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Background: Ferulic acid (FA) is a natural phenolic compound that has
demonstrated effectiveness against Huntington's disease (HD). However, its
exact mechanism remains unclear. Therefore, the current study aims to
investigate FA's potential mechanism of action against 3-nitropropionic acid
(3NP)-induced HD.

Methods: Adult male Wistar albino rats were administered FA orally (100 mg/kg)
for 3 weeks, and 3NP (10 mg/kg) was intraperitoneally administered during the
last 2 weeks to induce HD. Behavioral performance was assessed using the open
field and hanging wire tests. Striatal tissue was analyzed using ELISA, gRT-PCR,
Western blotting, histopathology, and immunohistochemistry.

Results: Administration of 3NP led to weight loss, neurobehavioral deficits,
oxidative damage, apoptotic cell death, and neuroinflammation. FA treatment
mitigated these pathological changes by activating Nrf2/HO-1 signaling, a critical
player in cellular redox balance. This beneficial effect was mirrored in restoring
TAC levels and suppressing MDA. Moreover, FA suppressed TLR4/NF-«xB
inflammatory signaling, thereby reducing TNF-a and IL-1p levels. In addition,
the anti-apoptotic properties of FA were confirmed by modulating SIRT1/
p53 signaling, leading to Bcl-2 enhancement and caspase-3 downsizing.
Furthermore, FA enhanced neuronal survival and plasticity confirmed by
neurotrophic BDNF elevation. Histopathological and immunohistochemical
analyses confirmed improved neuronal survival and reduced gliosis following
FA treatment.
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Conclusion: The current

10.3389/fphar.2025.1678724

research demonstrates that FA exhibits potent

neuroprotective effects in experimental HD by modifying Nrf2/HO-1, TLR4/NF-
kB, and SIRT1/p53 signaling pathways. These findings provide new mechanistic
insights into FA's potential role in managing HD.
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1 Introduction

Huntington’s disease (HD) was initially defined as a convulsive
condition, while its formal description as hereditary chorea by
George Huntington was provided in 1872 (Gonzalez-Alegre and
Afifi, 2006; Tunez et al., 2010) HD is an autosomal dominant
neurodegenerative  disorder  distinguished by  cognitive
impairment, involuntary movements, and psychiatric symptoms
(Chen-Plotkin et al., 2006; Ayala-Pefna, 2013). The condition is
primarily characterized by progressive damage to the striatum
within the basal ganglia (Ayala-Pena, 2013; Tunez et al.,, 2010).
Although the exact mechanisms behind neuronal degeneration in
HD remain uncertain, several pathological factors have been
implicated, including oxidative stress, disrupted energy, persistent
stimulation of astrocytes and microglia, and excessive pro-
inflammatory cytokines contribute to the
(Palpagama et al., 2019; Paul and Snyder, 2019).

3-Nitropropionic acid (3NP) is a naturally occurring mycotoxin

disease process

known for its ability to induce HD pathogenesis in experimental
animals by inhibiting succinate dehydrogenase enzyme and
disrupting mitochondrial energy production (Ttnez et al., 2010).
This disruption leads to a cascade of harmful events including
reduced antioxidant defense mechanisms and the generation of
reactive oxygen species generation (Bono-Yagiie et al, 2020).
Additionally, 3NP triggers inflammatory responses as evidenced
by elevated pro-inflammatory cytokines including intelukin-1 beta
(IL-1B) and tumor necrosis factor-alpha (TNF-a) (Valadéo et al,
2020). Moreover, it alters glial responses by enhancing glial fibrillary
acidic protein (GFAP) expression and activating microglia (Mustafa
et al., 2021; Shawki et al., 2021). Furthermore, it promotes caspase-
mediated apoptotic initiation, contributing to the neurodegenerative
process associated with HD (Goyal et al., 2024).

Silent information regulator 1 (SIRT1) plays a critical protective
role in HD (Duan, 2013). SIRT1 activates nuclear factor erythroid 2-
related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidative
signaling. Consequently, SIRT1 inhibition is associated with
neuroinflammation, oxidative stress, and apoptosis (Huang et al.,
2015; Sethi et al., 2025).

In addition, SIRT1 activation can suppress nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-«xB) signaling and
reduce its downstream effects. Moreover, SIRT1 is considered a
promising therapeutic target due to its ability to inhibit p53 activity,
which is implicated in the apoptotic progression of
neurodegenerative diseases (Razick et al., 2023).

