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With the accelerated pace of modern life and the influence of various
environmental factors, skin aging has become a widespread health and
aesthetic concern worldwide. Therefore, there is an urgent need for safe,
effective and cost-efficient options for the prevention and treatment of skin
aging. Researchers have been actively exploring anti-skin aging metabolites that
can replace synthetic chemical agents. In recent years, natural plant bioactive
metabolites isolated from plants have been considered as good alternatives and
have been favored by an increasing number of researchers due to their rich
content of bioactive metabolites and low side effects. Botanical bioactive
metabolites have become a focal point in the field of anti-aging skincare
due to their effectiveness in alleviating visible signs of skin aging and their
potential to enhance the overall health of the skin. We collected relevant
literature published between 2010 and 2025 using keywords such as “skin
aging,” "plant bioactive metabolites,” “antioxidant,” “reactive oxygen species,”
“matrix metalloproteinases,” “inflammation,” and others. This review describes
skin aging, common plant (e.g., rice, ginseng, tea, etc.) bioactive metabolites and
their efficacy and mechanism of action in delaying skin aging. In addition, the
development potential and future trends of botanical bioactive metabolites are
explored with the aim of providing a more holistic approach to skin aging care and
offering valuable insights into the use of botanical bioactive metabolites as
important metabolites in the formulation of anti-aging products.

skin aging, plant bioactive metabolites, antioxidant, inflammation, reactive oxygen
species (ROS)

1 Introduction

Skin aging is a complex biological process driven by a combination of intrinsic (e.g.,
genetics, hormones) and extrinsic (e.g., UV rays, pollution) factors, which manifests itself in
features such as wrinkles, laxity, and pigmentation, and has become a health and aesthetic
issue of global concern (Zhang et al,, 2021; Franco et al., 2022).

In recent years, women, especially in the 31-40 age group, have been urgently seeking
care and treatment for skin aging (Almohideb, 2021). Previously, a variety of methods were
used to combat skin aging, including plastic surgery, the use of chemically synthesised
products such as sunscreens (Ganceviciene et al., 2012), and the maintenance of good
lifestyle habits (Millar, 2018). Currently, many natural metabolites have been found to
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possess a variety of biochemical properties such as anti-aging,
antioxidant, anti-inflammatory, and antibacterial properties
(Papaemmanouil et al.,, 2022). These benefits stem from the fact
that natural metabolites often contain a variety of bioactive
metabolites that can enhance the health and appearance of the
skin, with plant bioactive metabolites being the main source (Pintus
et al,, 2022). Therefore, the exploration of natural plant bioactive
metabolites that are gentle, have few side effects, and are capable of
combating skin aging has become a direction of development in
dermatology, skincare, cosmetology, and other related disciplines.
The use of plant bioactive metabolites in skin care is often supported
by traditional knowledge and practices, which can provide which
lends credibility to their efficacy. Many cultures have long utilized
specific plants for skin benefits and modern research is beginning to
validate these traditional uses (Ceccacci et al., 2022). There are now
studies demonstrating that plant bioactive metabolites can stop and
improve skin aging (Son et al., 2020).

The use of plant bioactive metabolites in anti-aging products
offers several advantages over traditional synthetic products.
Firstly, there is a growing demand for natural and sustainable
metabolites in today’s society, and the production of plant
bioactive metabolites from renewable resources has a lower
environmental impact than metabolites that may involve
harmful chemicals and processes (Carvalho et al., 2023; Pham
et al., 2022), which is in line with consumers’ preference for
products that are both effective and environmentally responsible.
Second, anti-aging products derived from nature also provide
consumers with a sense of security (Pham et al., 2022). The
gentleness of plant-based formulations can lead to better
tolerability and fewer side effects. Consumers with sensitive
skin types may have adverse reactions to harsh chemicals
commonly found in traditional anti-aging products (Jaros-
Sajda et al, 2024).
biocompatible and reduce the risk of skin irritation compared

Botanical bioactive metabolites are

to traditional skin care product metabolites, which is especially
beneficial for sensitive skin types. In conclusion, anti-aging
products utilizing plant bioactive metabolites offer a range of
advantages over conventional products, particularly their ability
to provide natural antioxidant and anti-inflammatory benefits,
inhibit skin aging-related enzymes and reduce the risk of
irritation. The shift from traditional synthetic products to
those using plant bioactive metabolites holds great promise for
the development of effective anti-aging products.

2 Skin aging

Intrinsic/extrinsic factors play an important role in the skin
aging process (Figure 1). Extrinsic aging, also known as
environmental aging, is mainly the effect of environmental
factors (e.g., sunlight exposure (Wong and Chew, 2021; Tai et al.,
2024; Flood et al., 2019), air pollution (Wong and Chew, 2021; Liu
et al., 2022; Martic et al., 2022; Claros et al., 2023), smoke, etc.) on
the skin, which accelerates aging by inducing reactive oxygen species
(ROS) generation in large amounts, destroying extracellular matrix
(ECM) (e.g., collagen degradation), and triggering inflammatory
responses (Wong and Chew, 2021; Tai et al., 2024; Flood et al., 2019;
Russell-Goldman and Murphy, 2020; Pourzand et al., 2022). Air
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pollutants (e.g., exposed chemicals (Mousavi et al., 2021), TCPP (Liu
etal., 2022), DPE (Shin et al., 2022), CO (Huang et al., 2022), PM2.5
(Huang et al., 2022), etc.) can have a synergistic effect with UV and
exacerbate oxidative damage (Martic et al., 2022; Choi et al., 2023).

