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Objective: This study aimed to investigate the correlation between nilotinib
plasma concentrations and clinical efficacy and safety in patients with chronic
myeloid leukemia (CML), thereby supporting personalized therapeutic
optimization.
Methods: We conducted a retrospective cohort study of 121 CML patients
receiving nilotinib with therapeutic drug monitoring (TDM) at Nanfang
Hospital of Southern Medical University between March 2021 and February
2024. Major molecular response (MMR) and adverse events (CTCAE v5.0) were
analyzed against concentrations. Receiver operating characteristic (ROC) curves
defined thresholds; dose-normalized exposure (Cnorm = Cmin/(Dose/600 mg))
addressed TDM bias.
Results: The effective group showed higher nilotinib concentrations than those in
the ineffective group (1,036.40 ± 463.67 vs. 737.14 ± 518.97 ng mL-1; P < 0.001),
confirmed post-normalization (1,045.10 ± 468.08 vs. 858.34 ± 723.66 ng mL-1;
P < 0.05). The ROC-derived efficacy threshold was 636.99 ng mL-1 (AUC = 0.693,
95% CI: 0.596–0.791), which was identical after normalization (AUC = 0.655, 95%
CI: 0.554–0.755). Although adverse events were common (76.9% of patients),
they showed no overall concentration dependence (P = 0.288). However,
hyperbilirubinemia risk was significantly elevated in patients with
concentrations >1,273.98 ng mL-1 cohort (50.0% vs. 20.0%–22.6%; P = 0.030),
with a toxicity threshold identified at 1,290.34 ng mL-1 (AUC = 0.656, 95% CI:
0.540–0.771). Longer treatment duration was also associated with higher drug
exposure (P = 0.029).
Conclusion: Nilotinib concentrations predict MMR attainment independent of
TDM-driven dose adjustments (validated via Cnorm). We recommend targeting
early-phase concentrations >636.99 ng mL-1, monitoring bilirubin above
1,290.34 ng mL-1, and integrating dynamic TDM with pharmacogenetic profiling.
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1 Introduction

Chronic myeloid leukemia (CML) is a malignant neoplasm
characterized by the clonal proliferation of hematopoietic stem
cells driven by the breakpoint cluster region–Abelson (BCR::
ABL1) fusion gene (Alves et al., 2021; Deininger et al., 2020;
Garcia-Ferrer et al., 2019), with more than 90% of patients
exhibiting Philadelphia chromosome (Ph) abnormalities (Tian
et al., 2018). Although tyrosine kinase inhibitors (TKIs) have
substantially improved clinical outcomes, clinical evidence
indicates that some patients develop resistance, experience
intolerance, or show no response to first-generation BCR::
ABL1 inhibitors such as imatinib (Sampaio et al., 2021; García-
Gutiérrez and Hernández-Boluda, 2019; Dinić et al., 2024; He
et al., 2021).

To optimize therapeutic strategies and improve remission rates
in CML, several second-generation BCR::ABL1tyrosine kinase
inhibitors (TKIs), including nilotinib, dasatinib, ponatinib, and
bosutinib, have been successfully developed (Sampaio et al., 2021;
Tian et al., 2018). More recently, asciminib, a groundbreaking
treatment for CML, has gained FDA approval as the first
STAMP inhibitor, which offers a novel mechanism of action by
targeting the myristoyl pocket of BCR::ABL1, proves effective in
overcoming resistance to traditional TKIs, and demonstrates
superior efficacy and a favorable safety profile in clinical trials
(Akhtar et al., 2025; Choi, 2023). Notably, nilotinib exhibits
approximately 20-fold greater inhibitory potency compared to
imatinib, with around 50% of imatinib-resistant patients
achieving complete cytogenetic response (CCyR) while
maintaining acceptable tolerability (Dinić et al., 2024; He et al.,
2021; Wang et al., 2018).