Taken together, the SIRT1/Nrf2/NF-kB/p53 axis represents an
interconnected signaling network that simultaneously governs
oxidative balance, inflammatory responses, and apoptosis in HD.
Thus, targeting this axis provides a mechanistic rationale to
investigate how ferulic acid (FA) orchestrates multi-faceted
neuroprotective effects.
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FA is a widely distributed natural bioactive phenolic acid that
belongs to the hydroxycinnamic group. FA possesses various
biological activities, particularly in vascular endothelial injury,
apoptosis, oxidative stress, inflammation, and fibrosis (Li et al.,
2021). Notably, previous research has documented the protective
effect of FA against different neurological diseases including
depression, Alzheimer’s disease, cerebral ischemia-reperfusion
injury, epilepsy, and Parkinson’s disease (Thapliyal et al., 2021).
Moreover, Denny Joseph (2014) documented the protective effect
of FA against 3NP-induced neurotoxicity, however, the
underlying mechanisms remain incompletely investigated,
which was the goal of the present study. The present study
advances this field by demonstrating for the first time that FA
can potentially modulate the Nrf2/HO-1, TLR4/NF-kB, and
SIRT1/p53 signaling pathways.

2 Materials and methods
2.1 Drugs and chemicals

The drug (FA, Y0001013) and the toxicant (3NP, N5636) were
purchased from Sigma-Aldrich (St. Louis, MO, United States). Both
compounds were dissolved in normal saline daily (3NP pH was
adjusted to 7.4 using NaOH).

2.2 Animals

Adult male Wistar albino rats (210-240 g) were procured from
VACSERA (Helwan, Egypt) and acclimatized for 10 days in the
animal facility of October 6 University’s Faculty of Pharmacy
(O6U), under controlled conditions of ventilation, temperature,
light, water, and diet. The experimental protocol adhered to NIH
standards and was approved by the O6U Research Ethics Committee
(Approval No: PRE-Ph-2411001).

2.3 Experimental design

The experiment lasts for 21 days (Danduga et al., 2018). Rats
were randomly assigned to four groups (19 rats per group) using a
computer-generated random number sequence as follows:

Normal group: Rats received normal saline (the vehicle)
for 21 days.

FA group: Rats were given FA (100 mg/kg, p.o.) for 21 days.

3NP group: Rats were injected with 3NP (10 mg/kg, i.p.) from
day 8 to day 21 of the experiment.

FA+3NP group: Rats received FA (100 mg/kg, p.o.) for 21 days
(Zhang et al., 2023), administered 1 hour prior to 3NP injections, as
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FIGURE 1
Schematic presentation of experimental design.

previously described (Denny Joseph, 2014), with 3NP (10 mg/kg,
i.p.) given only during the last 2 weeks (see Figure 1).

After completing the behavioral experiments on day 22, the
animals’ weight was determined then the animals were euthanized
by cervical dislocation under thiopental anesthesia (50 mg/kg; i.p.; Cat.
No. T1019, Sigma-Aldrich, St. Louis, MO, United States) (Isik et al,
2025) and subdivided into four subsets. Three striatal subsets were
stored at —80 °C for biochemical and ELISA assay (n = 6), qRT-PCR
(quantitative Reverse Transcription Polymerase Chain Reaction, n =
6), and Western blot (n = 3). The remaining subset (n = 4) was fixed in
10% formalin for subsequent histopathological/immunohistochemical
analyses. During the data collection/analysis, the investigators were
unaware of sample identities and an independent experimenter
handled all sample coding and decoding.

2.4 Behavioral assessments

All behavior experiments were conducted in a sound-isolated
room. In each group, ten animals underwent the open field test, and
the remaining animals were assessed using the hanging wire test.

2.4.1 Open field test

To assess the spontaneous locomotor activity, a wooden square
box with a polished black floor (16 equal squares; 100 x 100 x 40 cm)
was used (Ahmed et al., 2016). Each rat was individually allowed to
explore freely for 10 min. The overhead camera recorded different
parameters including the distance traveled, average velocity, and
immobility duration. The videos were analyzed using ANY-maze
video tracking software (Stoelting Co., United States). Locomotor
activity parameters were quantified using automated thresholds set
within the software (immobility was defined as movement below
2 cm/s for >1 s). All analyses were conducted by an assessor blinded
to group allocation.
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Behavioral tests

2.4.2 Hanging wire test

Rats were permitted to grip a steel wire with their forelimbs for
90 s. The wire was stretched horizontally at a height of 50 cm above a
cushioned surface (Shalaby et al., 2018). The duration each rat held
onto the wire was documented.