Intrinsic aging, also known as physiological aging, involves
genetic factors, changes in hormone (e.g., estrogen, thyroid
hormone, etc.) levels (Chaudhary et al, 2020; Zhang Z. et al,
2024; Zouboulis and Makrantonaki, 2012). The intrinsic aging
process of the skin also involves the action of multiple cell
signalling pathways (e.g., p53 and p16INK4a (Shin et al.,, 2023),
GPCR signalling pathway (Cheung et al, 2024)). Therefore,
upregulation of certain pathways (e.g., TGF-f/Smad signalling
pathway (Zhang and Duan, 2018)) can prevent wrinkles and
sagging of skin structures.

3 Plant bioactive metabolites

Plant bioactive metabolites are substances extracted from
different parts of the plant (e.g., whole plant, leaves, stems, bark,
roots, flowers, and fruits). Plant bioactive metabolites are used in a
variety of forms; some are made into powders or capsules (Sprung
et al., 2023), which are convenient for patients to take and ensure
dosage accuracy; they can also be used for topical applications, such
as creams and oils (Sprung et al., 2023), which are able to act directly
on the skin or localized lesions.

Bioactive metabolites contain the active metabolites of plants
and are able to be used in a variety of fields such as medicine, food,
and skin care products. Many plant bioactive metabolites are used as
sources of traditional medicines for the treatment of various diseases
(e.g., oral diseases (Palombo, 2011), respiratory infections
(Matotoka et al., 2023), diabetes mellitus (Hasnat et al., 2024;
Singh et al., 2024), etc.), as anticancer agents (Hasnat et al., 2024;
Sruthi et al., 2023), in the treatment of allergic diseases, and as
antiviral agents (Sruthi et al., 2023). Plant bioactive metabolites are
rich in bioactive metabolites (Pintus et al., 2022) that inhibit the
growth of bacteria and fungi, replace some synthetic preservatives,
and fulfil consumer demand for healthy and safe food (Silva et al.,
2021). Plant bioactive metabolites can also improve the properties of
biopolymers, not only enhancing the functionality of the materials
but also their environmental friendliness (Kola and Carvalho, 2023).
Plant bioactive metabolites are also rich in antioxidant activity
(Hasnat et al., 2024; Jafri et al., 2022), neutralizing free radicals
and reducing inflammatory responses (Matotoka et al., 2023; Sruthi
et al,, 2023). Studies have shown that the amount of collagen in the
skin decreases by approximately 1%-1.5% per year in people over
the age of 40 (Ansaf et al., 2023). Increased collagen significantly
improves the moisture and elasticity of the skin (Campos et al., 2023;
Pu et al,, 2023; Bolke et al.,, 2019), making it softer and smoother.
Plant Dbioactive metabolites such as Kaempferia parviflora
(Klinngam et al., 2022), Sulforaphane (Ko et al., 2020), purple
tulip bioactive metabolites (Hajem et al, 2021), Trigonella
foenum-graecum L. (Eaknai et al., 2022), and Physalis peruviana
fruit (Cicchetti et al., 2018) can increase collagen synthesis and slow
down the aging process. Different plant bioactive metabolites exert
their anti-skin aging effects through different mechanisms (Table 1).

In recent years, the introduction of nanotechnology and
advanced formulation strategies has significantly improved the
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FIGURE 1

Schematic diagram of intrinsic/extrinsic factor-mediated skin aging. Intrinsic factors such as mitochondrial dysfunction, inflammation, etc. and
extrinsic factors such as UV radiation generate ROS. when excessive ROS are generated, they exceed the ability of the body’s antioxidant system to
eliminate ROS, and directly damage lipids, proteins, etc. ROS can also activate the MAPK and NF-«kB signal pathways, leading to the activation of AP-1and
NF-xB. They can increase the expression of pro-inflammatory cytokines such as IL-8, TNF-q, IL-6, COX-2, etc. to regulate the inflammatory
response, and by activating matrix metalloproteinases such as MMP-1, 2, 3, etc., they can reduce the expression of TIMPs, causing an imbalance in the
ratio of MMPs/TIMPs, thus rupturing the ECM. At the same time, they can regulate the TGF-p/Smad signal pathway, which ultimately accelerates

Skin aging.

delivery efficiency and therapeutic efficacy of plant bioactive
metabolites (Ahmed et al,, 2021). Firstly, the development of
synergistic therapeutic ~strategies between natural active
metabolites and synthetic nanomaterials has provided a new
direction for the field. A nanofibrous scaffold (NanoPCL-M)
based on myrtle bioactive metabolites and polycaprolactone was
able to significantly inhibit skin photoaging by activating the
regeneration-related pathway of UV-irradiated stem cells,

showing good potential for translational applications (Bellu et al.,

2020). Secondly, nano-encapsulation technology effectively
improves the bioavailability of insoluble plant bioactive
metabolites. Encapsulation of curcumin, resveratrol, etc. in

liposomes, polymer nanoparticles or nanoemulsions can increase
their oral bioavailability by several folds, thus enhancing their anti-
inflammatory and antioxidant properties (Karnwal et al., 2024; Dewi
et al,, 2022). At the same time, nanocarriers excel in protecting
sensitive metabolites and improving their stability, with liposomal or
polymeric nanoparticles effectively slowing down the oxidation
process of antioxidant metabolites (Awlqadr et al., 2025). In
addition, lipid nanocarriers (e.g., solid lipid nanoparticles and
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nanostructured lipid carriers) can effectively load hydrophobic
plant bioactive metabolites and improve their solubility and
2024). At the same time,
nanostructures can further reduce enzymatic or pH-sensitive

absorption efficiency (Sanjai et al,

degradation through surface modification (e.g., polyethylene
glycolisation), extending the storage life and effectiveness of the
active metabolite (Kumari et al., 2022). In addition, green synthesis
methods provide new avenues for nanoparticle preparation. Metal
nanoparticles (e.g., gold and silver nanoparticles) with good
biocompatibility and degradability can be synthesised by using
polyphenols, flavonoids and other metabolites in plant bioactive
metabolites as reducing and stabilising agents, providing a new
approach to the development of plant nanomedicine (Karnwal
et al.,, 2024).

