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Objective: This study aimed to develop an individualized dosing strategy for
voriconazole (VRZ) in children under 2 years of age by integrating machine
learning (ML) and population pharmacokinetic (PopPK) modeling.
Methods: This retrospective observational study included 76 eligible pediatric
patients for model development, analyzing their baseline characteristics and
laboratory parameters. A population pharmacokinetic (PopPK) model using
NONMEM

®
software was performed to assess the clearance (CL) and volume

of distribution (V) of VRZ. The individual CL and Vwere included as input variables.
The Boruta algorithm was employed for feature selection, after which six
machine learning algorithms were applied. The models were evaluated using
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and coefficient of determination (R2) to identify the optimal algorithm,
which then underwent independent external validation. The selected final model
was analyzed for interpretability using Shapley Additive Explanations (SHAP).
Results: A total of 76 pediatric patients were enrolled for model development,
consisting of 58 males (76.3%) and 18 females (23.7%), with a median age of
11 months and a median weight of 8.05 kg. We analyzed 110 therapeutic drug
monitoring (TDM) samples of VRZ from these participants. A one-compartment
model with first-order absorption and elimination described the population
pharmacokinetics of VRZ. Population estimates for apparent clearance (CL/F)
and volume of distribution (V/F) were 17.9 L/h/70kg (RSE, 10.8%) and 788 L/70kg
(RSE, 15.4%), respectively. An XGBoost model accurately predicted voriconazole
concentrations (R2 = 0.81, RMSE = 0.53) with a relative error of ±20% for most
observations. In the external validation, the XGBoost model demonstrated an R2

of 0.75, RMSE of 0.14. SHAP analysis identified clearance, weight, and laboratory
values as significant predictors.
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Conclusion: This study emphasized the importance of personalized treatment in
utilizing VRZ for children under 24 months. The XGBoost model demonstrated
potential in identifying an initial dose recommendation for VRZ.
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1 Introduction

Voriconazole (VRZ), a triazole antifungal, is employed
extensively in the management of invasive fungal infections
among pediatric patients (Kadam and Van Den Anker, 2016),
particularly those with weakened immune systems due to
conditions such as hematologic malignancies or after undergoing
hematopoietic stem cell transplantation (HSCT). Although
approved by the US FDA and European Medicines Agency
(EMA) for children aged two and older, a scarcity of
comprehensive pharmacokinetic data complicates its use in
infants under two (Chen et al., 2018). This data gap requires that
clinicians carefully weigh the potential therapeutic benefits for an
individual patient against the known pharmacokinetic variability,
leading them to frequently resort to its “off-label” use after a careful
risk-benefit assessment. In such cases, therapeutic drug monitoring
(TDM) is essential for addressing the high pharmacokinetic
variability in this young population and for optimizing both
safety and efficacy (Touw and van den Anker, 2022). Pediatric
patients, especially those below 24 months, exhibit different
pharmacokinetic profiles compared to older children and adults,
necessitating careful consideration of dosing strategies (Yan et al.,
2018; Gastine et al., 2023). Although effective, VRZ’s
pharmacokinetics (PK) in children showed considerable
variability, frequently influenced by age, body weight, and genetic
polymorphisms (Soler-Palacin et al., 2012). This challenge is
magnified in children under 2 years old, where profound PK
variability - driven by developmental changes and genetic
polymorphisms - makes optimal dosing difficult.

The pharmacokinetics of VRZ may vary significantly among
patients, especially in critically ill individuals, pediatrics, the elderly,
and the obese (Wang et al., 2025; Jiang et al., 2022). Understanding
VRZ population pharmacokinetics is essential for optimal dosing,
given its narrow therapeutic index and patient variability from
factors like C-reactive protein levels and genetic polymorphisms
(van den Born et al., 2023; Li et al., 2023). Population
pharmacokinetic analysis is a powerful approach that effectively
addresses dosing challenges by understanding voriconazole
behavior and providing insights for optimizing clinical dosing
strategies, even with limited sampling data. However, classical
PopPK methods rely on fixed compartmental models that may
limit the ability to fully capture all factors influencing drug
behavior, particularly when working with sparse sampling data
(Liu et al., 2025).