Nilotinib, a second-generation BCR::ABL1 inhibitor, is
primarily indicated for patients with chronic-phase or
accelerated-phase CML who exhibit resistance or intolerance.
It shows a bioavailability of 30%, with 98% plasma protein
binding and predominant hepatic metabolism via CYP3A4
(Ding and Zhong, 2013; Tian et al., 2018). According to the
2024 National Comprehensive Cancer Network (NCCN) Clinical
Practice Guidelines in Oncology for Chronic Myeloid Leukemia
(Shah et al., 2024), nilotinib is recommended as first-line therapy
for patients with intermediate-to high-risk CML (Fukuda, 2022;
Wang et al., 2018). However, considerable interindividual
variability in plasma concentration has been reported
worldwide, and a consensus therapeutic window for nilotinib
has not yet been established. Therapeutic drug monitoring
(TDM), a clinical approach for quantifying drug
concentrations in blood and evaluating therapeutic ranges, is
recognized as a key strategy for optimizing nilotinib therapy
(Miura, 2015; Mueller-Schoell et al., 2021; Tuzimski and
Petruczynik, 2020). Therefore, investigating the relationship
between nilotinib plasma concentrations and clinical efficacy
and safety profiles in CML patients provides essential evidence
for assessing the feasibility of TDM implementation.

This study investigates the clinical significance of nilotinib
plasma concentrations in CML patients by evaluating efficacy
and safety outcomes. Through detailed analysis of the complex
relationships between plasma concentrations, therapeutic
responses, and adverse drug reactions (ADRs), and by

systematically examining the influence of factors such as gender,
age, treatment duration, and hepatic or renal function indices, this
study aims to provide essential evidence to support personalized
nilotinib treatment strategies in CML management.

2 Materials and methods

2.1 Study design and participants

This retrospective cohort study was conducted at Nanfang
Hospital of Southern Medical University between March 2021 to
February 2024. The study included CML patients receiving oral
nilotinib therapy with TDM. Inclusion criteria were: (1) a confirmed
diagnosis of CML; and (2) ongoing nilotinib treatment with plasma
concentration monitoring. A total of 123 CML patients treated with
nilotinib were initially considered.

Exclusion criteria included patients with missing records of
nilotinib dosage or plasma concentration data. Subsequently,
patients lacking crucial data (n = 2) were excluded, yielding
121 patients included in the primary analysis. The study
protocol was approved by the Institutional Review Board
(Approval No: NFEC–2025–147). The study flowchart is
presented in Figure 1.

FIGURE 1
Flowchart of the study design.
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2.2 Analytical assays

An ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) method was employed to quantify
nilotinib plasma concentrations. The UPLC-MS/MS system was
calibrated using a series of standard solutions, and a calibration
curve was generated with a linear regression analysis (y = mx + b,
R2 > 0.99), where y represents the peak area ratio of the analyte to the
internal standard, and x represents the concentration of the analyte.
Quality control samples were analyzed to verify the accuracy and
precision of the assay:Lower limit of quantification (LLOQ):
1 ng mL-1;Linear range: 1–5,000 ng mL-1;Intra-/inter-day
precision: <15% CV. Concentration normalization was performed
using an internal standard to account for potential matrix effects and
instrument variability.

Sampling Protocol: Blood samples were strictly collected within
30 min prior to the next scheduled dose (trough concentration, Cmin)
between 8:00–8:30 a.m., ensuring measurement of true steady-state
concentrations after ≥8 days of continuous dosing. This sampling
time was selected to target the trough concentration based on the
known pharmacokinetic profile of nilotinib, which reaches peak
serum concentration (Cmax) approximately 4 h post-dose, has an
elimination half-life (t1/2) of approximately 16 h, and achieves steady-
state plasma concentrations within 8 days of continuous
administration (Ding and Zhong, 2013; Wang et al., 2018).

Analysis of Repeated Measures: Pharmacokinetic data were
analyzed using a mixed-effects model to account for both inter-
individual and intra-individual variability. The model included time
as a fixed effect and individual random intercepts and slopes to
capture the variability in concentration profiles among participants.
Model fit was evaluated using the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) (Jones, 2011), with
lower values indicating a better fit. Nonlinear mixed-effects
modeling was conducted to estimate the structural model and
population pharmacokinetic parameters and pharmacokinetic
parameter estimates (Choi et al., 2020; Kang and Lee, 2009).

2.3 Efficacy and safety evaluation

According to the NCCN 2024 guidelines (Shah et al., 2024),
major molecular response (MMR) was used to evaluate therapeutic
efficacy, defined as BCR::ABL1 transcript levels ≤0.1% on the
International Scale (BCR::ABL1 IS) at any time point. Adverse
events were graded based on the Common Terminology Criteria
for Adverse Events (CTCAE) (Freites-Martinez et al., 2021) version
5.0, with systematic monitoring and documentation throughout the
treatment period.