Currently, studies on nanocarrier technology in improving the
bioavailability and stability of plant bioactive metabolites are mainly
focused on the in vitro and animal model stages, and their safety and
efficacy have yet to be further verified in clinical trials. In addition,
the long-term toxicity, in vivo metabolic pathways, and potential
effects of nanocarriers on skin microecology have not been clarified.
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TABLE 1 Anti-aging mechanisms of key plant bioactive metabolites and related references.

Key plant bioactive metabolites

Anti-aging mechanisms

10.3389/fphar.2025.1673075

References

Rosarugosides A (2) and D (1)

Inhibits MMP-1, increases collagen

Franco et al. (2022), Kim et al. (2024a)

Lignan

Glycyrrhiza glabra polyphenols

Reduces ROS and inhibits AGEs formation

Antioxidant, inhibits MMPs

Ceccacci et al. (2022)

Damle and Mallya (2016)

Epigallocatechin gallate (EGCG)

Reduction of ROS, inhibition of MMPs (via NF-kB/AP-1/MAPK
pathway)

Chen et al. (2017)

Kuding tea polyphenols (KTPs)

Cherry blossom bioactive metabolites (CBE)

Upregulates T-SOD, CAT, inhibits MMP-2

Upregulates SOD to protect keratinocytes from UV damage

Yi et al. (2019)

Wang et al. (2019a)

7,8-Dihydroxyflavone (7,8- DHF)

Upregulates CAT, Mn-SOD, HO-1, inhibits MMP-1 and increases
collagen

Choi et al. (2017)

Laminaria polysaccharide (LP)

Centella asiatica callus bioactive metabolites

Upregulates SOD, CAT and inhibits MMP-1

Upregulates SOD, CAT and inhibits MMP-9

Hu et al. (2016)

Buranasudja et al. (2021)

Proanthocyanidins

Rosemarinic acid

Scavenges free radicals

Reduction of ROS, anti-inflammatory

Rodriguez-Yoldi (2021)

Zhu et al. (2022)

Polygonum multiflorum (PMRP)

Poria cocos bioactive metabolites

Improves mitochondrial function, reduces ROS, increases ATP

Inhibits MMP-1, increases collagen, and regulates TGF-B/Smad

Liu et al. (2021)

Fang et al. (2021)

Red ginseng bioactive metabolites

Anti-inflammatory phenolics

Inhibits MMPs, increases collagen, promotes autophagy

Inhibits tyrosinase, MMP-2, antioxidant

Kim et al. (2020)

Emanuele et al. (2017)

Plant-derived extracellular vesicles (EVs)

Flavonoids

Downregulates TNF-a, MAPK and NF-«B and Inhibits MMPs

Inhibits MMP-1, hyaluronidase

Seyeon et al. (2024)

Chaiyana et al. (2020)

Monascus-fermented soybean bioactive metabolites
(MESEs)

Inhibits tyrosinase, hyaluronidase

Jin and Pyo (2017)

1,3,5,6-tetrahydroxyxanthone-C-4-B-d-glucopyranoside

Future studies should pay more attention to the standardised
production of nanoformulations, the scale-up preparation process
and their actual penetration and mechanism of action in human
skin, in order to promote their transformation from laboratory to
industrialisation.

4 Mechanisms of plant bioactive
metabolites against skin aging

4.1 Antioxidant activity

Studies have shown that many plant bioactive metabolites
have antioxidant metabolites, which are essential for reducing
oxidative stress (a key factor in skin aging). It has been found that
bioactive metabolites of 16 Thai medicinal plants (e.g., Centella
Asiatic, Momordica cochinchinensis, Phyllanthus emblica, etc.)
showed significant anti-skin aging effects and were able to
improve the structure and function of the skin, which was
mainly attributed to their rich content of total phenols and
flavonoids (Chaikhong et al., 2023; Poomanee et al., 2023).
The bioactive metabolites of Pourthiaea villosa (Thunb.)