ML, a core branch of artificial intelligence, is adept at capturing
complex patterns and nonlinear relationships within big data
(Asnicar et al., 2024; Greener et al., 2022). ML techniques are
emerging as valuable complements to PopPK approaches in
optimizing voriconazole dosing. For instance, a recent study
(Cheng et al., 2023) demonstrated that machine learning
algorithms, particularly XGBoost, could predict toxic plasma

trough concentrations of VRZ (>5 mg/L) with an accuracy of
78.8%, identifying key factors such as albumin and total bile acid
for dosage optimization. Utilizing pharmacokinetic (PK) parameters
in machine learning models is an innovative strategy that has been
proven effective with various drugs (Li et al., 2024; Ma et al., 2024;
Huang et al., 2022), leading to improved model predictive accuracy
and enhanced model interpretability.

As VRZ is a crucial option for managing invasive fungal diseases,
and considering the limited data on dosing and exposure in children
under 24 months, this study aims to share experiences with
individualized voriconazole therapy. We developed a model that
integrate PopPK with ML approaches to predict the steady-state
plasma concentration of oral VRZ in this age group. The study
workflow was presented in Figure 1.

2 Methods

2.1 Study design

We conducted a retrospective observational study analyzing
data from pediatric patients aged under 24 months who had
been hospitalized at the Children’s Hospital of Fudan University
from January 2020 to June 2025. Inclusion criteria included patients
aged below 2 years who received oral VRZ for a minimum of 3 days
during their hospitalization and underwent therapeutic drug
monitoring (TDM) (Chen et al., 2018; Resztak et al., 2021).
Exclusion criteria included newborns, preterm infants, patients
requiring advanced life support therapies, and patients whose
medical information was unavailable or missing more than 30%.
For independent external validation, we also collected data from
10 patients under 24 months who received oral VRZ and underwent
TDM at our hospital between July and August 2025.The ethics
committee of Children’s Hospital of Fudan University approved the
study protocol [No. (2024) 321]. Informed consent was waived for
the collection and analysis of the anonymous data, as there was no
intervention involved, and the study posed minimal risk (Filion
et al., 2016; Strutz et al., 2025).

For patients who satisfied the enrollment criteria, a
comprehensive set of data was collected from their electronic
medical records. Clinical characteristics included age, sex, height
(HT), and weight (WT), from which the body surface area (BSA)
was calculated using the formula: BSA (m2) =

������������
HT(cm) × WT(kg)

3600

√
.

Additionally, a panel of laboratory indices was recorded,
including white blood cell count (WBC), neutrophil percentage
(N%), lymphocyte percentage (L%), red blood cell count (RBC),
hemoglobin (HGB), platelet count (PLT), C-reactive protein (CRP),
albumin (ALB), total bilirubin (TBIL), direct bilirubin (DBIL),
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (ALP), serum creatinine (SCR),
international normalized ratio (INR), and D-Dimer. Each TDM
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sample represented an independent sampling event. Laboratory
values were collected on the same day as or within 24 h of the
TDM sample. Furthermore, treatment-related data for VRZ were
documented, comprising the total daily dose, dosing interval,
therapy duration at TDM, the timing of the last dose before
blood sampling, the measured trough concentration (mg/L), and
all co-administered therapies. The estimated glomerular filtration
rate (EGFR), with k = 0.45 for children under 1 year and k =
0.413 for children aged 1–2 years, was determined using the
Schwartz formula (Schwartz et al., 1984; Schwartz et al., 2009).

Treating physicians determined VRZ doses individually for
each patient, considering clinical status and therapeutic drug
monitoring. While referencing the standard 9 mg/kg q12h
regimen for older children (2 to <12 years), oral doses for
children under 2 years ranged from 4 to 10 mg/kg every 12 h.
This dosing strategy is consistent with recommendations from
UpToDate, a clinical decision support system (Isaac et al., 2012).
Blood samples were collected to determine steady-state trough

concentrations, with sampling performed within the 30-min
window immediately preceding the next scheduled dose. In
cases of missing covariate data, which accounted for less than
3% of the dataset, median imputation was employed (Shen
et al., 2024).

2.2 VRZ therapeutic drug monitoring

The plasma concentration of VRZ was determined by high-
performance liquid chromatography (HPLC) using a Shimadzu LC-
20 series HPLC system (Shimadzu, Japan). A Waters XBridge
C18 chromatographic column (4.6 × 150mm, 5 μm) was used.
The mobile phase A consisted of water, while mobile phase B was
acetonitrile. The injection volume was 20 μL, with the detection
wavelength fixed at 256 nm. The standard curve for VRZ covered a
linear range of 0.25–10 mg/L. The target concentration for VRZ was
set between one and 5.5 mg/L in plasma trough (Pappas et al., 2016).