2.5 Biochemical and ELISA assay

All protocols were carried out according to the manufacturer’s
pamphlets. ~ Striatal ~ total antioxidant capacity (TAC) and
malondialdehyde ~ (MDA)  were assessed using commercial
Biodiagnostic (Dokki, Egypt) colorimetric kit (TA 25 13 and MD
25 29, respectively). Striatal B-cell lymphoma-2 (Bcl-2; SLO108Ra),
BDNF (SLO131Ra), and IL-1B (SL0O402Ra) were assessed using
Sunlong kits (Hangzhou, China). Striatal p53 (CSB-E08336r) and
TNF-a (CSB- E11987r) were assessed using Cusabio kits (Wuhan, China).

2.6 Western blot

Briefly, striatal tissues were rinsed and homogenized in ice-cold
lysis buffer containing protease and phosphatase inhibitor cocktails
(Sigma, United States). The protein concentration was quantified
colorimetrically. For immunoblotting, 30 ug of protein was
incubated overnight at 4°C with primary antibodies against:
SIRT1 (1:1000; Cat. No. PA5-20964, Thermo Scientific,
United States) and f-actin (1:1000; Cat. No. A5060, Sigma,
United States). Membranes were washed and probed with
horseradish peroxidase (HRP)-conjugated secondary antibodies
(Dako, Denmark). Protein bands were detected using Western
Lightning™ Plus ECL (Perkin Elmer, United States) and imaged
with a ChemiDoc system (Bio-Rad, United States). Band intensities
were normalized to B-actin and analyzed using Biorad ImageLab
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TABLE 1 The sequence of all used primers.
Gene Primer sequence

F: 5'- GCCAGCTGAACTCCTTAGAC-3'
R: 5'- GATTCGTGCACAGCAGCA-3'

Nrf2

F: 5'-CGACAGCATGTCCCAGGATT-3'
R: 5-TCGCTCTATCTCCTCTTCCAGG-3.

HO-1

TLR4
R: 5-GCCATGCCTTGTCTTCAATTG-3’

F: 5'-CATGACATCCCTTATTCAACCAAG-3'

10.3389/fphar.2025.1678724

Accession number

NM_031789.2

NM_012580.2

NM_019178.2

F: 5'- AGGGAAATCGTGCGTGACAT-3'
R: 5'- GAACCGCTCATTGCCGATAG-3'

B-actin

software. Means of bands optical densities were measured and their
corresponding background subtracted, and then the subtracted
intensities were divided on to their corresponding -actin bands
intensities (normalization), and the control group is set to “1.”
(Burnette, 1981).

2.7 qQRT-PCR

The expression levels of Nrf2, HO-1, and TLR4 were quantified
by qRT-PCR following previously earlier reports (Sambrook et al.,
1989; Burnette, 1981; Nasser et al., 2022). Briefly, total RNA was
extracted using the SV Total RNA system (Cat. No. Z3100, Promega,
Madison, W1, United States), and the purity was verified by the OD
260/280 nm absorbance ratios. Equal quantities of purified RNA
were reverse transcribed to cDNA (Fermentas RT-PCR Kkit,
Waltham, MA, United States). Quantitative PCR was performed
using SYBR Green JumpStart Taq ReadyMix (Cat. No. S$4438,
Sigma-Aldrich, St. Louis, MO, United States). Primer specificity
was confirmed by melt curve analysis showing a single sharp peak
for each gene. Data were normalized to housekeeping genes and
analyzed using the 272" method. Primer sequences are listed
in Table 1.

2.8 Histopathology and Nissl staining for
neuronal survival rate

Brain tissues were fixed in 10% neutral buffered formalin,
dehydrated through a graded alcohol series, cleared in xylene, and
embedded in paraffin wax. Five um sections were cut and stained with
hematoxylin and eosin (H&E) for histological examination by light
microscopy. Nissl staining was used to evaluate the mean neuronal
survival rate in each group (Gendy et al., 2023b).

2.9 Immunohistochemistry (IHC)

Brains tissue sections were mounted on adhesive slides,
deparaffinized and re-hydrated to distilled water, subsequently a
heat-induced epitope retrieval step was performed. Tissue sections
were incubated for an hour at room temperature with primary anti-
Caspase-3, anti-NF-kB (at a dilution of 1:200, Sanat Cruz,
biotechnology, Inc.) and anti-GFAP (at a dilution of 1:300,
Abbexa, United Kingdom). After washing, the HRP-labelled
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FIGURE 2

FA intake impacts on the final body weight in rats intoxicated with
3NP. Data are presented as mean + SD; ns (non-significant, P > 0.05),
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

detection kit (BioSB, United States) was used to develop the color.
Mayer’s hematoxylin was used as counter stain. Negative controls
were processed without incubation with primary antibodies. Protein
expression was quantified as mean area percentage in random non-
overlapped five fields in each section using CellSens dimensions
Olympus software (Olympus, Japan) (Gendy et al., 2023b).

