, the number of
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FIGURE 1

The computational flowchart of natural drugs for adenosine receptors. Arrows indicate process flow, and elements are labeled from (A-H).

alicycles, the number of saturated rings, the number of total rings,
the number of aromatic rings, the number of heterocycles, the
number of valence electrons, the polar surface area, and the
Wildman-Crippen MR Value.

Therefore, each molecule in the data set will be converted into a
2067-dimensional feature vector. Before being submitted to the
prediction model, the values of these eigenvectors are normalized
to the interval [0, 1] using the MinMax method. The output of the
prediction model is a probability value that evaluates the probability
of a given compound based on whether the vector is valid.

The mainstream directions of QSAR (Trinh et al., 2022) models
mainly include: Statistics-based QSAR model: This type of model is
based on statistical analysis of molecular structure and activity data,
and analyzes and predicts by establishing mathematical models. The
advantage is that it is easy to understand and implement, but the
disadvantage is that it cannot deal with more complex molecular
structures and characteristics. Typical examples of these models
include partial least squares regression (PLS) (Xie et al., 2022) and
multiple linear regression (MLR) (Shams et al., 2021). QSAR model
based on machine learning: This type of model uses machine
learning algorithms to map molecular structure and activity data
to a high-dimensional space, and describes the relationship between
them by building a nonlinear model. Its advantage is that it can
handle relatively complex molecular structures and features, but it
requires a large number of data sets and computational resources.
Typical examples of such models are Support Vector Machine SVM)
(El Morr et al,, 2022), Random Forest (RF) (Belgiu and Dragut,
2016) QSAR model based on deep learning: This type of model
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utilizes deep neural network algorithms to construct efficient
nonlinear mapping relationships through multi-level feature
extraction and abstraction. It has the advantage of being able to
process large-scale molecular structure and activity data, but
requires more computational resources and expertise. At present,
common Deep Neural networks (DNN) (Pan et al., 2012) and Multi-
task Deep Neural networks (MT-DNN) developed on this basis
belong to this category. According to the relevant research on the
target molecules in this subject (Liu et al., 2021), and considering the
training time of the model and the available computing power, we
choose to use the random forest algorithm to build the regression
QSAR model, set the number of trees to 1000, take the Gini index as
the segmentation standard, and realize it through Scikit-Learn.

The prediction model, which extracts the required labels from
the ligand dataset for the target molecule. Each molecule is
transformed into a 2067-dimensional vector. Subsequently, a
MinMax operation is performed to normalize the vector values
to the range of [0,1]. This normalized vector is then input into the
QSAR model based on random forests, ultimately yielding the
probability of the compound’s activity based on this vector.

Random Forest’s built-in out-of-bag error provides an unbiased
internal validation, which is particularly advantageous for our highly
imbalanced positive/negative sample ratio. These empirical and
practical considerations collectively led us to adopt Random
Forest as the QSAR engine. Random Forest was selected over
XGBoost because, on our imbalanced dataset, it yielded 4% lower
MAE and 6% higher AUROC in 10-fold cross-validation while
requiring 30% less tuning time.
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2.2.2 Generative model

Molecules characterized by the Simplified molecular Input Line
input system (SMILES) (Weininger, 1988) are essentially sequences
arranged according to specific rules, the hidden states that deep
learning models want to learn are actually relationships between
sequences, just like the objects that NLP problems deal with.
Therefore, in order to learn the relationship of atoms within the
entire drug molecule, which can be regarded as natural language
text, using RNNs as a model for deep learning is a more appropriate
choice. RNNs can accept SMILES strings as input, identify and
understand the molecules represented by SMILES strings by
examining them one by one, such as identifying the bonds,
functional groups, etc., predict the next character, and continue
the process to predict the entire molecule. Generative models build
molecules in SMILES form, but generative models cannot generate
molecules out of thin air and require us to provide SMILES
dictionaries. Each drug molecule represented by SMILES in the
CHEMBL and LIGAND data sets (Lagarde et al., 2015) is split into a
series of markers, including bonds and roots. In this way, after
processing all the data, we can extract all the markers that have
appeared in the data set and collect all the markers that exist in the
data set, thus forming the SMILES vocabulary of this topic. The final
vocabulary contains 88 tokens, which are placed in order and the
generative model is trained to form a valid SMILES sequence with
the correct syntax.

The RNN model for SMILES sequence generation consists of
six layers: an input layer, an embedding layer, three cyclic layers,
and an output layer. After the drug molecule is represented as a
sequence of characters, the RNN can receive it as a classification
feature through the input layer. In the embedding layer, the
vocabulary size is set to 88, consistent with the size of the
SMILES vocabulary collected; The embedding dimension is set
to 128, so that each drug molecule can be converted to a 128-
dimensional vector. In the RNN model, Long Short-Term Memory
(LSTM) (Van Houdt et al., 2020) is a commonly used cyclic unit.
Compared with the traditional RNN model, LSTM can more
effectively avoid the situation of gradient disappearance or local
thus
generalization ability of the model. In addition, LSTM can
better through Gated
mechanisms improving the

gradient explosion, improving the accuracy and
information
thereby
performance of the model, and compared to gated Recurrent
units (GRUs) (Dey and Salem, 2017), it can effectively handle

long-term dependencies and information transfer in string

control the flow of

and memory units,

sequence data. Therefore, for the loop layer, we opt to use
LSTM as the recurrent units, employing a 3-layer LSTM as the
basic building block and stacking it up to 9 layers within the
module of the generative model, while setting the number of
hidden neurons to 512, instead of using GRU.In the output
layer, the output for each position determines which character
from the vocabulary is selected to increase the probability of
SMILES strings.