FIGURE 1
Study process workflow.
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2.3 Population pharmacokinetic modeling

The PopPK analysis of VRZ was carried out in NONMEM®

software (version 7.5.0, ICON plc., USA) executing the first-order
conditional estimation method with interaction (FOCE-I). The
pharmacokinetic profile of VRZ was characterized using the
ADVAN2 TRANS2 subroutine to develop the basic structural
model, representing a one-compartment disposition with first-
order absorption and elimination. The pharmacokinetic
parameters assessed were the apparent clearance (CL/F), the
apparent volume of distribution (V/F), and the absorption rate
constant (Ka). Due to the sampling design primarily focusing on
steady-state trough concentrations, individualized absorption
parameters could not be reliably assessed. Ka was fixed to 1.19 h-1,
reflecting published literature values (Gastine et al., 2018). An
exponential model was used to quantify interindividual variability
in CL/F and V/F. Various residual error models (proportional,
additive or combined) were evaluated to assess intra-individual
variability. Using allometric scaling, we examined the effects of
body weight on PK parameters.

Covariates were evaluated utilizing a stepwise forward-addition/
backward-elimination approach based on objective function value
(OFV) changes. During forward selection, covariates were included
if they reduced the OFV by > 3.84 (p < 0.05). In the backward
elimination phase, covariates were retained in the final model only if
their removal increased the OFV by > 6.63 (p < 0.01). Final model
evaluation was conducted through diagnostic goodness-of-fit (GOF)
plots, bootstrap analysis, and visual predictive check (VPC).
Parameter precision was evaluated, and 95% confidence intervals
(95%CI) were generated using bootstrap resampling (n = 1000).
VPC analysis was performed using 1000 simulated datasets to
characterize the distribution characteristics of observed versus
simulated data. The final PopPK model enabled the calculation
of pediatric individual PK parameters CL and V via the empirical
Bayesian estimates method. These PK parameters were subsequently
introduced as features in the ML model.

2.4 Machine learning modeling

For model development and validation, the dataset was
randomly partitioned into a training set (70%) and a validation
set (30%). The Boruta algorithm was employed for feature selection
to identify all relevant features (Shen et al., 2024). The Boruta
algorithm automates feature selection by evaluating the
significance of original features against shadow features (Li et al.,
2025). The Boruta was executed for 200 iterations with a significance
threshold of p < 0.01, applying Bonferroni correction for multiple
comparisons to identify statistically significant features. Six ML
algorithms were chosen to construct models: extreme gradient
boosting (XGBoost), light gradient boosting machine
(LightGBM), gradient boosting decision tree (GBDT), categorical
boosting (CatBoost), adaptive boosting (AdaBoost), and random
forest (RF). To evaluate the stability and generalizability of our final
model, we performed a 10-iteration bootstrap cross-validation and
an independent external validation.

Model performance was assessed using four standard regression
metrics: Mean Squared Error (MSE), Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), and coefficient of
determination (R2), providing a comprehensive evaluation of
predictive accuracy. Lower MSE, RMSE, and MAE values signify
enhanced model performance, whereas R2 values approaching one
indicate greater explanatory power. After establishing the optimal
model, we used relative accuracy (RA) as an indicator to evaluate the
model’s predictive performance (Huang et al., 2020). In this study,
RA was measured by whether the relative error between VRZ
predicted values and observed values falls within a specified
percentage threshold of 20%. The optimal model was chosen for
interpretability analysis using the Shapley Additive Explanations
(SHAP) method. The approach assessed each feature’s impact on
specific predictions, offering insights into both local and global
model behavior (Qi et al., 2025).

2.5 Statistical analysis

Categorical variables were presented using frequencies and
percentages [N (%)]. Continuous variables were described using
both medians with interquartile ranges [Median (IQR)] and means
with standard deviations [Mean ± SD]. The Kruskal–Wallis test was
used to analyze continuous variables, while Fisher’s exact test was
employed for categorical variables. A p-value of below 0.05 was
established as the threshold for statistical significance. VRZ plasma
concentrations below the lower limit of quantitation (LLOQ) of
0.25 mg/L were labeled as below quantitation limit (BQL). These
BQL values were substituted with half the LLOQ value (0.125 mg/L)
(Chabala et al., 2022). In this study, BQL data accounted for less than
4% of the total observations. R software (v 4.5.0) and Python (v
3.10.6) were utilized for all analyses.