Decne. bioactive metabolites (PVDE) also contains
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Inhibits tyrosinase, hyaluronidase

El-Nashar et al. (2022)

antioxidant metabolites such as polyols, phenolic and
flavonoid metabolites (Choi et al., 2019). Citrus auranticum
and Glycyrrhiza glabra are rich in antioxidant polyphenols,
which help to prevent skin aging (Damle and Mallya, 2016).
Resveratrol-enriched rice DJ526 can be bioactive metabolitesed
to resveratrol, a potent antioxidant that is not present in large
quantities, and a relatively large yield can be obtained after
treatment by YE (yeast bioactive metabolites) (Kantayos et al.,
2022). Epigallocatechin gallate (EGCG) is an antioxidant
isolated from tea catechins, and in the study the skin
condition of the group given EGCG was better than that of
the control group, suggesting that EGCG has an antiaging effect
(Chen et al., 2017). Bioactive metabolites of species such as
Sideritis scardica and Rosa damascena have been found to
have a significant role in the development of antioxidant
activity through enhancement of cellular function and
prevention of UV-induced damage. UV-induced damage by
enhancing cellular function and preventing UV-induced
damage have shown promising results in combating oxidative
damage and promoting skin health (Sklirou et al., 2021). Citral is
the main metabolite of lemongrass (Cymbopogon citratus)
essential oil (LEO), which has significant antioxidant
properties, inhibits oxidative degradation, protects the colour
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and stability of the essential oil’s metabolites, reduces skin
irritation and enhances antimicrobial activity (Tran et al., 2021).

4.1.1 Regulation of antioxidant enzymes

Increasing endogenous antioxidant enzymes is one of the
antioxidant mechanisms of plant bioactive metabolites. Kuding
tea polyphenols (KTPs) were obtained from the plant by an ion
precipitation method, and KTPs were shown to significantly
increase serum levels of total superoxide dismutase (T-SOD)
and catalase (CAT) by UV-induced experiments in mice (Yi
et al, 2019). Cherry blossom bioactive metabolites protected
human keratinocytes (HaCaT) from UV-induced oxidative
stress by increasing the activities of T-SOD and glutathione
peroxidase (Wang Y. et al., 2019). In vitro experiments showed
increased expression of antioxidant enzymes in human dermal
fibroblasts (HDF) after PVDE treatment (Choi et al., 2019).7,8-
(7,8- DHF, 7,8-dihydroxy-2-phenyl-4H-
chromen-4-one) is a naturally occurring flavonoid found in

Dihydroxyflavone

plants, and DHF effectively attenuated oxidative stress through
the upregulation of CAT, manganese-superoxide dismutase (Mn-
SOD), and heme oxygenase-1 (HO-1) in aging skin cells (Choi
etal.,2017). Topical application of Laminaria polysaccharide (LP)
enhanced the expression of antioxidant enzymes in skin tissues
with elevated levels of SOD, CAT and glutathione peroxidase (Hu
et al,, 2016). Hibiscus sabdariffa L. (HS) has a long history of
edible and medicinal uses, and several experiments with bioactive
metabolites from it have shown that hibiscus acid maintains
higher levels of reduced/oxidised glutathione (GSH/GSSG) in
skin cells, thus providing a possible mechanism for hibiscus
acid antioxidant. The results obtained by RT-qPCR of Centella
asiatica callus bioactive metabolites clearly indicated that
upregulation of cellular antioxidant enzymes seems to be the
main reason for the protective effect of callus bioactive
metabolites against oxidative stress (Buranasudja et al.,, 2021).
Scutellaria baicalensis Georgi (SBG), a traditional Chinese
medicine widely used in the treatment of hypertension and
other diseases, showed elevated SOD after topical application
on the skin (Sun et al., 2022). Phellinus linteus (PL) is a
typical medicinal fungus, and the results of molecular
mechanism studies showed that SBG could increase UV-
induced SOD activity (Han et al., 2022). Water lily rhizome
bioactive metabolites (WLRE) induced an increase in total
glutathione, HO-1, which exerts a protective effect against skin
aging (Park et al., 2016). An animal study (SAMP1 mouse model)
showed that long-term intake of glucoraphanin-enriched kale
(GEK) enhanced antioxidant enzyme activity and collagen
production via the TPRII/Smad3 pathway in SAMP1 mice,
suggesting that GEK is also valuable in preventing skin aging
(Chawalitpong et al., 2019).

4.1.2 Reduction of reactive oxygen species
(ROS) levels

Reactive oxygen species (ROS) play an important role in both
chronic aging and photoaging (Noh et al., 2016). UVB irradiation
induces overproduction of ROS in skin cells (Merecz-Sadowska
et al,, 2021). Oxidative stress leads to cellular dysfunction and even
apoptosis and is considered a key factor in aging (Maldonado et al.,
2023). When ROS generation exceeds the scavenging capacity of the
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endogenous antioxidant system, oxidative stress is triggered, which
in turn attacks macromolecules such as DNA, proteins, and lipids
within the cell. This cumulative damage not only accelerates the
process of cellular aging, manifested in wrinkles, sagging and
hyperpigmentation phenotypes, but also induces a persistent
inflammatory response, forming a vicious cycle that promotes
skin aging (Gu et al., 2020; Papaccio et al., 2022).

At the application level, a variety of plant active metabolites
demonstrate anti-aging potential by targeting the ROS pathway.
Their mechanisms of action mainly include direct scavenging of
ROS, enhancement of intracellular antioxidant defences and
inhibition of apoptotic signals in the mitochondrial pathway.
Proanthocyanidins in grape seed bioactive metabolites and
rosmarinic acid in rosemary bioactive metabolites are effective in
scavenging free radicals (Rodriguez-Yoldi, 2021; Zhu et al., 2022).
Rutin within the bioflavonoid family and Alchemilla mollis (AM)
bioactive metabolites exert protective effects by activating the
antioxidant system in a dose-dependent manner. (Choi SJ. et al.,
2016; Hwang et al, 2018). Polygonum multiflorum (PMRP)
improves mitochondrial function and reduces ROS levels by
increasing mitochondrial membrane potential and ATP levels
(Liu et al., 2021).