2.10 Statistical analysis

Data were analyzed using GraphPad Prism 9.0.0 (United States)
and expressed as mean * standard deviation (SD). Data normality
was assessed using the Shapiro-Wilk test and homogeneity of
Statistical
comparisons were performed by one-way ANOVA with Tukey’s

variance was evaluated using Levene’s test.

post hoc test. Statistical significance was set at p < 0.05.
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fall of latency in rats intoxicated with 3NP. Data are presented as mean + SD; ns (non-significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and

****P < 0.0001.

3 Results
3.1 FA impact on the body weight

3NP administration induced significant body weight reduction
(30% of normal group values; 186 + 17.9 g vs. 268 + 15.9 g in the
normal group, p < 0.0001). Notably, the FA+3NP group showed
significantly greater weight recovery (246 + 155 g, p < 0.0001)
compared to 3NP-treated animals (Figure 2).

3.2 FA impact on behavioral and
motor studies

As presented in Figure 3, 3NP intoxication induces striatal
damage, resulting in locomotor impairment. The 3NP group
exhibited significant behavioral impairments in the open field
test including decreased total distance traveled (3.86 + 1.48 m
vs. 9.66 + 1.52 m, p < 0.0001), reduced mean speed (0.0138 +
0.005 m/s vs. 0.0338 + 0.0043 m/s, p < 0.0001), and prolonged
immobility time (139 + 51.1 s vs. 75.7 £ 26.1 s, p < 0.001). Similarly,
fall-off latency in the hanging wire test decreased to 21.1 £ 8.24 s vs.
65.6 + 24.6 s in the normal group (p < 0.001). FA treatment
significantly mitigated these locomotor deficits, increasing total
distance traveled (10.9 + 1.74 m, p < 0.0001 vs. 3NP), mean speed
(0.0387 + 0.0104 m/s, p < 0.0001), and fall-off latency (49.8 *
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18.0s, p < 0.05), while reducing immobility time (88.9 + 30.4 s, p <
0.01 vs. 3NP) (Figure 3).

3.3 FA impact on Nrf2, HO-1, TAC, and MDA

3NP  administration  significantly ~ downregulated  striatal
Nrf2 mRNA expression (0.38-fold +0.08 vs. 1.02-fold +0.18 in the
normal group, p < 0.0001) and HO-1 mRNA expression (0.54-
fold +0.12 vs. 0.98-fold +0.16, p < 0.0001). Likewise, TAC levels were
markedly reduced (23.1 + 2.8 vs. 59.9 + 7.9 mmol/mg protein, p <
0.0001), while MDA content was significantly elevated (104 + 13.7 vs.
444 + 54 nmol/mg protein, p < 0.0001) compared to the normal
group. FA treatment significantly restored Nrf2 (0.72-fold +0.09, p <
0.001) and HO-1 (0.74-fold +0.10, p < 0.05) expression, enhanced TAC
levels (482 + 7.5, p < 0.0001), and decreased MDA (71.5 + 6.5, p <
0.0001) compared to the 3NP group (Figure 4).

3.4 FA impact on BDNF

As shown in Figure 5, intoxication by 3NP led to an approximate
50% reduction in striatal BDNF levels (Normal: 629 + 32.2 pg/mg vs.
3NP: 312 + 24.4 pg/mg, p < 0.0001). However, this decline was
notably counteracted by FA treatment in the FA+3NP group (554 +
47.1 pg/mg, p < 0.0001).
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FA intake impacts on striatal (@) Nrf2 and (b) HO-1 mRNA expression, as well as (c) TAC and (d) MDA content in rats subjected to 3NP. Data are
presented as mean + SD; ns (non-significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

3.5 FA impact on TLR4, NF-xB p65, and
inflammatory mediators

In contrast to the normal group (Figure 6), 3NP markedly enhanced
TLR4 mRNA expression (5.5-fold 0.9, p < 0.0001) and NF-kB p65 IHC
protein content (7.7-fold +£0.5, p < 0.0001) leading to increment in TNF-
a (Normal: 84.2 + 5.74 pg/mg protein vs. 3NP: 272 + 29.9 pg/mg protein,
p < 0.0001) and IL-1B protein content (Normal: 128 + 8.35 pg/mg
protein vs. 3NP: 337 + 16.9 pg/mg protein, p < 0.0001). Conversely, FA
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intake in 3NP-intoxicated rats counteracted these alterations certifying
its anti-inflammatory effect (2.83-fold +0.49, 2.16-fold +0.43, 105 +
10.3 pg/mg protein, and 195 + 16.9 pg/mg protein, respectively).