2.4 Data collection

Patient demographic data, including age, sex, prior treatment,
and comorbidities, were collected. Information on nilotinib dosing
regimens, plasma concentrationmeasurements, BCR:ABL1 IS levels,
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
total bilirubin (TBIL), serum creatinine (Cr), neutrophils (NEUT),
red blood cell (RBC), hemoglobin (Hb), platelets (PLT), triglycerides

(TG), total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-C), glucose (GLU), amylase, lipase, as well as therapeutic
efficacy outcomes and occurrences of adverse events during
treatment, was also recorded.

Data on BCR::ABL1 mutation status at baseline or during
treatment were not routinely collected as part of standard clinical
care for all patients in this cohort and are therefore unavailable for
analysis. Similarly, pharmacogenetic profiling (e.g., for CYP3A4,
CYP2C8, or UGT1A1 polymorphisms) and comprehensive
screening for drug-drug interactions were not performed. While
these factors represent potential confounders, their absence is a
inherent constraint of the retrospective design. Future prospective
studies are warranted to incorporate these valuable parameters.

2.5 Statistical analysis

Statistical analyses were conducted using IBM SPSS Statistics
(version 21.0, IBM Corp., Armonk, NY, United States). Continuous
variables were described as mean ± standard deviation (Mean ± SD),
and categorical variables were presented as percentages.
Comparative analyses were performed using the X2 test, the
Mann-Whitney U test, and the Kruskal-Wallis H test.
Spearman’s rank correlation was used to assess associations.
Receiver operating characteristic (ROC) curve analysis was
applied to evaluate the predictive value of plasma concentrations
for therapeutic efficacy and safety. Univariate andmultivariate linear
regression models were used to identify factors influencing nilotinib
plasma concentrations. Data visualization was performed using
GraphPad Prism (version 10.0, GraphPad Software, San Diego,
CA, United States). A two-tailed p < 0.05 was considered
statistically significant.

3 Results

3.1 Baseline

Patients were stratified into the effective group (n = 67) and the
ineffective group (n = 54) based on achievement of MMR. Baseline
characteristics of the two groups are presented in Supplementary
Table S1. No significant differences were observed between the
groups in baseline variables, including sex, age, prior treatment,
comorbidities, and dosage (P > 0.05). However, significant
differences were noted in treatment duration (P = 0.04).

3.2 Relationship between plasma
concentration and clinical efficacy

The median plasma concentration of nilotinib among the
121 patients was 870.04 ng mL-1 (IQR:526.35–1,219.97), with a
mean value of 902.84 ± 509.42 ng mL-1. The nilotinib plasma
concentrations were significantly higher in the effective group
(1,036.40 ± 463.67 ng mL-1) compared to the ineffective group
(737.14 ± 518.97 ng mL-1) (P < 0.001; Figure 2A). A significant
moderate positive correlation was observed between nilotinib
plasma concentrations and MMR (Spearman’s ρ = 0.33, P < 0.001).
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Using MMR attainment as the dependent variable and plasma
concentration as the independent variable, ROC curve analysis
yielded an area under the curve (AUC) of 0.693 (95% CI:
0.596–0.791) for predicting MMR. At the maximal Youden index
(J = 0.373), the optimal plasma concentration threshold was
identified as 636.99 ng mL-1, with a sensitivity of 83.6% and a
specificity of 53.7% (Figure 2B).

3.2.1 Dose normalization to address TDM
confounding

To mitigate potential bias from TDM-guided dose adjustments
(where low-exposure patients receive higher doses and vice versa),
we applied dose normalization using the formula:

Cnorm � Cmin/ Dose/600mg( )

FIGURE 2
Assessment of nilotinib plasma concentration and its predictive value for treatment efficacy. (A) Trough plasma concentrations were significantly
higher in patients who achieved major molecular response (Effective group) compared to those who did not (Ineffective group). Data are presented as
mean ± SD. ***P < 0.001. (B) Receiver operating characteristic (ROC) curve analysis of nilotinib plasma concentration for predicting major molecular
response (MMR). The area under the curve (AUC), optimal efficacy threshold (636.99 ng/mL), and its corresponding sensitivity and specificity are
indicated. Abbreviations: AUC, area under the curve; CI, confidence interval.