Compared with ordinary language sentences, the length of
SMILES molecules is obviously much longer than the character
length of ordinary sentences. Therefore, in this topic, a single RNN
model may not be able to learn the relationship between atoms in the
whole molecule, and the training effect of using a single RNN model
is relatively limited. If you want to improve training, the most
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straightforward way is to stack multiple RNNS, using the output and
hidden state of the previous RNN model as the input of the next
RNN model. In the forward propagator, the input is first
renormalized to fit the dimensions of the embedding layer. Then,
between each two layers of RNN model, the output of the RNN
model is activated by Pytorch’s ReLU function, and the shape of the
output is modified by a fully connected layer to the dimension size of
the embedding layer, so that it can be used as the input of the next
RNN model. In the training phase, we add a start flag (GO) to the
front end of each data batch as an input signal, and set an end flag at
the end of the same data batch. This ensures that the generation
network can accurately select the appropriate label at each iteration
based on the previously generated sequence information. For the
loss function of RNN, we use the negative logarithmic likelihood
function to build it to ensure that each marker in the output
sequence is selected with maximum probability after training; At
the same time, in order to optimize the model parameters, we used
Adam algorithm instead of the traditional gradient descent process
to optimize the loss function. In the training process of this subject,
the learning rate is set to 10-3, the batch size is set to 512, and the
training cycle is set to 1000.

2.2.3 Self-attention mechanism

Self-attention mechanism (Yang et al., 2016) is a widely used
technique in deep learning, which has some flexibility and can be
customized for different tasks and data to better meet the needs of
different scenarios. In the field of NLP problems, self-attention
mechanisms are also widely used. In language modeling,
translation, summary generation, sentiment analysis and other
tasks, the self-attention mechanism can help the model better
understand the relationship between different parts of the input
data, thereby improving the performance and accuracy of the model.

Similarly, as mentioned above, due to the similarity between
drug molecule discovery research and NLP problem, self-attention
mechanism can also be applied in deep learning of this subject, and
has objective performance improvement.

Self-attention mechanisms can help generative models better
understand the relationships between different atoms in a molecule
and deal with long-distance dependencies in molecules. In drug
molecular design, drug molecules are usually composed of many
atoms, and the interactions between these atoms are very complex,
and the interactions between different atoms may be affected by
other atoms in the molecule, and may even involve distant parts of
the molecule, which is difficult to capture with traditional neural
network models. In the previous article, we represented each
molecule as a vector, and the self-attention mechanism can
weight them according to the relationships between different
atoms, so as to better capture and predict the interactions
between different atoms in the molecule, understand the
relationships between different parts of the molecule, and thus
better design drug molecules with specific functions and properties.

In this project, the
implemented through Pytorch’s multi-head attention module

self-attention mechanism can be

(nn.MultiheadAtention). According to the article named of
Attention is all you need published by Vaswani et al. (2017), the
calculation formula is defined as the following Formulas 1, 2:

MultiHead (Q,K,V) = Concat (head,, - - -, head,)W° (1)
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among that

headi = Attention(QW<, KWK, VWY) (2)

And Attention is defined as the following Formula 3:

Attention(Q,K,V) = softmax<QKT> (3)
Ve

In the multi-head attention module, the input of the module
includes three tensors: query (Q), key (K), and value (V). These
tensors are usually of the shape (seq-len, batch size, embed-dim),
where seq-len denotes the sequence length, batch size denotes the
batch size, and embed dim denotes the embedding dimension.
Where di is the dimension of the key vectors (here di =
128).When the input query, key, and value are all the same
vector or matrix, the multi-head attention module implements
the self-attention mechanism. The multi-head attention module
is applied in the forward propagation function of the generative
model. Considering the limitation of training time and computing
power, the self-attention mechanism is only applied in the output of
the last layer of the stacked RNN model, rather than between each
layer of RNN model. At the same time, it is necessary to consider
whether the shape of the output layer is consistent with the input
requirements of the multi-head attention module, otherwise it may
have the opposite effect and lead to training failure. The prediction
model and generation model are collectively called SNNMR model.
The generative model process illustrates the architecture of a neural
network model designed to generate SMILES strings. Initially, the
input data is encoded through an Embedding Layer, followed by
processing through a Long Short-Term Memory (LSTM) network to
handle sequential data. Subsequently, the model employs Multi-
Head Attention to capture relationships between different parts of
the sequence, which includes Scaled Dot-Product Attention and
Concatenation operations. Finally, after linear transformations, the
model outputs the SMILES string, a text format used for
representing molecular structures.