In addition, some of the bioactive metabolites are able to help the
skin to finely adapt and resist the overproduction of ROS due to
environmental stress. Apple mint (Mentha suaveolens Ehrh.)
inhibits heat shock-induced ROS production in anti-heat aging
skincare products (Son et al, 2018). WLRE and Houttuynia
cordata Thunb. (H. cordata) bioactive metabolites metabolite
effectively protects UVB-irradiated skin cells by modulating the
ROS scavenging pathway and mitochondrial apoptosis mechanism,
showing promising applications in photoprotective products (Park
et al,, 2016; Mapoung et al., 2021).

In summary, a large number of preclinical studies have revealed
the potential of various plant bioactive metabolites to reduce
oxidative stress by scavenging ROS and enhancing endogenous
antioxidant defences. However, it is important to note that most
of these promising results are derived from in vitro or animal
models, and their efficacy, optimal concentrations, and long-term
safety in humans have yet to be confirmed by rigorous randomised
controlled clinical trials (RCTs).

4.2 Inhibition of aging-related enzymes

Enzymes associated with aging include: collagenase, elastase,
tyrosinase, etc. Collagenase is the enzyme that can break down
collagen. Studies have shown that collagenase expression levels
increase during skin aging, accelerating collagen degradation
(Shin J-W. et al.,, 2019). Fragmentation of collagen increases the
level of oxidation within damaged cells, further damaging fibroblasts
and exacerbating the skin aging process (Lee et al., 2021a). Elastase is
primarily responsible for the breakdown of elastin. Accumulation of
elastase in skin fibroblasts by ultraviolet B radiation causes
degeneration and/or tortuosity of elastic fibres (Tsukahara et al.,
2001), a decrease in elastin content, and a decrease in the elasticity of
the skin, resulting in skin laxity and the formation of wrinkles
(Baumann et al,, 2021). The role of tyrosinase in melanin synthesis
makes it a key enzyme in the study of skin aging. Abnormal
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accumulation of melanin may also lead to discolouration and other
skin pigmentation problems, which are signs of aging (Skoczynska
et al., 2017). Plant bioactive metabolites (e.g., Salvia officinalis
(Khare et al., 2021), Chia (Salvia hispanica) seed (Aguilar-Toald
and Liceaga, 2020), etc.) have been found to be effective in inhibiting
the activity of aging-related enzymes, thereby slowing the skin
aging process.

4.2.1 Matrix metalloproteinases (MMPs)

Matrix metalloproteinases (MMPs) break down proteins
(including elastin and collagen) in the extracellular matrix (ECM)
(Choi S. etal., 2016; Zhang et al., 2019), and the integrity of the ECM
is threatened, leading to wrinkles and sagging of the skin (Kim et al.,
2023). As collagen fibres break down, the skin is poorly hydrated,
manifesting as dryness and roughness (Al-Atif, 2022). The structure
of elastin fibres allows the skin to quickly regain its shape after
stretching (Wang et al., 2021). MMPs have become an important
target for skin anti-aging products, and plant bioactive metabolites
are able to inhibit MMPs to a certain extent, thereby protecting
collagen and elastin in the skin (Philips et al., 2011).

It has been shown that SBG (Sun et al., 2022), PL (70), AM
(Hwang et al., 2018), Apigenin (4',5,7-trihydroxyflavone) (Choi S.
et al.,, 2016), Hawthorn Polyphenol Bioactive metabolites (Liu et al.,
2018), enzyme-modified ginseng (EG) bioactive metabolites
(Hwang et al, 2014), Poria cocos bioactive metabolites (Fang
et al,, 2021), the hot water bioactive metabolites of Rosa rugosa’s
flower buds (Franco et al, 2022) (Kim KS. et al,, 2024), and
Protocatechuic acid (PCA) (Shin et al.,, 2020) downregulated the
MMP-1 expression. In the TNF-a (tumour necrosis factor-a)-
induced aging model of Hs68 human dermal fibroblasts, 7,8-
DHF (0-10 uM) significantly upregulated type I collagen
synthesis and inhibited matrix metalloproteinase-1 (MMP-1)
expression in a dose-dependent manner after 18 h of treatment
(Choi et al.,, 2017). LP inhibited MMP-1 expression by preventing
oxidative stress and JNK phosphorylation, thereby delaying the
breakdown of skin collagen during the aging process (Hu et al.,
2016). AGEs resulting in increased matrix MMP-1 gene expression
(Yoon etal., 2022). Red ginseng Natural GEL (RG NGEL) made from
RG bioactive metabolites reduced UV-induced levels of MMPs (Kim
et al,, 2020)and increased type I collagen in human fibroblasts.
inhibited MMPs, thus
supporting skin elasticity and firmness. The negative effects of H
(2)O (2) on MMP 3 and MMP 12 were significantly reduced when
evaluated against a mixture of betaine, pentylene glycol,