FIGURE 3
Analysis of dose-normalized nilotinib exposure and its predictive value for treatment efficacy. (A) Comparison of dose-normalized plasma
concentrations (Cnorm) between the effective and ineffective groups. Cnorm was calculated as Cmin/(Dose/600 mg) to eliminate bias introduced by
TDM-guided dose adjustments. Data are presented as mean ± SD. **P < 0.01. (B) Receiver operating characteristic (ROC) curve analysis of Cnorm for
predicting major molecular response. The persistence of a significant AUC after dose normalization strengthens the finding that the efficacy
threshold is a physiologically relevant target, independent of administered dose. Abbreviations: AUC, area under the curve; CI, confidence interval;
Cnorm, dose-normalized concentration.
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After normalization, median Cnorm was 907.02 ng mL-1 (IQR:
546.14–1,274.47), mean 907.02 ± 600.41 ng mL-1. The efficacy
correlation persisted:MMR-achievers maintained significantly
higher Cnorm (1,045.10 ± 468.08 ng mL-1) versus non-responders
(858.34 ± 723.66 ng mL-1; P < 0.05, Figure 3A), with a sustained
moderate correlation to response depth (ρ = 0.27, P < 0.05).

ROC analysis using Cnorm showed an AUC of 0.655 (95% CI:
0.554–0.755) and notably identified the identical optimal threshold
of 636.99 ng mL-1 (sensitivity 85.1%, specificity 46.3%; Figure 3B).
This consistency confirms that while TDM practices attenuated
statistical associations, the underlying exposure-efficacy relationship
remains robust.

3.3 Relationship between plasma
concentration and overall incidence of ADRs

Among 121 CML patients, 93 (76.9%) experienced treatment-
emergent adverse events; however, the vast majority (65.29% of
all patients) were Grade 1–2 in severity, with only 11.57%
experiencing Grade 3–4 events. Initial analysis revealed no
significant difference in mean nilotinib concentrations
between patients with ADRs (934.90 ± 527.89 ng mL-1) and
those without (796.39 ± 434.23 ng mL-1; P = 0.288). Non-
hematologic toxicities predominated, primarily grade
1–2 hyperbilirubinemia (28.1%), ALT elevation (26.4%), and
hypercholesterolemia (24.0%), with only 0.8% progressing to
grade 3–4 for each. Hematologic toxicities included anemia
(25.7%) and thrombocytopenia (13.2%), exhibiting grade
3–4 incidences of 1.7% and 2.5% respectively. Importantly, no
concentration-dependent severity gradient was observed: grade
1–2 ADRs (n = 79, 65.3%) occurred at 921.09 ± 498.23 ng mL-1

while grade 3–4 events (n = 14, 11.6%) manifested at 1,012.81 ±
689.23 ng mL-1 (P > 0.05, Figure 4A).

This pattern persisted after dose normalization, where neither
overall ADR incidence (ADR group: 988.66 ± 624.35 ng mL-1 vs.
not-ADR group: 872.53 ± 513.03 ng mL-1; P = 0.721) nor severity
stratification (grade 1–2: 975.22 ± 620.03 ng mL-1 vs. grade 3–4:
1,064.22 ± 666.92 ng/mL; P > 0.05, Figure 4B) showed no statistically
significant associations. Fourteen patients (11.57%) required dose
modifications (reduction n = 7, discontinuation n = 7) due to
intolerance, though no fatal events occurred. Collectively, these
analyses demonstrate that nilotinib exposure levels–whether raw
or dose-normalized–were not predictive of ADR risk or severity in
this cohort.

Among all ADRs, non-hematologic toxicities were
predominant, with the most common being hyperbilirubinemia
(28.1%), elevated ALT (26.4%), and hypercholesterolemia
(24.0%), primarily grade 1–2 (27.3%, 25.6%, and 24.0%,
respectively). Only one case (0.8%) of grade 3–4 toxicity was
reported for either hyperbilirubinemia or elevated ALT.
Hematologic toxicities mainly included anemia (25.7%) and
thrombocytopenia (13.2%), with grade 3–4 incidences of 1.7%
and 2.5%, respectively (Supplementary Table S2).