2.3 Strategy optimization

After the pre-training and fine-tuning of the prediction model
and the generative model respectively, in order to strengthen the
generation strategy of the generative model, we use the multi-
strategy  (MOO) for
learning, so that it can maximize each objective in each scene.

Building SMILES molecules
reinforcement learning can actually be seen as a series of decision

objective  optimization reinforcement

within the framework of
steps. The generation model generates a batch of SMILES by
progressively sampling tokens based on calculated probabilities;
The generation model generates a batch of SMILES strings by
sampling them step by step according to the calculated
probabilities. These valid SMILES strings are then parsed into
molecular structures by the predictive model and further encoded
into descriptors. From these descriptors, the model is able to
calculate the predicted pX value; The predicted pX value is
converted into a single value according to the multi-objective
optimization strategy, which is used as a reward for each
molecule; These SMILES molecular sequences and their rewards
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are sent back to a generative model for training using a strategy
gradient approach. These four steps form the training cycle of
reinforcement learning. In the reinforcement learning stage, the
generative model and the predictive model can be viewed as decision
and reward functions respectively.

2.3.1 Object definition
In this topic, the objectives of reinforcement learning are defined
as the following Formula 4:

maxmizeR,, maxmizeR,,- - -, maxmizeR, (4)

Among them, the target molecules of reinforcement learning in
this subject are A1, A2A, hERG, and 3 molecules, that is, n is 3 in this
subject. R; represents the score for each object i, calculated by the
following Formula 5:

minmax (pX;), if high a f finity required
R; =1 1-minmax(pX;), iflowaf finity required (5)
0, if SMILES invalid

Where pX; represents the predicted score for the ith target molecule,
which is normalized to the interval [0.1] as a reward score. If the
target does not require agreeableness or low agreeableness, the score
is subtracted from 1, the inverse. In this case, for both A1 and A2A,
R; can be expressed the following Formulas 6, 7:

Ry = minmax (pXa)
Ryza = minmax (pXasa) (6)
RhERG = 1-minmax (thERG)

In the case of no affinity to Al and only affinity to A2A, R; can be
expressed as:

Ry =1 —minmax (pXa)
RAZA = minmax (pXAZA) (7)
Ry = 1 — minmax (pXyp,.)

Minmax normalizes predicted pX; to [0, 1] across the batch. To
evaluate the performance of the generative model, we use three
metrics to calculate the properties of the generative molecules: va-
lidity, desirability, and uniqueness. It is calculated by the ratio of
effective, desirable and unique molecules generated by the generative
model to the total number of molecules in a training cycle. Among
them, a valid molecule is defined as: if the molecule has a valid
SMILES sequence, the generation of the molecule is considered to be
effective; Desirable molecule is defined as follows: if the pX value of
the molecule is greater than or equal to 6.5 (in actual
implementation, all reward scores are greater than the threshold
value, when pX = 6.5, reward score is 0.5, that is, the threshold value
is 0.5), it can be identified as having biological activity for the target
molecule, then the generation of the molecule is desirable; A unique
molecule is defined as a molecule that is unique if it is different from
other molecules in the dataset.

2.3.2 Multi-objective optimization

For these three indicators, I use two MOQO schemes to make
decisions, namely, weighted scheme and Pareto optimization
scheme. In the weight-based scheme, for the ith target molecule
(total n = 3 in this subject), the weight wi of the ith target is
determined according to the ratio of the number of generated
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molecules whose reward score is less than and greater than the
threshold value, and its weight is defined the following Formula 8:

i

sz:Irk

Where N represents the total number of molecules generated, and r;

(8)

w;

is defined as the following Formula 9:

N

- (9)

T

Where N! and N represent the number of molecules whose scores
are below and above the threshold, respectively, in the generated
molecules. The final reward R* is defined as the following
Formula 10:

(10)

In this way, in a training cycle, the generative model can set
weights for target molecules according to this batch of generated
molecules, so as to balance their contributions in the reward score,
so as to achieve the purpose of multi-objective optimization.

In an optimization scheme based on Pareto frontier, given two

solutions m; and m, whose scores are (xi,xs,...,x,) and
(¥1> ¥2>- - .» yn), then only as the following Formula 11
Vjell,...,n}k szyjandEIj ef{l,...,n}: X;>y; (11)

When m; dominates m, under the Pareto criterion, that is, m1;
dominates m,. Where x; is defined as the following Formula 12:

Xj=1R (12)

L
L, ifR;<t
tj

Among them, ¢; represents the threshold value of the JTH target
molecule. As mentioned above, in this project, the threshold value of
the three target molecules is set to 0.5. If the above conditions are not
met, there is no dominant relationship between m; and mj,.