3.6 FA impact on p53, Bcl-2, and caspase-3

The 3NP insult triggers apoptosis markers evidenced by a spike
in both p53 content (34.5 + 3.12 pg/mg protein, p < 0.0001) and
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FA intake impacts on striatal neurotrophic BDNF content in rats
subjected to 3NP. Data are presented as mean + SD; ns (non-
significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and

***xp < 0.0001.

caspase-3 THC (8.91 + 0.86-fold, p = < 0.0001) alongside reduction
in Bcl-2 content (129 + 8.68 pg/mg protein, p < 0.0001). Notably, FA
demonstrated its anti-apoptotic potential by counteracting these
changes (Figure 7).

3.7 FA impact on SIRT1 expression

At the molecular level, 3NP disrupts cellular function by
reducing SIRT1 protein expression by 21.7% (0.22-fold +0.07,
p < 0.0001). However, FA effectively counteracted this alteration
(0.74-fold £0.16, p < 0.001), demonstrating a protective regulatory
role (Figure 8).

3.8 FA impact on the
histopathological findings

As shown in Figure 9, microscopic evaluation of brain
sections from the normal group revealed normal structure of
striatum. Likewise, no histopathological changes were detected in
the sections examined from the FA group. On the contrary, 3NP
group showed focal gliosis with marked edema as well as the
existence of some dark degenerating neurons within the striatum.
Marked improvement was detected in the examined sections
from FA+3NP group as sporadic focal gliosis was detected
meanwhile apparently normal stratum was detected in almost
all examined sections.

Moreover, as illustrated in Figure 10, neuronal survival rate was
dramatically lowered in 3NP group when compared to the normal
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control group. FA+3NP group showed meaningful elevation in
neuronal survival rate when compared to the 3NP group. No
notable difference was observed between the normal and the
FA group.

In addition, the 3NP group disclosed a marked upsurge in GFAP
expression compared to the normal group. However, the FA+3NP
group exhibited noteworthy shrinkage in GFAP expression relative
to the 3NP group (Figure 11).

4 Discussion

In this study, we employed the established 3NP model to
induce HD. This model allowed us to assess the potential
neuroprotective effects of FA against multiple detrimental
events associated with the disease. Our findings extend earlier
reports of FA neuroprotection. Specifically, we provide possible
mechanistic evidence that links FA’s behavioral and histological
benefits to the simultaneous regulation of SIRT1, Nrf2, and NE-
kB signaling in the 3NP-induced HD model. Unlike prior
studies, which have not examined these pathways collectively
in a single model, we demonstrate a new insight into the possible
crosstalk that may underlie FA’s neuroprotective actions. These
findings were further supported by results from qRT-PCR,
Western blot, and immunohistochemistry. This data can
position FA as a promising modulator of multiple pathogenic
pathways in HD.

We investigated how this phenolic acid influenced body weight
and motor behavioral parameters using open field and hanging wire
tests. Additionally, we evaluated the antioxidant properties of FA by
measuring levels of Nrf2, HO-1, TAC, and MDA. In terms of
inflammation, we analyzed the cytokines TNF-o, and IL-1p.
Additionally, the current study investigated the contribution of
the TLR4/NF-kB p65 signaling in HD pathogenesis after FA
treatment. Furthermore, we examined the apoptotic activity by
assessing p53, Bcl-2, and caspase-3 levels. The expression of
GFAP and BDNF was also evaluated alongside histopathological
changes. Finally, the role of SIRT1 and its crosstalk with Nrf2, NE-
kB, and p53 were discussed.

In the current research, the induction of HD by 3NP caused a
decrease in the body weight of the animals, which aligns with
findings from several previous studies (Elbaz et al., 2025;
Mustafa et al, 2021). This weight loss may reflect the
negative impact of 3NP on the animals’ energy metabolism,
as well as motor deficit, anorexia, and the reduced food intake
(Ahmed et al, 2016). Fortunately, FA intake was able to
counteract these negative effects of 3NP, leading to a
restoration of the rats’ body weight.