3.4 Relationship between the incidence of
ADRs in different concentration range
groups and the plasma concentration

Based on the efficacy-derived threshold (636.99 ng mL-1)1 and
pharmacokinetic characteristics (Ding and Zhong, 2013; Tian et al.,
2018) suggesting toxicity risk escalates above double this threshold
(>1,273.98 ng mL-1), patients were stratified into three cohorts: low

FIGURE 4
Analysis of the relationship between nilotinib exposure and the incidence and severity of ADRs. (A)Comparison of raw trough plasma concentrations
(Cmin) among patients with no ADRs, Grade 1–2 ADRs, and Grade 3–4 ADRs. (B) Comparison of dose-normalized concentrations (Cnorm) among the
same patient groups. Data are presented as mean ± SD. Ordinary one-way ANOVA revealed no statistically significant differences in nilotinib exposure
across all comparison groups (all P > 0.05), indicating that plasma concentration was not a predictor of ADR risk or severity. This finding was
consistent for both raw (A) and dose-normalized (B) concentrations, and aligns with the clinical profile of nilotinib where ADRs are common but
predominantly low-grade and manageable. Abbreviations: ADR, adverse drug reaction; Cnorm, dose-normalized concentration.
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concentration (<636.99 ng mL-1, n = 40), medium concentration
(636.99–1,273.98 ng mL-1, n = 53) and high concentration
(>1,273.98 ng mL-1, n = 28). The overall incidences of ADRs
were 72.5%, 79.2% and 78.6%, respectively. Significant differences
in plasma concentration distribution were observed among the three
groups (P < 0.0001; Figure 5). In all cohorts, grade 1–2 ADRs were
predominant (57.5%, 69.8%, 67.9%), while grade 3–4 events were
less frequent (15.0%, 9.4%, 10.7%).

The distributions of ADRs, including rash, headache, myalgia,
elevated ALT, elevated AST, increased lipase, increased amylase,
elevated triglyceride, elevated cholesterol, thrombocytopenia,
anaemia, and neutropenia, showed no significant differences
among the groups (all P > 0.05). However, a significant
association was observed between nilotinib concentration groups
and the incidence of hyperbilirubinemia (P = 0.030). The high-
concentration group exhibited a markedly higher incidence (50.0%)
and severity of hyperbilirubinemia compared to the low (20.0%) and
medium-concentration groups (22.6%), with grade 3–4 events
occurring in 3.6% of high-concentration group, while no severe
cases were reported in the other groups (Supplementary Table S3).

Utilising the occurrence of hyperbilirubinemia as the dependent
variable and plasma concentration as the independent variable, ROC
curve analysis yielded an AUC of 0.656 (95% CI: 0.540–0.771) for
predicting elevated TBIL. At the maximal Youden index (J = 0.274),
the optimal plasma concentration threshold was identified as
1,290.34 ng mL-1, resulting in a sensitivity of 41.2% and a
specificity of 86.2% (Figure 6).

3.5 Treatment duration and clinical response

We compared the treatment duration between the effective
group and the ineffective group. The distribution of patients
across different treatment phases (0–6 months,
6–12 months, >12 months) was significantly different between
the two cohorts (P < 0.001). A notably larger proportion (67.2%)
of the effective group were found in the longer treatment duration
groups (>12 months), whereas the ineffective group were more
prevalent in the shorter treatment duration groups (0–6 months,
44.0%). This indicates that responders were consistently exposed to
nilotinib for a longer period.

3.6 Analysis of influencing factors of nilotinib
plasma concentration

Univariate linear regression analysis was performed to evaluate
the associations between nilotinib plasma concentrations and
clinical variables. The results showed that only treatment
duration was significantly associated with plasma concentration
(B = 113.150, P = 0.036), while PLT approached but did not
reach statistical significance (B = 1.294, P = 0.073). No
significant associations were observed for age, sex, dosage, ALT,
AST, TBIL, Cr, NEUT, or Hb (P > 0.05; Supplementary Table S4).