3 Results

3.1 Clinical characteristics of
pediatric patients

The clinical and demographic characteristics of the
76 pediatric patients, from whom 110 samples were collected,
were summarized in Table 1. The study population consisted of
58 males (76.3%) and 18 females (23.7%). The median age, height,
and weight were 11.0 months (IQR, 7.38–17.00), 70.00 cm (IQR,
66.00–74.00), and 8.05 kg (IQR, 6.95–9.00), respectively. The
median voriconazole plasma concentration was 1.25 mg/L (IQR,
0.66–2.58). At the time of sampling, patients were receiving a
median total daily VRZ dose of 100.00 mg (IQR, 100.00–133.25)
for a median duration of 9.50 days (IQR, 5.00–17.75). Crucial
laboratory values included a median WBC of 8.04 × 109/L (IQR,
4.71–12.38) with a median neutrophil percentage of 52.58% (IQR,
34.80–66.62), and a median HGB level of 105.50 g/L (IQR,
94.92–116.25). The median ALT and SCR were 39.50 U/L
(IQR, 20.31–81.80) and 18.92 μmol/L (IQR, 15.40–22.54),
respectively. The most common co-administered drugs were
glucocorticoids (47 patients, 61.8%), proton pump inhibitors
(34, 44.7%) and tacrolimus (25, 32.9%). For model
development, the dataset was randomly partitioned into a
training set and a validation set at a 7:3 ratio, with
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comparable characteristics detailed between the two sets in
Supplementary Table S1. We assessed hepatic function
parameters (ALT, AST, ALP) and found no significant changes
between baseline and maximum values during voriconazole
therapy (Supplementary Figure S1). Additionally,
breakthrough fungal infections were not observed.

3.2 PopPK analysis

In the final PopPKmodel assessed the inter-individual variability
(IIV) for CL/F through the variance component ω2

CL/F, estimated
at 0.674, indicating a standard deviation of approximately 0.821,
with an RSE% of 10.7%. However, IIV was not estimated for V/F

TABLE 1 Clinical characteristics of the study population.

Characteristic Mean (SD) Median IQR

No. of patients/samplings 76/110

Gender (Boys/Girls) 58/18

Age, months 12.08 (5.94) 11.00 7.38–17.00

Height, cm 69.97 (6.84) 70.00 66.00–74.00

Weight, kg 8.00 (1.91) 8.05 6.95–9.00

BSA, m2 0.39 (0.07) 0.39 0.36–0.43

VRZ concentration, mg/L 1.63 (1.41) 1.25 0.66–2.58

Therapy duration at TDM, days 12.73 (9.97) 9.50 5.00–17.75

Total daily dose, mg 112.59 (30.11) 100.00 100.00–133.25

WBC, 109/L 9.16 (5.71) 8.04 4.71–12.38

N% 51.64 (20.11) 52.58 34.80–66.62

L% 33.68 (20.59) 32.69 15.70–49.75

RBC, 1012/L 3.84 (0.78) 3.83 3.35–4.28

HGB, g/L 106.02 (16.46) 105.50 94.92–116.25

ALB, g/L 36.94 (4.13) 37.48 34.58–39.62

PLT, 109/L 293.49 (205.11) 304.5 77.37–470.50

CRP, mg/L 11.13 (26.13) 1.74 0.50–6.92

TBIL, μmol/L 11.65 (21.46) 5.35 3.18–11.01

DBIL, μmol/L 7.61 (17.86) 2.40 1.40–5.66

ALT, U/L 68.98 (85.55) 39.50 20.31–81.80

AST, U/L 89.96 (100.93) 56.14 37.79–110.92

ALP, U/L 222.50 (123.12) 211.26 121.38–263.75

SCR, μmol/L 19.20 (5.34) 18.92 15.40–22.54

EGFR, mL/min/1.73 m2 151.92 (51.25) 139.18 115.39–169.90

INR 1.09 (0.71) 0.97 0.91–1.04

D-Dimer, mg/L 1.00 (1.43) 0.64 0.45–0.92

Co-medication (n, %)

Tacrolimus 25 (32.89%)