Alongside, significant changes in the neurobehavioral
functions were observed during the open field tests.
Following the administration of 3NP, animals exhibited a
noticeable reduction in the total distance traveled and a
decrease in mean speed, along with an increase in the time
spent immobile. Conversely, treatment with FA effectively
mitigated these issues, aligning with findings from earlier
research (Zeni et al.,, 2012). The decline in muscle function,
characterized by muscle weakness, is a primary indicator of HD
and can be evaluated through grip strength tests, such as the
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FA intake impacts on striatal (a) TLR4 mRNA expression, (b) NF-kB p65 IHC protein expression, as well as protein content of (c) TNF-a and (d) IL-1p in
rats subjected to 3NP. Data are presented as mean + SD; ns (non-significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

hanging wire test. The test revealed significantly impaired limb
strength following 3NP administration, as evidenced by
reduced latency to fall. These findings are consistent with
previous studies (Sayed et al., 2020; Elbaz et al, 2025).
Conversely, administering FA led to an improvement in grip
strength, as demonstrated by hanging duration enhancement.
Overall, the neurobehavioral improvements associated with FA
highlight its beneficial role in addressing the neurobehavioral
abnormalities linked to HD.

Previous research has revealed that the neurotoxin (3NP) can
induce oxidative stress in the striatum and other brain regions
(Tunez et al., 2010; Sayed et al., 2020; Gao et al., 2015), where 3NP
readily penetrates the blood-brain barrier and generate reactive
oxygen species leads to pathological symptoms that resemble
those associated with HD (Gonchar et al., 2021). Our study
supports this finding as evidenced by the depletion of TAC
following 3NP exposure, as well as increased levels of MDA
which initiates lipid peroxidation. Similar outcomes have been
documented in earlier studies (Mustafa et al., 2021; Gao et al,,
2015; Sayed et al., 2020). The amplified oxidative state and
neuronal damage resulting from 3NP injection may be partially
due to the clear repression of the Nrf2/HO-1 antioxidant signaling
as indicated herein. The Nrf2/HO-1 pathway is a well-known
regulator of intracellular antioxidative processes. Its protective
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role in HD has been well documented (Sharma et al., 2025; Sethi
et al., 2025). Nrf2 has been shown to promote the transcription of
BDNF which is recognized for its critical functions in neuronal
survival, neurogenesis, synaptic plasticity (Azman and Zakaria,
2025). On the other hand, BDNF is involved in the translocation
and activation of Nrf2, which contributes to the restoration of
redox homeostasis. It has been previously reported that levels of
BDNF protein are diminished in animal models of HD. as
documented herein and previously (Gendy et al., 2023b; Sayed
2020). HO-1 is
neuroprotection against oxidative stress (Neis et al., 2018). In

et al, Moreover, known to provide
contrast, treatment with FA countered all markers of oxidative
stress by restoring TAC levels while reducing MDA which can be
attributed to the enhancement of Nrf2/HO-1 signaling (Mishra
et al., 2022; Li et al., 2020b; Nouri et al., 2023). This indicates the
antioxidant properties of FA in HD suggesting that antioxidants
can modify or delay clinical manifestations including deficits in
memory and motor skills associated with the disease (Sharma
et al., 2021).

Another important signaling is TLR4-NF-kB p65 signaling
where the current results indicated a rise in TLR4 content and NF-
kB p65 immunoreactivity consistent with the findings of El-Abhar
et al. (El-Abhar et al, 2018). TLR4 emerges as a significant
molecular player in HD where its spike is known to contribute
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to the pathological status of multiple neurodegenerative disease
(Dabi et al., 2023) as it plays an important role in the biochemical
and neurological alterations (Dabi et al., 2023). Additionally, the
pivotal role of NF-kB in the central nervous system via
TLR4 overexpression has been well verified (Sharma et al,
2024), facts that coincide the current results. The high rate of
TLR4 content can be linked to the increased cytokine levels and
glial activation (Dabi et al., 2023). On the other hand, the
Nrf2 following 3NP
administration plays a role in enhancing NF-kB p65 levels, as

documented reduction in levels
Nrf2 is known to suppress NF-kB p65 subunit and its downstream
inflammatory molecules (Ibrahim and Abdel Rasheed, 2022). FA
depicted a decline in TLR4 content to concur with the results in

LPS-induced neurotoxicity and sciatica models (Rehman et al.,

Frontiers in Pharmacology 09

2019; Zhang et al., 2023). Moreover, NF-xB p65 THC observed
attenuation was clear after FA intake which may be an outcome of
decreased TLR4 levels. This hypothesis is evidenced by
data unveiling the role of FA-dependent

in TLR4 for hindering NF-kB p65 and
consequently serves as a key mechanism underlying FA anti-

experimental
downregulation

inflammatory effects. In this milieu, NF-«kB inhibition may also
result from Nrf2 activation by FA that has previously been
documented to diminish NF-kB inflammatory character (Liu
et al,, 2021; Singh et al., 2022).