As univariate linear regression identifies only independent
associations without adjusting for confounding factors, variables
with P < 0.05 (treatment duration, P = 0.036), those approaching the
significance threshold (PLT, P = 0.073), and metabolically relevant
parameters (TBIL and Hb) were included in the multivariate linear
regression model to assess correlations with plasma concentrations.
The results showed that although the overall model did not reach
statistical significance (F = 1.926, P = 0.111), treatment duration
remained a significant independent predictor of nilotinib
concentrations (B = 112.777, P = 0.029). No significant

FIGURE 5
Relationship between Plasma Concentration of ADRs in Different
Concentration Ranges. Patients were stratified into three cohorts
based on pharmacokinetic-derived thresholds: low (<636.99 ng/mL,
n = 40), medium (636.99–1,273.98 ng/mL, n = 53), and high
(>1,273.98 ng/mL, n = 28) concentration groups. The overall incidence
of ADRs was high and comparable across all groups (72.5%–79.2%),
with Grade 1–2 events being predominant in each cohort. The
distribution of most specific ADR types (e.g., rash, elevated ALT,
anemia) did not differ significantly among groups (all P > 0.05). A
notable exception was hyperbilirubinemia, which exhibited a
significant concentration-dependent increase in incidence (P =
0.030), with the high-concentration group experiencing a markedly
higher rate (50.0%). Abbreviations: ADR, adverse drug reaction.

FIGURE 6
Receiver operating characteristic (ROC) curve analysis for
identifying a nilotinib plasma concentration threshold associated with
hyperbilirubinemia. The ROC curve was generated to evaluate the
predictive performance of nilotinib plasma concentration for the
occurrence of hyperbilirubinemia. The area under the curve (AUC) was
0.656 (95% CI: 0.540–0.771). The optimal predictive threshold was
identified as 1,290.34 ng/mL. Abbreviations: AUC, area under the
curve; CI, confidence interval.
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associations were observed for TBIL, Hb, or PLT (P > 0.05). These
findings suggest that, apart from treatment duration, the included
variables were insufficient to establish a robust predictive model.

4 Discussion

Nilotinib, a second-generation BCR::ABL1 inhibitor,
significantly improves clinical outcomes in imatinib-resistant or
intolerant CML patients and is recommended as first-line
therapy for intermediate-to high-risk CML by the NCCN (2024)
(Shah et al., 2024). However, interindividual variability in plasma
protein binding, drug absorption, and CYP3A4-mediated
metabolism (Alves et al., 2021; García-Gutiérrez and Hernández-
Boluda, 2019) contributes to pharmacokinetic heterogeneity,
leading to ongoing debates regarding the concentration-efficacy
relationship. In this study, analysis of nilotinib plasma
concentrations in 121 CML patients at Nanfang Hospital of
Southern Medical University revealed substantial interindividual
variability (25.00–2,509.46 ng mL-1), although the primary
distribution range was consistent with internationally reported
values (Larson et al., 2012; Verheijen et al., 2017; Wang et al.,
2018). These findings support the need for further
research into TDM.

Current evidence indicates a complex and controversial
relationship between nilotinib plasma concentrations and clinical
efficacy. A meta-analysis by Garcia-Ferrer et al. (2019) found no
statistically significant difference in mean concentrations between
patients who achieved MMR (1,075.2 ± 374.0 ng mL-1) and non-
responders (1,025.7 ± 408.4 ng mL-1) (P = 0.536). Similarly, a study
by Allegra et al. (2023) reported no significant correlation between
nilotinib concentrations and 12-month MMR rates.

However, a critical methodological concern arises in exposure-
response studies of TDM-managed cohorts: dose adjustments
driven by therapeutic monitoring—specifically, escalation in
patients with low exposure or reduction in those with high-
exposure (Yates et al., 2020) —may artificially narrow the
observed exposure range and consequently obscure the true
pharmacokinetic-pharmacodynamic relationship. To address this
potential bias, we applied dose normalization (Cnorm = Cmin/(Dose/
600 mg)), which estimates exposure under standardized dosing.
Crucially, the efficacy association persisted after normalization: the
identical optimal threshold (636.99 ng mL-1L) for MMR prediction
was maintained, and Cnorm remained significantly higher in
responders (P < 0.05). This consistency suggests that while TDM
practices attenuated statistical associations (AUC decreased by
5.5%), the 636.99 ng mL-1 threshold reflects a physiologically
relevant efficacy target independent of dosing adjustments.