Sirolimus 2 (2.63%)

Cyclosporine A 10 (13.33%)

Proton pump inhibitor 34 (44.74%)

Glucocorticoids 47 (61.84%)

Abbreviations: SD, standard deviation; IQR, interquartile range; TDM, therapeutic drug monitoring; BSA, body surface area; WBC, white blood cell count; N%, neutrophil percentage; L%,

lymphocyte percentage; RBC, red blood cell count; HGB, hemoglobin; ALB, albumin; PLT, platelet count; CRP, C-reactive protein; TBIL, total bilirubin; DBIL, direct bilirubin; ALT, alanine

aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; SCR, serum creatinine; INR, international normalized ratio; EGFR, estimated glomerular filtration rate.
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due to high shrinkage (>90%) and an RSE exceeding 30%. The
final model yielded a population typical value of CL/F at 17.9 (L/
h/70kg) and a V/F of 788 (L/70kg), with RSE% values of 10.8%
and 15.4%, respectively, as detailed in Supplementary Table S3
and Equations 1, 2. The GOF plots and VPC for our final model
were illustrated in Supplementary Figures S2, S3. Bootstrapping
validation (100% minimization success) of the population typical

value estimates for CL/F indicated a median of 17.65 (L/h/70kg)
with a 95% CI of 9.11–22.00 (L/h/70kg). Meanwhile, the median
for V/F was 787.75 (L/70kg), with a 95% CI of 94.82–1050.85. The
final PopPK model was as follows:

CL/F L/h/70kg( ) � 17.9 × WT/70( )0.75 (1)

FIGURE 2
Boruta feature filtering each variable importance box plot. Abbreviations: CL, clearance; INR, international normalized ratio; WBC, white blood cell
count; BSA, body surface area; TDOSE, Total daily dose; V, volume of distribution; WT, weight; RBC, red blood cell count; HGB, hemoglobin; L,
lymphocyte percentage; TAC, tacrolimus; ALB, albumin; ALP, alkaline phosphatase; TBIL, total bilirubin; PLT, platelet count; SCR, serum creatinine; CSA,
Cyclosporine A; AST, aspartate aminotransferase; SIRO, sirolimus; PPI, proton pump inhibitor; DDR, D-dimer; GCS, glucocorticoids; N, neutrophil
percentage; CRP, C-reactive protein; DBIL, direct bilirubin; ALT, alanine aminotransferase; EGFR, estimated glomerular filtration rate.

FIGURE 3
Comparison of Model Performance Metrics. The ranges for MSE, RMSE, MAE, and R2 are all between 0 and 1, where a higher R2 indicates better
model performance, and lower values of MSE, RMSE, and MAE indicate better accuracy. Abbreviations: GBDT, gradient boosting decision tree; RF,
random forest. MSE, mean squared error; RMSE, root mean squared error; MAE, mean absolute error.
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V/F L/70kg( ) � 788 × WT/70( ) (2)

3.3 Feature selection and model
construction

The Boruta algorithm, employed for covariate screening across
200 iterations, identified 10 clinically significant variables that
outperformed the shadow attributes (Figure 2). These variables
included PK parameters such as CL and V, hematologic indices
(INR, WBC, RBC, and HGB), as well as age, BSA, weight, and total
daily dose. These ten variables were subsequently selected for the
further development of the ML model.

The evaluation of model performance was shown in Figure 3 and
Supplementary Table S4. Among the six algorithms assessed,
XGBoost emerged as the optimal model, with an R2 value of
0.81, MSE of 0.28, RMSE of 0.53, and MAE of 0.40. Random
Forest (RF) demonstrated comparable accuracy with an MSE of
0.29 and an R2 of 0.80, indicating a strong predictive capability. The
robustness of the final model was confirmed via a 10-iteration
bootstrap cross-validation, which yielded a stable mean R2 of
0.805 (range: 0.776–0.867), as detailed in Supplementary Table
S5. The characteristics of the external validation population (n =
10) were summarized in Supplementary Table S2, including a
median age of 14 months (IQR, 5.50–21.50) and a median
weight of 7.75 kg (IQR, 6.00–10.23). Furthermore, on the
external validation dataset, the XGBoost model achieved an R2 of
0.75, RMSE of 0.14, MSE of 0.02, andMAE of 0.12. The VRZ plasma
concentration observations were contrasted with predictions based

on the XGBoost algorithm, as shown in Figure 4. The majority of
data points fall within the indicated ±20% relative error thresholds.
Considering the model’s prediction accuracy and goodness of fit, the
XGBoost was selected for further interpretability analysis.