Inflammation also plays a role in HD
pathogenesis (Valadao et al, 2020), as evidenced in the
current study by the 3NP-induced increase in TNF-a and IL-

1P levels, as well as the histopathological findings. These results

significant
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align with a previous study investigating Dapagliflozin in the
3NP rat model of HD (El-Sahar et al., 2020). FA effectively
mitigated inflammation by normalizing disrupted inflammatory
parameters and enhancing histopathological outcomes.
Similarly, FA has demonstrated anti-inflammatory properties
in chronic unpredictable mild stress (Liu et al., 2017). Thus,
attenuation of redox status and apoptosis via enhanced Nrf2 and
reduced NF-kB p65
underlying FA anti-inflammatory effects (Singh et al., 2022;
Sharma et al., 2025; Gendy et al., 2023a).

The apoptotic death contributes a pivotal part in the neuronal

represents a potential mechanism

degeneration in HD (Fan et al., 2017). In the present study, striatal
exposure to 3NP elicited marked pro-apoptotic changes. This was
evidenced by increased p53 content, upregulated caspase-3
immunoreactivity, and reduced levels of the anti-apoptotic
protein Bcl-2. A result that match previous reports (Gendy et al.,
2023a; Ibrahim and Abdel Rasheed, 2022; Ahmed et al., 2016).
Importantly, our findings revealed that treatment with FA reversed
these alterations by enhancing Nrf2 expression and reducing NF-«kB
p65 levels. Restoration of Nrf2 likely contributed to the
reestablishment of redox homeostasis and upregulation of Bcl-2
(Singh et al., 2022), while suppression of NF-kB attenuated pro-
apoptotic signals leading to reduced caspase-3 activation (Van
Antwerp et al,, 1998; Liu et al,, 2021).

SIRT1 is an NAD-dependent enzyme plays a key role in the
modulating of oxidative stress balance, inflammatory response,
and apoptosis (Ren et al., 2019). Moreover, its role in HD is well
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documented (Naia and Rego, 2015; Jiang et al., 2012; Manjula
et al., 2021). SIRT1 regulatory effect on apoptosis is well
documented by inhibiting p53, leading to the downregulation
of programmed cell death, as documented herein (Jazvinscak
Jembrek et al., 2021). Moreover, SIRT1 can restrain oxidative
stress by activating Nrf2 nuclear translocation consequently
amplifying transcriptional activation of antioxidant genes
(Mosaoa et al.,, 2024; Sethi et al., 2025; Ibrahim and Abdel
Rasheed, 2022). SIRT1
Nrf2 and NF-kB. It promotes the expression of antioxidant

influences the interaction between

genes expression while limiting pro-inflammatory cytokines
production in response to oxidative stress (Jazvins¢ak Jembrek
et al., 2021). Additionally, SIRTI plays a regulatory role in
inflammatory factors transcription, including NF-kB, which is
a crucial regulator of various pro-inflammatory cytokines
(Peixoto et al, 2017; Song et al, 2022). Additionally,
SIRT1 can influence neuroinflammation by decreasing the
activation of astrocytes, which leads to a reduction in GFAP
levels, a well-known marker associated with astrogliosis (Shaheen
et al.,, 2021; Vaziri et al., 2001). Furthermore, SIRT1 has been
shown to inhibit the activation of microglia and its detrimental
inflammatory cascade (Li et al, 2020a). On the other hand,
SIRT1 overexpression has been linked to BDNF expression
(Harrison, 2012). Our findings verified the clear repression of
SIRT1 after 3NP intoxication, while FA treatment reactivated this
signaling (Chen et al., 2019; Wang et al., 2023). Based on these
outcomes, it is reasonable to propose that the upregulation of
SIRT1 by FA represents a potential mechanism underlying its
therapeutic effects against 3NP-induced HD.

In the current research, the neurotoxicity induced by 3NP was
associated with the activation of microglial cells, which was
evidenced by the activation of astrocytes and reflected in the
overexpression of GFAP. The administration of FA effectively
protected the animals from astrocyte activation by lowering
GFAP expression. This finding is consistent with previous study
highlighting the defensive actions of FA in rats model of Alzheimer’s
disease (Khalifa et al., 2025).