In contrast, our study demonstrated significantly higher
concentrations in the effective groups compared to the ineffective
groups (1,036.40 ± 463.67 vs. 737.14 ± 518.97 ng mL-1; P < 0.001),
with MMR achieved at concentrations >636.99 ng mL-1. This
threshold is closely aligned with findings from Fukuda et al.
(Fukuda, 2022), who proposed an early-phase target of
619 ng mL-1. Notably, Fukuda’s cohort study focused on 3-
month concentrations, while Garcia-Ferrer’s meta-analysis
incorporated longitudinal data, suggesting a decreasing predictive
value over time. The consistency between our findings and those of

Fukuda highlights the importance of the pharmacokinetic window
during the initial months of treatment. To enhance the predictive
accuracy of therapeutic efficacy, comprehensive evaluations should
also consider patient-specific genetic profiles (e.g., BCR::
ABL1 mutation subtypes) and metabolic characteristics (e.g.,
CYP3A4 enzymatic activity) (Garcia-Ferrer et al., 2019; Miura,
2015; Tian et al., 2018).

According to the 2016 European LeukemiaNet (ELN)
recommendations (Steegmann et al., 2016), most CML patients
experience treatment-emergent ADRs during early-phase TKI
therapy, predominantly of mild to moderate severity. In this
study, the overall incidence of ADRs was 76.9%, with no
significant association observed with plasma concentrations (P =
0.288). Grade 1–2 ADRs predominated (65.29%), while grade
3–4 events were infrequent (11.57%). However, this finding
aligns with the established safety profile of nilotinib,
characterized by frequent low-grade ADRs that are typically
manageable. A Korean post-marketing surveillance study
reported an overall ADR incidence of 61.3% for nilotinib (Ahn
et al., 2022). Importantly, our data corroborate these observations,
with 65.29% of patients experiencing only mild-to-moderate (Grade
1–2) events that did not necessitate dose modification or treatment
discontinuation. The mean nilotinib concentration in patients with
ADRs (934.90 ± 527.89 ng mL-1) was higher than that in patients
without ADRs (796.39 ± 434.23 ng mL-1), consistent with the
findings of the meta-analysis by Garcia-Ferrer et al. (2019).
Compared with imatinib, nilotinib presents a higher risk of
elevated TBIL (Carneiro et al., 2015). A comprehensive meta-
analysis (Teo et al., 2013) reported a significantly increased risk
of high-grade (grade≥3) hepatotoxicity in cancer patients receiving
TKIs compared with controls. Notably, our study demonstrated a
concentration-dependent risk of hyperbilirubinemia: the high-
concentration group exhibited a significantly higher incidence of
elevated TBIL (50.0%, P = 0.030), suggesting a potential alert
threshold of 1,290.34 ng mL-1. Pharmacogenetic analyses have
implicated uridine diphosphate glucuronosyltransferase 1A1
(UGT1A1) polymorphisms in nilotinib-induced
hyperbilirubinemia (Singer et al., 2007), consistent with previous
reports of TKI-associated hepatotoxicity (Teo et al., 2013). Although
a meta-analysis indicated a higher incidence of rash in nilotinib-
treated patients compared with those receiving imatinib (Li et al.,
2023), no concentration-dependent relationship for rash was
observed in the present study (13.2%, P = 0.682). In our cohort,
the most common hematologic ADRs were anemia (25.7%) and
thrombocytopenia (13.2%), with grade 3–4 incidences of 1.7% and
2.5%, respectively. Compared with other clinical trials (de Tute et al.,
2024; He et al., 2023), our study reported a lower incidence of grade
3–4 hematologic toxicities, which may be attributable to the small
sample size and potential racial differences. Despite comparable
overall ADR rates across different concentration strata, clinicians
remain vigilant for concentration-dependent toxicities in patients
with high drug exposure and consider dosage optimization
through TDM.