Cyanobacteria bioactive metabolites

Saccharomyces cerevisiae and Rhodiola rosea root bioactive
metabolites (BlendE) (Namkoong et al., 2018). By control, Litchi
bioactive metabolites inhibited MMP-2 significantly (p < 0.01) more
than standard vitamin C (23.75% + 2.74% and 10.42% + 5.91% at
0.05 mg/mL, respectively) (Emanuele et al., 2017). Centella asiatica
callus bioactive metabolites also inhibited the induction of MMP-9
under H202 exposure, suggesting potential anti-skin aging activity
of the C. asiatica callus (Buranasudja et al., 2021). Syringaresinol
(SYR) isolated from ginseng berries possesses a variety of
physiological activities, showing antioxidant activity and up-
regulating autophagic activity in H (2)O (2)-stimulated
HaCaT cells, thereby reducing the expression of MMP-2 and
MMP-9, which have been associated with skin aging (Choi et al,,
2022). Tissue inhibitors of metalloproteinases (TIMPs) are the
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major endogenous inhibitors of MMPs activity and play a crucial
regulatory role. KTPs upregulate the expression of TIMP-1, TIMP-2,
and downregulate MMP-2 and MMP-9, and inhibit UVB-induced
skin damage (Yi et al, 2019). The anthocyanin metabolite of
Vaccinium uliginosum samples is photoprotective, and oral
administration of Vaccinium uliginosum attenuates the gene
expression of MMPs and increases the levels of TIMP and
antioxidant-related genes (Jo et al., 2020).

Inhibits the effects of MMPs on skin aging by modulating
multiple signal pathways. Plant-derived extracellular vesicles
(EVs) bioactive metabolitesed from Ecklonia cava can reduce the
expression levels of MMPs by inhibiting key signaling pathways
such as TNF-a, MAPK, and NF-xB (Seyeon et al.,, 2024). EGCG
reduces the expression of MMPs by modulating nuclear factor kappa
B (NF-kB), activator protein 1 (AP-1) and mitogen-activated
protein kinases (MAPKSs) signal pathways in FDP-stimulated
HDFs (Wang L. et al., 2019). ALE inhibits heat shock-treated
HDFs triggering the production of MMPs and inhibits mitogen-
activated protein kinases (MAPKs) with anti-skin heat aging activity
(Son et al, 2018). Rutin, a quercetin glycoside, reduced mRNA
expression of MMP-1 (80). HcEA bioactive metabolitesed from
Cordyceps sinensis inhibited UVB-irradiated skin aging by
modulating the MAPK signal pathway, inhibiting JNK/ERK/c-Jun
activation and down-regulating the expression of MMP-1 genes and
proteins in human dermal fibroblasts (Mapoung et al, 2021).
Dieckol (DK), an algal-derived phenolic metabolite, significantly
reduced the expression of pro-inflammatory cytokines and MMPs
by modulating the NF-kB, AP-1, and MAPKs signal pathways
(Wang et al,, 2020). Common active metabolites such as CF (Lyu
et al., 2022), Pradosia mutisii (Lorz et al., 2019), and PVDE (Hwang
et al,, 2018), also modulate the activation of the MAPKSs inhibitory
signal pathway, effectively blocking MMPs production. y-
Mangosteen fruit is an autophagy enhancer, which can be used
to enhance MMP-1, MMP-9 through activation of KEAP1/
NREF2 signalling and downregulation of MAPK/AP-1/NF-kB-
mediated MMP-1, MMP-9 (Kim CW. et al., 2024).

The bioactive metabolites obtained from different bioactive
metabolitesion methods showed different inhibitory effects on
MMPs. In a study using in vitro enzymatic modelling to assess
the anti-skin aging potential of Thunbergia laurifolia Lindl. leaf
bioactive metabolites, the researchers prepared two bioactive
metabolites using Soxhlet bioactive metabolitesion (SE, with 80%
ethanol as solvent) and reflux bioactive metabolitesion with
deionised water (RE), respectively. The MMP-1
activity was determined by luciferase reaction, and the results

inhibitory

showed that the SE bioactive metabolites exhibited comparable
inhibitory strengths to the positive control gallic acid, with half-
maximum inhibitory concentration (ICs) values of 12.0 + 0.3 mg/
cm’ and 8.9 + 0.4 mg/cm’, respectively (Chaiyana et al., 2020).
White rose petal bioactive metabolitesed by three methods (50%
ethanol WRPE-EtOH, and high
temperature and pressure WRPE-HTHP) showed anti-skin aging

enzymatic WRPE-enzyme,

activity in in vitro enzymatic assays. All three bioactive metabolites
completely inhibited MMP-1 activity within 60 min at a
concentration of 100 pg/mL, but only WRPE-EtOH and WRPE-
enzyme partially inhibited it (50%-70%) at 50 pg/mL. All three
inhibited elastase at high concentrations (>250 pg/mL), and only
WRPE-EtOH was effective at low concentrations (15.6-125 ug/
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FIGURE 2

Schematic representation of tyrosinase-mediated skin aging. The increase in tyrosinase activity and melanin synthesis under the effect of increased
UV radiation leads to the appearance of uneven pigmentation on the surface of the skin, such as freckles or age spots, a phenomenon that is often

regarded as a sign of skin aging.

mL).WRPE-EtOH inhibited tyrosinase best, with 80% inhibition at
125 ug/mL. It indicates that the ethanolic bioactive metabolites of
white rose has multi-targeted anti-skin aging potential (Choi
et al., 2015).

Current studies have mostly focused on enzymes such as MMP-
1 and MMP-9, with relatively few studies on other MMPs (e.g.,
MMP-3, MMP-12, etc.). Future studies should enhance the
standardisation of the chemical composition of the bioactive
metabolites and systematically assess their global impact on the
balance of MMPs/TIMPs in combination with transcriptomics and
proteomics.