3.4 Model interpretation

The XGBoost model was employed to predict plasma
concentrations of oral VRZ in children under 2 years old,
alongside an analysis of model interpretability. Global feature
contributions, as determined by SHAP analysis, were presented
in Figure 5. Clearance (CL) was identified as the most important
feature, followed by weight (WT), hemoglobin (HGB), international
normalized ratio (INR), and age, based on mean absolute SHAP
values (Figure 5A). The beeswarm plot (Figure 5B) visualized the
magnitude and direction of these contributions for each individual,
confirming the substantial and heterogeneous impact of CL and
WT, as evidenced by their wide distribution of SHAP values.
Figure 6 displayed the SHAP dependence plots, illustrating the
relationship between feature values and their influence on
predictions made by the XGBoost model. The findings
demonstrated a negative correlation, suggesting that higher CL
values were associated with lower VRZ concentrations.

Figure 5C displayed a SHAP waterfall plot, which deconstructed
the XGBoost model’s prediction for a pediatric patient (age
19 months, weight 10 kg) receiving oral VRZ. This visualization
illustrated the stepwise derivation of the patient’s individualized
concentration prediction (f(x) = 1.13 mg/L) from the population
mean baseline (E [f(x)] = 1.44 mg/L). The analysis identified VRZ

FIGURE 4
Voriconazole (VRZ) plasma concentration observations versus predicted concentration based on the XGBoost algorithm. In the scatter plot, the two
dashed lines represented the ±20% relative error thresholds.
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clearance (CL = 3.5 L/h/70kg) as the predominant driver of the
prediction, contributing a SHAP value of −0.313. Conversely, the
patient weight = 10 kg exerted a positive influence (SHAP = +0.16).
Other covariates with negative contributions included RBC = 6.19 ×
109/L (SHAP = −0.128), INR = 0.95(SHAP = −0.0635), and HGB =
102 g/L (SHAP = −0.054). Patient age (19 months) had a modest
positive impact (SHAP = +0.0954). As a complementary
visualization, the SHAP force plot (Figure 5D) provides a
consolidated view, illustrating how these positive (red) and
negative (blue) forces balance to produce the final output.

3.5 Clinical application

Figure 7 illustrated the process of predicting VRZ plasma
concentration using our model. For instance, the model utilized
patient-related parameters, including age (23 months), weight
(11 kg), BSA (0.5 m2), WBC (6.9 × 109/L), RBC (3.95 × 1012/L),
HGB (89 g/L), INR (1.07), CL/F (4.46 L/h/70kg), V/F
(123.83 L/70kg), and total daily dose (180 mg). Given the initial

dose of 180 mg daily, administered as 90 mg twice daily, this
corresponds to a minimum dosage of 8 mg/kg (8.18 mg/kg). By
inputting these parameters and running the model, the VRZ
concentration was predicted to be 1.06 mg/L. Three days later,
TDM results indicated an actual VRZ plasma concentration of
1.21 mg/L. This model is expected to assist clinicians in making
initial VRZ dosage recommendations to rapidly achieve the
therapeutic concentration window before TDM results are available.

4 Discussion

VRZ is a critical therapeutic agent for invasive fungal infections;
however, evidence-based dosing guidelines and drug exposure data
in children younger than 24 months are scarce. To address this
knowledge gap, we developed a model integrating PopPK with ML
to estimate steady-state plasma concentrations of oral VRZ in this
vulnerable pediatric population. This study enrolled 76 pediatric
patients, including 58 males (76.32%) and 18 females (23.68%), with
a median age of 11 months and a weight of 8.1 kg. Using a Bayesian

FIGURE 5
The SHAP analysis of the XGBoost. (A) Bar plot of feature importance in XGBoost model predictions based on SHAP Values. (B) The beeswarm plot
showed the SHAP values for ten features in the XGBoost model. The darker the color, the more important the variable was. (C) The SHAP heat force plot.
(D) The SHAP waterfall plot.
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PopPK approach, we estimated individual clearance and volume of
distribution, incorporating these PK parameters as features in our
ML model. Prior to model development, the Boruta algorithm was
used for feature selection, resulting in 10 variables being included in
the final ML model. The XGBoost algorithm demonstrated optimal
predictive ability for VRZ plasma concentrations in children under
2 years, with an R2 of 0.81 and an MSE of 0.28. SHAP analysis
identified clearance, weight, and HGB as the top three significant
predictors of VRZ concentrations.