After determining the dominant relationship among all
solutions, a non-dominant sorting algorithm is used to obtain
Pareto frontiers of different levels consisting of a set of solutions
(Deb et al., 2000). The solution at the top is constrained by the other
solutions at the bottom. After the frontier order from the dominant
solution to another dominant solution is determined, we no longer
limit ourselves to comparing the crowding distance between
molecules within the same boundary, but order the molecules
according to the average value of the local distance. Specifically,
molecules with larger valley local distances will be assigned higher
rankings. The final reward R* is defined as the following Formula 13:

k-N undesired

0.5+ ——————, if desired
% 2N, desired
R* = L (13)
21\]—, if undesired
undesired

Where k represents the index of the solution in the Pareto sort. The
final reward score for the desirable and undesirable solution is
placed in the interval of (0,0.5) and (0.5,1) respectively, so that it
can be separated.
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For each step in the generation process, the generation model
calculates the probability that each tag in the vocabulary is selected
based on the sequence generated in the previous step. By applying
the expected final reward obtained from the prediction model, its
parameters are updated via the policy gradient. The objective
function is as the following Formula 14:

t=1
J(6) = Y 1ogG(y: | yi.e1) - R*(tr:7) (14)
T

Maximizing this function optimizes the parameters in the
generative model to ensure that, after the generative model is
trained, it is able to construct the desired SMILES sequences that
result in the highest reward score.

2.3.3 Crossover, mutation and selection

In the above method, this paper constructed an executable
neural network model for drug molecule design research.
However, in the initial attempt, we found a problem: although
the training effect was quite good, the molecules generated by the
generative model began to show a trend of convergence after a
relatively short training cycle: Within a training cycle, the molecules
produced by the generative model are almost identical, with
differences in only a few atoms, which is obviously
unsatisfactory. To increase the diversity of generated molecules,
we adopted the following strategies.

Evolutionary algorithms (EAs) (Vikhar, 2016) are a class of
optimization techniques inspired by the mechanisms of biological
evolution. By simulating natural selection processes, EAs
iteratively select individuals with the highest fitness within a
population and employ genetic operations such as crossover
and mutation to generate new individuals, thereby continuously
optimizing the objective function. In the field of deep learning,
evolutionary algorithms have found widespread application, with
(GAs) (ES)

algorithms being particularly prominent. These methods are

genetic algorithms and evolutionary strategy
commonly used to optimize neural network architectures,
structural weights, and hyperparameters, thereby enhancing
model performance. Drawing inspiration from the work of
Professor Xuhan Liu (Liu et al, 2021), this study leverages
evolutionary algorithms to improve the diversity of generated
molecules. Specifically, we adapt the core principles of selection,
crossover, and mutation from EAs, with a modification that applies
the selection step after crossover and mutation, prior to integrating
these operations into the training of generative models. During
the training process, three models—agent, prior, and crover—are
employed. These models share the same Recurrent Neural
Network (RNN) architecture and are initialized using pre-
trained weights from the generative model, as well as fine-tuned
weights saved during previous training iterations. The agent and
crover models are loaded with the fine-tuned weights specific to the
target molecule, where the agent’s parameters are derived from the
most recent reinforcement learning checkpoint. In contrast, the
prior model is initialized with pre-trained weights without fine-
tuning. Throughout the reinforcement learning phase, the prior
model remains static, with its parameters fixed, and serves solely as
a variation factor to introduce diversity into the training process.
During each training cycle, the agent model is updated based on
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reinforcement learning objectives, and its parameters are saved at
checkpoints corresponding to the highest reward scores. At
predefined both
synchronize their parameters with those of the saved optimal

intervals, the agent and crover models
model to further refine training outcomes. This iterative process
ensures continuous improvement in the quality and diversity of
generated molecules, aligning with the overarching goal of
optimizing molecular design through evolutionary-inspired deep
learning techniques.

These three models come into play when reinforcement learning
generates SMILES sequences: Set the cross-change rate to a random
number 6 (0, 1), and the threshold of cross-change is 0.5. When each
character is generated, if 8 > 0.5, the model hidden state is updated
by the crossover model, that is, the generation of the character is
determined by the crossover model, otherwise, it is determined by
agent. In addition, a random number (0,1) is set as the mutation rate
€ and the mutation threshold of 0.1. When each character is
generated, if €>0.01, the character generation is determined by
agent and crover; otherwise, it is determined by prior. Next, calculate
the probability of each molecule being selected based on its score use
the roulette wheel selection method to select the top 20% of
molecules from all generated molecules according to these
probabilities. The selected molecules are subsequently used to
train the proxy network.

First, the selection operation is carried out. From the current
population (i.e., the set of generated molecules), molecules on the
Pareto front are preferentially screened based on optimization
objectives. These molecules represent the top-ranked, high-
quality solutions in the current multi-objective
optimization problem.

Next, the crossover operation is implemented. The crover model
(another model with molecule generation capabilities) is employed
to mix the SMILES sequences of two parent molecules. Through this
crossover and mixing process, it is expected to integrate the
advantageous characteristics of the parent molecules and generate
new molecules with novel properties.