4.2.2 Tyrosinase

Tyrosinase plays a key role in oxidative reactions in living
organisms (Yuan et al, 2020), catalysing the conversion of
Tyrosine into a key precursor of melanin (Nakamura and
Fukuda, 2024). Melanin acts as a UV filter, which can effectively
absorb and scatter UV radiation, reducing the deleterious effects of
UV on the skin (Figure 2). However, the process of melanin
synthesis is inherently oxidative, and excess melanin may also
lead to senescence of melanocytes, thereby accelerating skin aging
(Hughes and Bishop, 2022; Lee, 2021). Botanical bioactive
metabolites reduce melanin synthesis by inhibiting tyrosinase
activity, thereby improving uneven skin tone and discolouration
due to aging.

Frontiers in Pharmacology

Morinda citrifolia bioactive metabolites, WRPE (116) also
inhibit tyrosinase, suggesting that they also have antimelanogenic
potential. Litchi chinensis bioactive metabolites has cellular
antioxidant activity by reducing melanin production through
tyrosinase inhibition (Kanlayavattanakul et al., 2012). Monascus-
fermented soybean bioactive metabolites (MFSEs) showed effective
inhibition of tyrosinase (P < 0.05) (Jin and Pyo, 2017). A 50% (v/v)
EtOH aqueous bioactive metabolites of Rosa gallica petals
significantly inhibited tyrosinase activity and reduced melanin
production (Shin EJ. et al, 2019). In cellular experiments, cells
treated with jasmine rice panicle bioactive metabolites were
observed to inhibit melanogenesis via tyrosinase and TRP-2
inhibition (Kanlayavattanakul et al, 2016). H. teretifolium total
bioactive metabolites represents a rich source of bioactive
metabolites with moderate anti-tyrosinase and anti-elastase
activities and thus could be a good candidate for aging
2015).
trunk  of

prevention (Popoola et al, Bisresorcinol,
metabolite  of  the
(Protopanaxaceae), has inhibitory effects on tyrosinase, and

bisresorcinol may be used as an aging enzyme antagonist in anti-

a major

Heliciopsis  terminalis

aging products (Saechan et al., 2021). Solanum betaceum bioactive
metabolites (100 pg/mL) inhibited tyrosinase by up to 50.4% (Huang
and Huang, 2024). Methanol bioactive metabolites from Mangifera
indica leaves (Anacardiaceae) grown in Egypt showed significant
anti-tyrosinase effect (El-Nashar et al., 2022). Leaves of Acacia
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occidentalis and Acacia zeylanica among 16 Thai medicinal plants
showed strong antioxidant as well as tyrosinase inhibitory effects.
Bioactive metabolites of Amla (Phyllanthus emblica L.) twigs
0.1 mg/mL inhibited melanin by inhibiting tyrosinase and
antioxidant

tyrosinase-related  protein-2  activities,

properties (Chaikul et al., 2021).

strong

4.2.3 Anti hyaluronidase

Hyaluronidase is an enzyme that breaks down hyaluronic acid.
Hyaluronic acid is a key metabolite of the ECM and plays an
important role in moisturization, inflammation, cell migration
and promotion of collagen synthesis (Gupta et al., 2019). During
inflammation, the breakdown of hyaluronan by hyaluronidase leads
to the release of pro-inflammatory mediators and chemokines,
which exacerbate the inflammatory response. By inhibiting
hyaluronidase, plant bioactive metabolites can help maintain
hyaluronic acid levels, reduce inflammation and promote tissue
repair, highlighting their potential therapeutic applications in
inflammatory diseases (HB et al., 2023).

Inflammation is known to upregulate hyaluronidase expression
in various tissues, and plant bioactive metabolites can indirectly
affect hyaluronidase activity by reducing pro-inflammatory cytokine
production (Bonaterra et al., 2020). Trigonella foenum-graecum L.
(Eaknai et al., 2022), KTP (Yi et al., 2019), ALE (83), Poria cocos
bioactive metabolites (Fang et al., 2021), Vaccinium uliginosum (Jo
etal,, 2020), AM (Hwang et al., 2018), (—)-phenolic (Lee et al., 2020),
Rice (Subedi et al., 2017), Green mandarins (Ham et al., 2022), and
DK (Wang et al., 2020) inhibit proinflammatory cytokines such as
(TNF-),
hyaluronidase. a), interleukin 6 (IL-6), IL-8, etc.) production. In
addition, COX-2 mRNA 1is usually increased during skin
hedleyi
metabolites Mycosphaerella-Gly also significantly reduced COX-2
mRNA levels (Suh
et al,, 2014).

Plant bioactive metabolites can modulate hyaluronidase

tumour necrosis factor alpha interleukin, and

inflammation and the Chlamydomonas bioactive

in a concentration-dependent manner

activity, thereby affecting the inflammatory response. Evening
Thunbergia laurifolia Lindl. leaf bioactive metabolites (Chaiyana
et al., 2020), Mangifera indica leaves (El-Nashar et al., 2022), and
MFSEs (Jin and Pyo, 2017) have been shown to inhibit
hyaluronidase activity, leading to increased hyaluronic acid
levels in tissues.In addition, some studies have shown that
bioactive metabolites from plants such as marshmallow
(Althaea officinalis) (Bonaterra et al., 2020) can lead to a
decrease in hyaluronidase expression under inflammatory
conditions. This downregulation facilitates the prevention of
excessive degradation of hyaluronic acid, thus preserving its
protective and moisturising function in tissues.

4.3 Modulation of the
inflammatory response

Chronic inflammation plays an important role in the skin aging
process. Chronic inflammation can lead to a variety of problems in
the skin, such as decreased skin barrier function, diminished cell
regeneration, and decreased wound healing (Lei et al, 2022).
Mediates senescence phenotype by disrupting skin barrier
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function, attenuating cell regeneration and promoting ECM
degradation (Bennett et al., 2008; Agrawal et al., 2023).