BDNF is recognized for its critical functions in stimulating
neurogenesis, enhancing synaptic plasticity, promoting neuronal
survival, and mitigating neuroinflammation caused by TNF-a
(Patil et al., 2014). In HD, there is a notable decrease in BDNF
expression (Pineda et al., 2005). Likewise, the 3NP model of HD
has shown a significant reduction in BDNF levels, as previously
reported (Sayed et al., 2020). One potential reason for this decline
is the activation of NF-kB p65 induced by 3NP, which has been
suggested in studies evaluating memory loss triggered by
lipopolysaccharide (Gu 2015). Fortunately, the
administration of FA has been effective in preventing this

et al,
reduction and reversing the neuronal damage caused by 3NP, a
beneficial effect that has been documented previously in
depressive-like behaviour model (Mallik et al., 2023). The
beneficial effects of FA on BDNF restoration can also be linked
to its modulation of SIRT1 and Nrf2 signaling. SIRT1 has been
reported to enhance BDNF transcription and promote neuronal
survival (Tang et al., 2020). Nrf2 activation can also stimulate
BDNF expression as part of its neuroprotective effect (Cao et al,,
2022). In our study, FA administration concurrently elevated
SIRTI1, Nrf2, and BDNF levels, indicating that the recovery of
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FIGURE 9
Representative photomicrographs of H & E stained stratia in the normal and FA groups showing intact neurons with normal histological architecture.

3NP group, showing gliosis (black arrow), distinct capillaries (green arrow), and edema (red arrow). FA+3NP group, showing apparently normal striatum.

*k%k
*kk |
I
sokok ok
1501
8 |
s ns skokokk dokok
b [ A
S 100 — i ”
£
=]
7]
©
c 50+
[¢]
b
=
[}]
z
0 T T
N
2 Ao Q
R < >
éo
FIGURE 10

FA intake impacts on the neuronal survival rate in rats exposed to 3NP. Normal and FA groups, showing apparently normal lightly stained neurons
within the striatum. 3NP group, showing numerous dark degenerating neurons (arrows) within the striatum. FA+3NP group, few dark degenerating
neurons (arrows) within the striatum. Data are presented as mean + SD; ns (non-significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and
****p < 0.0001.

striatal BDNF may be mediated, at least in part, through these et al, 2020; Ibrahim and Abdel Rasheed, 2022). Notably, FA intake
upstream regulators. demonstrated a neuroprotective effect by increasing neuronal survival.

Neuronal damage was assessed using Nissl staining, which revealeda  Finally, this study offers new insights into the neuroprotective effects of
marked increase in the number of degenerated cells following the  FA in the case of HD. The protective effect of FA is accompanied by
intraperitoneal injection of 3NP, as previously documented (Sayed  changes in SIRT1/Nrf2/NF-kB/p53 signaling. These changes enhance

Frontiers in Pharmacology 11 frontiersin.org


mailto:Image of FPHAR_fphar-2025-1678724_wc_f9|tif
mailto:Image of FPHAR_fphar-2025-1678724_wc_f10|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1678724

Abdelgawad et al.

%k %k k
%k %k %k
|
%k 3k k k
15-
ns % %k %k %k % %k %k %k
2 10
S 10-
o
©
<
r 5 T
G
0 1 ] 1
A
2 A o Q Q
< < > &
> s
FIGURE 11

10.3389/fphar.2025.1678724

Normal

FA intake impacts on striatal GFAP in rats exposed to 3NP. Photomicrograph of brain, striatum, Normal and FA groups showing normal mild GFAP
expression (Immune staining), 3NP group showing intense GFAP expression, and FA+3NP group showing moderate GFAP expression. Data are presented
as mean + SD; ns (non-significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

the antioxidant capacity of striatal tissue while reducing both
inflammatory and apoptotic responses.

Limitation of the current study: The use of different
methodologies for apoptotic markers: ELISA for p53 and Bcl-2,
and immunohistochemistry for caspase-3. This heterogeneity may
affect direct comparability. The baseline behavioral performance
was not assessed before 3NP administration. Future studies
including baseline measurements will provide more assurance
that the observed differences are due to treatment effects only.
Moreover, the present study did not directly assess SIRT1 activity
or p53 acetylation status. Likewise, we did not include
pharmacological modulation of SIRT1 (e.g, inhibitor
activator) to establish causality. These experiments would allow

or

confirmation that the observed molecular changes are specifically
mediated via SIRT1 activation rather than parallel pathways. Future
work will incorporate such approaches. Nonetheless, our findings
are consistent with prior reports in neurodegenerative models
showing that SIRT1 stress,
inflammation, and apoptosis through these pathways, supporting
the plausibility of our proposed mechanism. In addition, we
acknowledge that a smaller sample size in the Western blot may
limit sensitivity to detect more subtle protein changes. On the other

activation attenuates oxidative

hand, the observed effect sizes in our data were large enough to yield

statistically ~significant difference. Future experiments will
incorporate a priori power calculations to ensure that sample

sizes are optimized prospectively for all endpoints.
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