Subsequently, the mutation operation is conducted. For the
after the
modifications are carried out. Specifically, operations such as

molecules selected crossover operation, local
atom substitution and fragment insertion can be employed to
fine-tune the molecular structures, thereby further expanding the
search space of molecules and increasing the likelihood of
obtaining superior molecules. Finally, the new population
generation operation is executed. The molecules obtained after
a series of evolutionary operations, including selection, crossover,
and mutation, are added to the training pool for the next round,
providing a basis for subsequent iterative optimization.
Throughout the evolutionary process, the crossover threshold is
set to 0.5 to control the probability of crossover operations.
Meanwhile, a random number within the range of (0, 1) is
designated as the mutation rate €, and the mutation threshold is
set to 0.1. These parameter settings precisely regulate the degree
and frequency of mutations during the evolutionary process.
SMILES sequences generated in this way are fed into the
strategy gradient function, computed by the predictive model
and returned to the generated model to affect the parameter
update of the model. In this way, we increase the uniqueness of

the resulting molecule.
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3 Experiments

The training of the prediction model based on the random forest
algorithm took about 15 h. After 1000 training cycles, the error rate
of the prediction model has been reduced to less than 5%, and it can
be basically concluded that the pX value given by the prediction
model is correct. All experiments were conducted on a cloud
instance equipped with an 8 vCPU platform and an NVIDIA
A10 GPU (24 GB VRAM). Training utilized CUDA 11.6 and
PyTorch 1.13. The RF-QSAR model consumed about 15 GPU-
minutes; the full reinforcement-learning pipeline (1,000 epochs)
required about 36 h on the A10 GPU under mixed-precision (FP16)
mode. In order to verify the accuracy of the prediction model, we
also simply trained the support vector machine, multi-task deep
neural network, K-nearest neighbor, least square regression and
other models, and cross-verified the prediction model. As shown
in Figure 2.

The three graphs from left to right show the relationship
between the predicted pX values given by the prediction mmodel
and the actual pX values for A1, A2A, and hERG ligands. Each point
in the diagram represents a molecule for the target ligand, where the
x coordinate represents the actual pX value and the left side of y
represents the predicted pX value given by the prediction model. As
can be seen from the figure, the random forest algorithm is generally
consistent with other algorithms. Since the generative model may
create a large number of novel molecules during the training process,
these molecules are significantly different from the samples in the
training set. In order to ensure the robustness and fault tolerance of
the prediction model, random forest algorithm becomes a better
choice because of its advantages.

3.1 The feasibility and effectiveness

In the training process of generating the model, we mainly judge
the quality of the model training effect through the feasibility and
effectiveness, and independence is mainly used in the internal
training of the model and the gradient strategy. Whether the
molecules generated by the generative model are effective,
whether they are biologically active and have the affinity we
need, that’s what matters.

The training cycle is 1000 for multiple targets and 1500 for
specific targets. When applying crossover and variation, crover’s
parameters are updated every 250 cycles. REG OBJ1 and REG
OBJ3 denote reinforcement-learning objectives targeting A1/A2A
and A2A-only selectivity, respectively. As can be seen from
Figure 3a, the effectiveness of the Pareto optimization strategy
during the training process is notably higher than that of the
weighted strategy. Its average performance begins at a higher
level and rises more

swiftly, ultimately nearing 1.0. In

comparison, the weighted strategy’s average performance
improves at a slower pace and plateaus around 0.4, which is
than strategy’s
Consequently, it is evident that the Pareto

optimization strategy is superior to the weighted strategy. There

considerably less the Pareto optimization

performance.
were two large jumps in desirability during the initial training,

presumably because crover’s parameters were updated to improve
the crossover effect in the evolutionary algorithm. From Figure 3b,
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Desirability comparison. (a) REG_OBJ1. (b) REG_OBJ3.

we can observe the following:the Pareto optimization strategy
significantly outperforms the weighted strategy during the
training process. Its desirability not only starts at a higher level
but also increases more rapidly, eventually exceeding 0.8. In
contrast, the desirability of the weighted strategy increases more
slowly and stabilizes around 0.4, which is significantly lower than
that of the Pareto optimization strategy. This figure clearly
demonstrates the performance difference between the two
the with the
optimization strategy showing markedly better performance for

strategies during training process, Pareto
the targe. According to speculation, when the Epoch is equal to
750, there should be a significant jump in desirability, but it does not
appear in the actual situation, indicating that the improvement of
model training has basically achieved enough excellent results, and
the update of crover parameters involved in the cross has not

significantly improved. However, if we only look at the weight-
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based scheme, in the optimization of multiple objectives and specific
objectives, there is also a small jump in the corresponding nodes, but
the improvement rate is much lower than that of the Pareto scheme,
indicating that the improvement effect of the evolutionary algorithm
is not so obvious in the weighted scheme.