Previous studies have investigated VRZ dosing and plasma
concentrations in diverse patient populations. For instance,
Gastine et al. examined VRZ plasma concentrations in
17 children under 24 months across 50 distinct treatment
episodes, reporting a median trough concentration of 0.63 mg/L,

with only 34.2% of samples reaching the recommended therapeutic
range (Gastine et al., 2023). In contrast, our study involved a larger
population of 76 pediatric patients, potentially enhancing the
reliability and general applicability of our findings. Huang et al.
assessed the efficacy of ML models versus traditional PopPK models
for predicting VRZ trough concentrations in critically ill patients
(Huang et al., 2025). Utilizing a dataset of 244 concentrations from
62 patients, they developed 6 ML models, with the XGBoost model
demonstrating superior predictive performance (R2 = 0.73).
Similary, Liu et al. developed a real-time ML ensemble model to
forecast VCZ plasma concentrations in elderly patients, achieving an
R2 of 0.828 by reducing features from 31 to nine while maintaining
predictive accuracy (Liu et al., 2025). In our analysis, the XGBoost
model achieved an R2 of 0.81 and an MSE of 0.28, indicating

FIGURE 6
SHAP dependence plot of the XGBoost model. The x-axis showed the SHAP values of each variable, while the y-axis displayed the raw values. SHAP
dependence plots for (A)CL, clearance, (B)weight, (C)HGB, hemoglobin, (D) INR, (E) age, (F) RBC, red blood cell count (RBC), (G) TDOSE, total daily dose,
(H) WBC, white blood cell count, (I) BSA, body surface area.
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comparable predictive capability. Furthermore, our SHAP analysis
evaluated the influence of several variables, including clearance,
body weight, and hemoglobin levels, on VCZ concentrations,
providing clinical interpretations of feature importance.

In our PopPK model, body weight was incorporated as a covariate
influencing VRZ clearance. Numerous factors have been reported to
affect VRZ metabolism, contributing to variability in blood
concentrations. Patient demographics significantly influence
voriconazole pharmacokinetics. Age-related differences are notable,
with pediatric patients requiring higher weight-based dosing due to
faster clearance compared to adults (Tilen et al., 2022). The PopPK study
by Wang et al. identified clearance as a pivotal parameter, significantly
correlating with age, ALP levels, and CYP2C19 genotype (Wang et al.,
2014). Johnson et al. found that CLwas significantly negatively correlated
with INR, total bilirubin, and AST in liver transplant patients (P < 0.05),
suggesting that liver function indicators may indirectly regulate drug
concentration by affecting clearance (Johnson et al., 2010). Consistent
with these findings, our final PopPK model estimated a population
typical value of clearance (CL/F) at 17.9 L/h/70kg (RSE, 10.8%).
Bootstrapping validation indicated a median CL/F of 17.65 L/h/70kg
(95% CI, 9.11–22.00 L/h/70kg). These results further underscore the
importance of clearance as a key factor of VRZ concentrations,
particularly in the pediatric population.

SHAP analysis identified CL as the most significant factor
influencing VRZ concentration, consistent with the substantial
interindividual variability observed in clearance among individuals.
This variability likely reflects underlying physiological differences such
as liver function, which is primarily responsible for metabolizing
voriconazole (Hashemiza et al., 2017), as well as interindividual
differences in CYP450 enzyme activity. Studies have confirmed that
liver dysfunction can complicate clearance metrics, necessitating
adjustments to dosing to avoid subtherapeutic levels and toxicity
(Gorski et al., 2011; Wang et al., 2018). While CL was the
predominant factor, other features also contributed to VRZ
concentration variability. Body weight (WT) plays a significant role in
individualizing VRZ dosing regimens, particularly in pediatric
populations. A clinical study observed that obese individuals
demonstrated reduced VRZ metabolism compared to their non-obese
counterparts, which was associated with higher VRZ trough
concentrations (Takahashi et al., 2020). Conversely, Patients with