Nilotinib is primarily metabolised in the liver via CYP3A4-
mediated oxidation and hydroxylation pathways (Tian et al., 2018).
Univariate regression analysis revealed a significant positive
correlation between treatment duration and plasma
concentrations (B = 113.150, P = 0.036), suggesting that
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prolonged therapy may increase drug exposure through
CYP3A4 saturation or cumulative effects. This pharmacokinetic
finding is strongly supported by our clinical observation that the
effective group had a significantly longer treatment duration
compared to the ineffective group (P < 0.001). This disparity
likely reflects the natural course of therapy: patients who achieve
a molecular response are maintained on nilotinib, leading to longer
cumulative exposure. Conversely, patients with primary resistance
or treatment failure are often switched to alternative therapies,
resulting in a shorter observed treatment duration. Thus, the
longer treatment duration in the effective group may be both a
cause and a consequence of successful therapy. Demographic
variables such as sex (P = 0.534) and age (P = 0.733) showed no
significant effect, consistent with previous studies reporting 10%–
20% higher exposure in women than in men, a difference below the
clinical threshold for dosage adjustment (Tian et al., 2018).
Physiologically based pharmacokinetic (PBPK) modelling in
paediatric studies (Heimbach et al., 2019; Hijiya et al., 2020),
which incorporated the ontogeny of metabolic enzymes and
physiological parameters, demonstrated comparable steady-state
exposures between children receiving 230 mg m-2 twice daily
(bid) and adults receiving 400 mg bid, with no observed age-
related variability, consistent with our findings. Although food
intake is known to increase nilotinib bioavailability (Boons et al.,
2018), dietary variables were not assessed in this study, underscoring
the need for multifactorial predictive models in future research.

Variables with statistical significance (P < 0.05; treatment
duration), near-significance (PLT, P = 0.073), and metabolic
relevance (TBIL, Hb) in univariate analyses were included in
multivariate linear regression to evaluate associations with
nilotinib plasma concentrations. Although the overall model
lacked statistical significance (F = 1.926, P = 0.111), treatment
duration remained an independent predictor of plasma
concentrations (B = 112.777, P = 0.029), whereas TBIL, Hb, and
PLT showed no significant associations (all P > 0.05). Notably, the
longitudinal analysis by Garcia-Ferrer et al. (2019) showed a decline
in the predictive utility of plasma concentrations with extended
follow-up, highlighting limitations in our current variable selection.
These findings emphasize the need for larger sample sizes and
incorporation of unmeasured covariates to improve model
robustness.

Our study is limited by its single-centre, retrospective design and
modest sample size (n = 121), which restricts the power of subgroup
analyses, particularly for rare, serious adverse events. Key covariates,
including CYP3A4 genotypes, BCR::ABL1 mutation status, and
other pharmacogenetic factors (e.g., UGT1A1), and drug-drug
interactions, were not accounted for, potentially limiting
generalizability of the findings. Although the lack of systematic
genetic data is a common constraint in real-world pharmacokinetic
studies, we cannot fully rule out its potential confounding effect on
cohort distribution and response outcomes. Future prospective,
multicentre studies are needed to address these limitations and
refine predictive models. Systematic reviews by Garcia-Ferrer et al.
(2019) (n = 654) and Wang et al. (2018) (n = 26) concluded that
current evidence does not sufficiently support the routine use of
therapeutic drug monitoring (TDM), a concern mirrored by our
findings of limited threshold specificity. Nevertheless, the
prospective data from Fukuda (2022) support the value of early-

phase concentration monitoring and suggest that future studies
should focus on dynamic concentration profiles during the initial
treatment phase rather than relying on static thresholds. Our
analysis acknowledges important constraints regarding prognostic
factors. Due to incomplete documentation of baseline risk
stratification (e.g., Sokal scores) in this retrospective cohort, we
could not adjust for these established predictors in multivariate
models. This limitation, common in real-world TDM studies (Yates
et al., 2020), may influence the precision of exposure-response
estimates but does not invalidate the identified threshold given
its consistency with data (Fukuda, 2022; Garcia-Ferrer et al., 2019).

5 Conclusion

Our study concludes that TDM of nilotinib provides actionable
guidance for optimising CML therapy, with particular emphasis on
early phase concentration targets >636.99 ng·mL-1 to ensure
efficacy, while requiring vigilant monitoring of bilirubin levels in
patients >1,290.34 ng·mL-1. To address TDM-inherent adjustment
bias, we implemented a dose-standardized exposure metric, which
confirmed the robustness of these thresholds. Clinical treatment
requires the incorporation of dynamic TDM to enhance therapeutic
effectiveness and reduce toxicity risks, advancing CMLmanagement
into precision medicine by personalizing patient treatment.
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