As can be seen from Figure 4, in the training process of
reinforcement learning, reward scores gradually increase with the
increase of training cycle, which is basically consistent with the
change trend of acceptability. This shows that in reinforcement
learning, no matter based on Pareto frontier or weighted scheme,
multi-objective optimization strategy is effective. However, it is
worth noting that through the comparison within the figures and
observing between Figures 4a,b, it can be found that compared to the
latter, the former not only achieved a higher reward score at the end
of training but also showed better improvement compared to the
beginning of training, and reaches the critical value in fewer training
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TABLE 1 Performance comparison.

Optimizing strategy Objective Reward score Effectiveness Desirability
PR Multiple target 0.9596 0.9644 0.8665
PR Specific objective 0.9747 0.9815 0.8903
WS Multiple target 0.5622 0.9670 0.3833
WS Specific objective 0.56892 0.9609 0.35652
® WS = Weighted-Sum strategy, a linear aggregation of multi-objective rewards.
® PR = Pareto-Rank strategy, a non-dominated sorting approach that honors the Pareto frontier.
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cycles. However, from the trends in the following two graphs, it is
reasonable to infer that if the weight-based scheme continues to
train, it can also get a relatively reasonable result, but the training
period is much longer than the normal requirements.

The final training results are shown in Table 1. In order to
reduce errors, we selected the training results of the last 10 training
cycles, calculated their average values for comparison, and finally
obtained the following results.

It can be clearly seen that the reward scores obtained by the
optimization strategy using Pareto frontier and the feasibility of
generating molecules are far superior to the optimization strategy
based on weight, which proves that our choice is correct. However, it
is worth noting that although the difference is not large, the
effectiveness of the former is slightly less than that of the latter.
But taking into account other metrics and performance
improvements, a small lag in this single area is acceptable.

According to the analysis in Figure 5, it can be found that there is
little improvement in the effectiveness of the generative model to
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generate molecules in the reinforcement learning stage. Although in
the early stages of training, reinforcement learning can help the
model find polymer generation strategies more quickly, as the
training progresses, the generative model has been able to
generate higher quality molecules, so the effect of reinforcement
learning on it is no longer obvious.

3.2 Comparative experiment

Above shows that the early pre-training stage is very important
in the training process of molecular generative model, and through
pre-training, the generative model can generate high-quality
molecules faster and more accurately. The role of reinforcement
learning in the training of molecular generative models requires
more specific analysis and evaluation to determine its impact on the
generation of high-quality molecules. After the pre-training is
completed, the effectiveness the

molecular generated by
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TABLE 2 Performance comparison.

10.3389/fphar.2025.1671415

Model Average VALID Uniqueness
GENTRL 2.9730 0.0410 1.0000
Reinvent2.0 0.9041 1.0000 1.0000
Diff-AMP 3.4580 0.1516 0.1274
SNNMR 2.9480 0.9815 0.9800

® Validity is defined as the ratio of chemically valid molecules among all generated molecules.

® Novelty is measured as the proportion of valid molecules not present in the training dataset.

® Uniqueness quantifies the number of distinct valid molecules generated.

generative model itself is already close to quite high, and there is
not much room for improvement. Although the effectiveness of the
model fluctuates somewhat during the training process, most of
them are above 0.95, indicating that the pre-training has made the
model achieve a very good effect in the generation of molecules,
it that  the
significantly improved.

and is  acceptable effectiveness is  not
After in-depth analysis of the data presented in the four
subgraphs, we can clearly see the superior advantages of the
SNNMR model across a number of key performance indicators.
First of all, from the core indicator of average score, SNNMR model
performs well in multiple training stages. In Figure 6a, SNNMR has
a slightly higher average score (0.97) than Reinvent2.0 (0.88), which
initially shows the potential advantages of SNNMR for specific tasks.
Looking further at Figure 6b, although the mean score of SNNMR
(0.98) is very close to that of Reinvent2.0 (1.00), SNNMR scores
change more smoothly over the course of training, showing greater
stability and reliability. In Figure 6c, SNNMR’s average score (0.89)
is once again higher than that of Reinvent2.0 (0.81), further
cementing SNNMR’s lead in performance. Finally, in Figure 6d,
the smoothness of the SNNMR score curve once again highlights its
stable training process and good generalization, although the
average scores of the two are close again. In addition, the
stability of SNNMR models during training also deserves special
mention. In the four subgraphs, SNNMR score curves show a
smooth and stable trend, which indicates that the model can
adapt to data changes well in the training process and avoid
overfitting or underfitting problems. This stability not only helps
to improve the generalization ability of the model, but also reduces
the cost of model adjustment and optimization in practical
applications. Subsequently, a comparison of the various
indicators between SNNMR and GENTRL (Zhavoronkov et al.,
2019), Reinvent2.0 (Blaschke et al., 2020), as well as Diff - AMP
(Wang et al., 2024) will be conducted respectively.
SNNMR’s
performance with 98.15% validity, significantly outperforming
GENTRL’s 4.1%. This high validity ensures most generated
molecules meet chemical requirements for direct experimental
validation. While SNNMR shows slightly lower novelty (89.5%
vs. 97.56%) and uniqueness (98% vs. 100%), this trade-off
achieves a more balanced profile with comparable average scores
(2.9480 vs. 2.9730). The model’s 2% duplicate retention enables
efficient reuse of known activity data while maintaining sufficient