lower body weight may experience insufficient drug exposure, leading
to lower plasma drug concentrations (Tilen et al., 2022), particularly in
those with a body surface area under 1m2. Childrenmetabolize VRZ at a
faster rate due to higher metabolic activity and different body
compositions compared to adults, necessitating more intensive dosing
strategies to reach target plasma concentrations effectively (Neely et al.,
2010; Shima et al., 2010). Hemoglobin (HGB) levels can influence
pharmacokinetics indirectly through their association with blood
volume and systemic inflammatory responses. Although the effect size
of HGB was smaller than that of CL in our study, studies have suggested
associations between HGB levels and altered pharmacokinetics,
particularly in populations at risk for anemia (Hsu et al., 2015).
Anemia or elevated WBC and RBC counts might reflect systemic
inflammation or altered drug distribution, affecting VRZ
concentrations (Neely et al., 2010). Age also significantly affects VRZ
pharmacokinetics, with pediatric patients requiring different dosing
strategies due to metabolic differences compared to adults. As patients
age, VRZ clearance can change, necessitating tailored dosing to maintain
efficacy without increasing toxicity (Chen et al., 2022; Bartelink et al.,
2013). While CL remains the dominant factor, VRZ concentration
variability, as revealed by our SHAP analysis, is meaningfully
influenced by a combination of body weight, hemoglobin levels, age,
and inflammatory markers; thus, these factors warrant consideration in
individualized dosing, especially for vulnerable populations.

The study had several limitations. First, as a single-center,
retrospective analysis, the findings may have limited
generalizability. Furthermore, the study population comprised
exclusively of Asian children; PK differences across ethnic groups
suggest that the model’s applicability to non-Asian pediatric
populations requires further investigation (Chen et al., 2018;
Weiss et al., 2009). Additionally, Voriconazole plasma
concentrations were measured using an assay established within
our laboratory. Variations in reagents, instrumentation, and
potential matrix effects between laboratories may lead to
systematic differences in model performance at other centers.

The trough-only sampling design resulted in a wide 95%
confidence interval for the apparent volume of distribution (V/F
94.82–1050.85L/70kg). While this approach optimized the
estimation of voriconazole clearance (CL/F), it provided limited
information regarding drug distribution. Nevertheless, the stability

FIGURE 7
Clinical application of the model.
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of the overall model structure and the reliability of key parameter
estimates were supported by a 100% success rate in bootstrap
validation. Moreover, our findings were consistent with
previously reported high inter-individual variability and
allometric scaling in pediatric populations (Friberg et al., 2012).

Additionally, themodel did not include genotype features related to
VRZmetabolism, such as CYP2C19, which may limit a comprehensive
understanding of drugmetabolism (Moriyama et al., 2017; Caudle et al.,
2025). However, it is important to emphasize that
CYP2C19 genotyping has not yet been established as a standard
clinical practice in most healthcare settings, presenting a challenge
for the widespread adoption of genotype-guided VRZ dosing strategies.
Therefore, the primary objective of this study was to develop a clinically
applicable model using readily available clinical data to predict VRZ
concentrations in children under 2 years of age. This model is intended
to help clinicians rapidly achieve therapeutic VRZ concentrations by
informing initial dosage recommendations before therapeutic drug
monitoring (TDM) results are available. As a National Children’s
Medical Center, we are leading a multicenter, prospective study to
systematically evaluate the efficacy and safety of VRZ in young children.
Ultimately, we aim to develop a user-friendly web application to
facilitate the model’s implementation in clinical practice.

5 Conclusion

This study represented the first effort to merge classic PopPK
with ML to develop a predictive model for oral VRZ plasma
concentrations in children under 24 months. A one-compartment
model of voriconazole was established for this age group, revealing
that weight significantly impacts CL/F and V/F. Individual CL and V
were estimated using the empirical Bayesian method, which were
then incorporated into the ML modeling process.

We used the Boruta algorithm for feature selection and
constructed prediction models for VRZ plasma concentrations
employing various ML algorithms. Among these, XGBoost
demonstrated the best performance, achieving an R2 value of
0.81 and a mean squared error of 0.28. SHAP explainability
analysis indicated that clearance, weight, hemoglobin, and other
factors were most influential in the model.

Our findings provide a significant reference for individualized
voriconazole dosing in clinical practice for children under 2 years
old. A potential benefit of the model lies in its capacity to suggest an
initial dose before TDM results are available, whichmay contribute to a
more timely achievement of effective therapeutic concentrations.
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