4.3.1 Anti-glycation effects

Glycation and the accompanying accumulation of skin
advanced glycation end products (AGEs) have been implicated in
skin research as one of the mechanisms leading to skin aging (Qu
et al., 2017). CF bioactive metabolites reduces AGEs-induced ROS
generation and upregulation of the receptor for AGEs (Lyu et al,,
2022). JasHEx, which contains phenolic acid derivatives, lignans,
and triterpenoids, reduces formation of AGEs (Ceccacci et al., 2022).
Air-dried mulberry fruit (DMF) bioactive metabolites was able to
reduce oxidative stress by inhibiting glycosylation reactions in vivo
and avoiding the accumulation of AGEs (Zhang L. et al.,, 2024).
Cirsium japonicum flower (CFE) bioactive metabolites inhibited the
formation of AGEs in an in vitro glycosylation study (Yoon et al.,
2022). In summary, modulation of AGEs by plant bioactive
metabolites may be an interesting target for anti-aging.

4.3.2 Phenolic metabolites modulate
inflammatory responses

Phenolic metabolites found in plant bioactive metabolites have
been shown to modulate inflammatory responses, protect skin cells
from damage and promote a healthier appearance (Janaina et al.,
2020). In RAW
264.7 macrophages have shown that phenolic metabolites in

vitro studies using cell lines such as
plant bioactive metabolites significantly reduce the production of
inflammatory cytokines and mediators when stimulated by
lipopolysaccharide (LPS), a common inflammatory trigger (Lee
et al., 2021b; Paesa et al., 2022).

One of the key mechanisms by which phenolic metabolites exert
their anti-inflammatory effects is through the inhibition of pro-
inflammatory mediator production. Inducible nitric oxide synthase
(iNOS) and COX-2 are key enzymes involved in the production of
inflammatory mediators such as nitric oxide (NO). Reduction of
inflammatory mediators reduces inflammation and tissue damage.
phenolic metabolites such as bioactive metabolites of TMS-HDMF-
5z (a mixture of the natural products mossyloflavone and
resveratrol) (Kim et al, 2022) downregulate the expression of
iNOS and COX-2. The pro-inflammatory transcription factor
NF-kappB plays an important role in the pathology of

(Lephart, 2016). By inhibiting the
translocation of NF-kB to the nucleus, the dried flowers of C.

inflammatory diseases

lanceolata (Lee et al., 2021b) blocks the expression of several
pro-inflammatory cytokines, including TNF-a and IL-6.

5 Summary and looking forward

The potential of plant bioactive metabolites to address skin aging
offers an attractive option for anti-aging product innovation. This is
mainly because they are more in line with the worldwide trend
towards naturalness and non-toxicity, and their skincare activity is
not inferior to synthetic drugs. Secondly, the study of anti-aging
products containing potent plant bioactive metabolites may improve
our ability to address future challenges related to skin aging.

Botanical bioactive metabolites are effective in combating skin
aging by having antioxidant effects, inhibition of aging-related
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enzymes, anti-inflammatory properties, and other mechanisms that
slow down the aging process and enhance skin health. However, a
number of challenges and opportunities remain in the ideal chain of
access, research and application of plant skin care metabolites. In
terms of access, the anti-skin aging field is progressively prioritising
natural products, especially plant bioactive metabolites, a trend that
promotes the discovery of anti-aging metabolites from plants. This
area of research should focus on plant bioactive metabolites that are
photoprotective and mitigate oxidative stress. From a research
perspective, it is important to persevere in investigating the
specific cellular and molecular mechanisms of action of various
plant bioactive metabolites, as this may provide new perspectives to
understand their potential efficacy. In addition, the demand for anti-
aging products is not limited to preventing skin aging, but also
includes daily care. Therefore, research will also focus on the safety
and potential side effects of plant bioactive metabolites to ensure
that these metabolites can be safely applied in daily care. In the
application of plant bioactive metabolites, there is an urgent need to
improve the drug delivery method by improving it due to its
generally low bioavailability. As an innovative drug delivery
strategy,
metabolites, which delivers active metabolites to the body or local

transdermal  administration of plant bioactive
target tissues via the dermal route, retains the natural advantages of
plant bioactive metabolites while overcoming their inherent
limitations through dosage form design. However, it still faces
many challenges in terms of skin barrier penetration, stability,
and safety. Future research should focus more on advanced
transdermal drug delivery systems, such as nanocarrier
technologies (including liposomes, nanoemulsions, solid lipid
nanoparticles, etc.) and other strategies. These technologies can
enhance safety by increasing local bioavailability, improving
bioactive metabolites stability, and enabling controlled release.
The application of formulations combining multiple plant
bioactive metabolites to enhance efficacy requires in-depth
research on plant bioactive metabolites and their anti-aging
properties. In summary, although plant bioactive metabolites
have shown multiple mechanisms and other advantages in anti-
skin aging, most of the current studies are still in the preclinical
stage, and future research should pay more attention to the
completion of high-quality clinical studies, combined with
artificial intelligence-assisted screening and other methods, in
order to validate the real anti-aging efficacy and safety of these
plant bioactive metabolites in the human body, and to promote them
to become a scientifically based anti-aging strategy. As research
continues to progress and consumers become more aware of the

advantages of natural metabolites, the use of plant bioactive
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