Comparative analysis demonstrates superior

molecular diversity, making it particularly valuable for industrial
drug discovery where experimental feasibility and cost efficiency are
prioritized.
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Comprehensive evaluation of Table 2 shows that SNNMR
outperforms Reinvent2.0 across all key metrics. First, its Desire
(target-achievement rate) reaches 89.00 %, a 5.44-percentage-point
lead over Reinvent2.0’s 84.38 %, indicating significantly better
fulfillment of the predefined objectives. Second, the Average
Score surges from 0.9041 to 2.9480—more than a three-fold
increase—demonstrating a  substantial
optimization quality. Third, VALID accuracy)
at 98.15%, within 2 % 100%,
confirming that the performance gains do not compromise

leap in  overall
(validation
remains of Reinvent2.0’s
generalization reliability. Finally, Uniqueness stays high at
98.00%, only 2% below Reinvent2.0, preserving sample diversity
and deduplication capability. Consequently, SNNMR delivers a
quadruple advantage—higher target-achievement rate, higher
and high
uniqueness—achieving a clear and comprehensive superiority

over Reinvent2.0.

average performance, high validation accuracy,

In the comparative experiment between the SNNMR and Diff -
AMP models, distinct performance characteristics are observed. The
SNNMR model demonstrates a VALID value of 0.9815, indicating a
high degree of validity in its outputs, which signifies that the
majority of its generated results are effective and accurate. In
contrast, the Diff - AMP model has a VALID value of only
0.1516, reflecting a relatively low level of effectiveness and a
higher proportion of invalid or inaccurate outputs. Regarding
uniqueness, the SNNMR model achieves a Uniqueness value of
0.9800, showcasing a strong ability to produce diverse and non -
repetitive results. On the other hand, the Diff - AMP model’s
Uniqueness value is a mere 0.1274, indicating a significant lack
of uniqueness in its outputs. Although the Diff - AMP model has a
higher average value (3.4580) compared to SNNMR’s 2.9480, this
higher average may imply greater performance volatility. Overall,
the SNNMR model outperforms the Diff - AMP model in terms of
both validity and uniqueness, making it a more reliable and versatile
choice for the task at hand.

In the comparative study of the GENTRL, Reinvent2.0, Diff-
AMP, and SNNMR models, distinct performance characteristics are
evident. The GENTRL model, despite achieving a perfect
Uniqueness score of 1.0000, suffers from a very low VALID
value of 0.0410, which significantly undermines its overall utility.
The Reinvent2.0 model, with both VALID and Uniqueness values at
1.0000, demonstrates high levels of effectiveness and diversity, but
its relatively low average value of 0.9041 may imply a certain degree
of conservatism in performance. The Diff-AMP model has a high
average value of 3.4580, yet its low VALID value of 0.1516 and
extremely low Uniqueness value of 0.1274 reveal substantial
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Name: 2-amino-7-[5-(2 2 2-
trifluoroethoxy) pyridin-3-yl1-1 3-
oxazolo[4 5-c]indole

Name: 4 (4-amino-5, 6, 7, 8-
tetrahydroquinazol in-2-y1) phenyl
propan-2-yl ether
Original energy: -1564.216 (Eh)
Binding energy: 9.2 (kcal/mol)

Original energy: —1103. 848 (Eh)
Binding energy: -8.7 (kcal/mol)

S ol n

Name: 6-chloro-4- (pyrrolidin-1-y1)-2- (4~
cyclopropylphenoxy) pyrimidin-5-amine
Original energy: —1246. 947 (Eh)
Binding energy: -8.5(kcal/mol)

Name: 4-[4- (oxan-4-ylamino)-5 6 7 8-
tetrahydroquinazolin-2-yl]benzonitrile
Original energy: —1264.783(Eh)
Binding energy: -9.0(kcal/mol)

FIGURE 7
The figure of the top 10 scored molecules.

shortcomings in terms of output validity and diversity. In stark
contrast, the SNNMR model excels in multiple aspects. It achieves a
high VALID value of 0.9815, ensuring a large proportion of valid
outputs, and a commendable Uniqueness value of 0.9800, indicating
a strong ability to generate diverse results. Moreover, its average
value of 2.9480 reflects a stable and well-balanced performance.
Overall, the SNNMR model stands out as the most promising
approach among the four, as it effectively combines high validity,
good uniqueness, and stable performance, making it a superior
choice for the task at hand.

3.3 Case analysis

In this experiment, our model will conduct screening and
validation of natural compounds targeting the Adenosine A2A
receptor (A2A receptor), aiming to generate novel molecules
from the Data Set and verify their potential as A2A receptor
inhibitors.

Firstly, brand-new molecular structures are generated to ensure
novelty. Subsequently, based on the reward score, effectiveness, and
uniqueness, Pareto optimization ranking is performed using the
composite score formula (composite score = (desirability x 0.4) +
(reward score x 0.4) + (uniqueness x 0.2)). The top 10 molecules
Figure 7 are selected, and a random selection is made for case
analysis. Next, the screened molecules undergo 3D structural
modeling and are docked with the 3D structure of the A2A
receptor to simulate the binding mode. Binding free energy and
other indicators are calculated to evaluate the binding situation.

Taking a certain molecule as an example, its binding free energy
is —6.18 kcal/mol, indicating spontaneous binding and falling within
the acceptable range of drug binding energy (-6 to —12 kcal/mol). It
shows a significant improvement of 73% compared to the other
result (—-3.56), demonstrating good binding strength. The ligand
efficiency of this molecule is —0.29 kcal/mol/heavy atom, which is
within the ideal range. The inhibition constant is 29.7 uM, at the
upper limit of weak inhibitors, indicating moderate inhibitory

Frontiers in Pharmacology

Name: 3- (4-bromo-2-propy1-phenyl)~1-
methyl-1 3 5-triazinane-2 4-dione
Original energy: ~1030.978 (Eh)
Binding energy: 7.5 (kcal/mol)

-0

Name: 1~ (2-methy1pheny1) ~4-[2-methy1-5-
(methylamino)-1 2-thiazole-4-
carbonyl]piperazine
Original energy: -1193.059 (Eh)
Binding energy: 7.8 (kcal/mol)
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Name:N- (5-ethyl-4-methyl-1 3-thiazol-2-
y1)~5-bromofuran-2-carboxamide
Original energy: -995.864 (Eh)
Binding energy: ~7. 1 (kcal/mol)

Name: N-[5- (5-bromothiophen-2-y1)-1 3 4~
oxadiazol-2-y1]butanamide
Original energy: —949. 752 (Eh)
Binding energy: -7. 4 (kcal/mol)

Name: 5-ethyl-N- {6-[4- (methy1) piperazin-
1-yllpyridin-3-yl}-1 3-thiazol-2-
amineOriginal energy: -1108.494(Eh)
Binding energy: -8.3(kcal/mol)

Name: 2~ (1H-indol-3-y1) ~1-[1~
(ethylcarbamoyl) pyrrolidin-2-yl]ethan-
1-one
Original energy: ~1128.394 (Eh)
Binding energy: 8. 1(kcal/mol)

ability. The results indicate that this molecule exhibits high
activity towards the A2A receptor and can bind to it, suggesting
that this compound may have potential therapeutic effects in areas
such as tumor immunotherapy.

In conclusion, the preliminary activity of this compound is
favorable, indicating that our model is effective and reliable in
and has for

generating drug molecules good  prospects

pharmaceutical applications.

4 Conclusion

In this study, we present an advanced methodology for drug
molecular design based on multi-objective optimization. A robust
predictive model was developed using the Random Forest algorithm,
which is widely recognized for its efficacy in handling complex
datasets. To enhance the generative capabilities, we refined the
traditional Recurrent Neural Network (RNN) architecture by
integrating Long Short-Term Memory (LSTM) layers and
incorporating a self-attention mechanism, thereby significantly
improving the model’s ability to capture long-range dependencies
and intricate molecular patterns. Additionally, we employed
evolutionary algorithms, utilizing crossover, mutation, and
selection operations, to iteratively optimize the quality of
generated molecular structures. Comprehensive ablation studies
were conducted to validate the proposed methodology, with
results unequivocally demonstrating the superior performance

and effectiveness of our approach in generating high-quality

drug-like molecules. Analogous hypervolume-driven multi-
objective frameworks have recently been leveraged for
antimicrobial peptide discovery, underscoring the broad

applicability of our attention-based evolutionary strategy (Wang
et al.,, 2025).

However, we acknowledge that equipment constraints have
limited the full potential of our methodologies. Specifically, the
stacking of neural networks has prolonged training durations, and
the inclusion of multi-head attention modules has necessitated
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greater memory resources than initially anticipated. Consequently,
the
performance within constrained computational resources remains

optimizing trade-off between training efficiency and

a critical research challenge. Additionally, while the evolutionary

algorithm inherently exhibits adaptive tendencies towards
optimality, its full potential has yet to be fully realized in this
context. Our current implementation primarily employs

crossover and mutation strategies to enhance molecular diversity.
A more comprehensive integration of the evolutionary algorithm
with reinforcement learning’s policy gradients holds promise for
theoretically superior outcomes. A notable limitation is that the
model was trained solely on ChEMBL34, leaving its performance on
proprietary or newly released databases unverified; furthermore, all
bioactivity and toxicity predictions were generated in silico, with no
accompanying in-vitro or in-vivo validation.

Despite these challenges, this project has successfully established
a deep learning framework for drug molecular design. The results
achieved not only meet the project requirements but also surpass our
initial expectations, highlighting the feasibility and potential of our
methodology. This underscores the significant promise of our
approach
molecular design.

in advancing the field of drug discovery and
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