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Melanoma is a highly aggressive malignant tumor arising from melanocytes, with
its incidence and mortality rates continuously rising in recent years, posing a
major global public health challenge. Although traditional targeted therapies and
immune checkpoint inhibitors have significantly improved survival in some
patients, primary and acquired resistance remain common, creating an urgent
need for new treatment strategies. In recent years, metabolic cell death,
ferroptosis, cuproptosis, and disulfidptosis, has shown unique advantages in
melanoma research. Ferroptosis directly kills tumor cells through iron-
mediated lipid peroxidation; cuproptosis relies on copper-induced
mitochondrial protein aggregation to inhibit tumor proliferation; disulfidptosis
arises from disulfide stress caused by glucose deprivation. This review provides a
detailed analysis on the mechanisms and metabolic competition paradoxes of
these three types of metabolic cell death and integrates key metabolic nodes,
such as related genes SLC7A11, GPX4, FDX1, LIPT1, and PPIC. Furthermore, we
discuss innovative treatment strategies that significantly enhance therapeutic
efficacy and overcome resistance, including the combination of metabolic cell
death with immune cell regulation, nanoparticle delivery, and sonodynamic/
photodynamic therapies. Ferroptosis, cuproptosis, and disulfidptosis each
possess distinct advantages and characteristics in the context of melanoma
development, metastasis, and drug resistance. Leveraging both their common
and unique mechanisms offers new perspectives for improving treatment
outcomes.

melanoma, ferroptosis, cuproptosis, disulfidptosis, molecular interactions

1 Introduction

Melanoma, a highly aggressive malignant tumor originating from melanocytes in the
skin or other anatomical sites (e.g., ocular uvea, mucosa, meninges), has seen a persistent
rise in global incidence and mortality, emerging as a major public health challenge.
Epidemiological projections indicate 100,640 new cases and 8,290 deaths in the
United States in 2024 (Long et al, 2023), with global incidence expected to
510,000 cases by 2040 (Ubellacker et al., 2020). Notably, the disease primarily affects
Caucasian populations, with ultraviolet (UV) radiation exposure identified as the primary
risk factor (Teixido et al., 2021). While early-stage localized melanoma is often curable
through surgical resection (Tyrell et al,, 2017), the prognosis for metastatic melanoma
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remains poor, with distant metastatic cases exhibiting a 5-year
than one-third (Tao et al, 2025),
underscoring the complexity of clinical management.

survival rate of less

From a molecular pathological perspective, the aggressive nature
of melanoma is closely linked to its mutation. Approximately 50%-
60% of cases are linked to the BRAF V600E mutation (Anestopoulos
et al,, 2022; Marzagalli et al., 2019), together with other common
mutations involving KRAS (Kirsten rat sarcoma viral oncogene
homolog), NRAS (neuroblastoma RAS viral oncogene homolog),
HRAS (Harvey rat sarcoma viral oncogene), CDKN2B (cyclin-
dependent kinase inhibitor 2B), PTEN (phosphatase and tensin
homolog), TERT (telomerase reverse transcriptase), and p53 (Ta
et al., 2023). Especially, the metastatic potential of melanoma is
associated with its unique metabolic adaptability: the lymphatic
system promotes the distant dissemination of tumor cells by
providing oxidative stress protection (Ubellacker et al, 2020).
Additionally, the presence of immunosuppressive cells (e.g.
regulatory T cells) in the tumor microenvironment (TME) and
changes in the extracellular matrix are known to accelerate the
progression of the disease (Xu et al., 2021).

Although targeted therapies and
significantly changed the treatment for advanced melanoma, their

immunotherapies have
clinical applications still face multiple challenges. Compared with
monotherapy, kinase inhibitors targeting BRAF mutations (e.g,
vemurafenib, dabrafenib) combined with MEK inhibitors (e.g.,
trametinib) have improved median overall survival (OS) and
progression-free survival (PFS) rates in patients with unresectable
advanced metastatic BRAF-V600-mutant melanoma (Robert et al.,
2019; Dhillon, 2016). Nevertheless, acquired resistance remains
inevitable. Immune checkpoint inhibitors (ICIs), such as anti-PD-
1 agents (pembrolizumab) and anti-CTLA-4 agents (ipilimumab),
have achieved long-term survival in a subset of patients. However, a
quite proportion of melanoma patients exhibit primary or acquired
resistance (e.g., increased PD-L1 expression, impaired antigen
presentation, or T-cell inactivation) resulting in 40%-65% failure
in anti-PD-1 monotherapy and more than 70% failure in anti-CTLA-
4 therapy (Gide et al, 2018). Additionally, chemotherapy and
radiotherapy ~show limited effectiveness against metastatic
melanoma and often lead to significant adverse effects.

Cell death is a fundamental biological process that maintains
homeostasis in multicellular organisms. However, its dysregulation
influences the pathogenesis and progression of diseases such as
cancer (Hotchkiss et al., 2009). Traditionally, cell death is divided
into two categories: non-regulated (accidental) cell death and
regulated cell death. The former occurs passively due to external
factors (e.g., physical injury or chemical toxicity) and lacks clear
intracellular signaling pathways (Green and Victor, 2012). In
contrast, regulated cell death is an orderly process governed by
specific molecular programs. (Galluzzi et al., 2018; Tang et al., 2019).

Recent advances have revealed a distinct class of regulated cell
death, which arises from metabolic imbalances caused by nutrient
depletion or metal ion overload. This form of cell death-metabolic cell
death-has often been referred to as “cell sabotage” (Green and Victor,
2012). It includes mechanisms like ferroptosis, cuproptosis,
disulfidptosis, etc. (Mao et al, 2024). While the potential
physiological roles of these “sabotage” mechanisms remain
debated, a thorough analysis of their regulatory networks could

lead to a better understanding of disease progression and the
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development of novel cancer therapies (Green and Victor, 2012).
More and more emerging evidences have disclosed the pivotal role of
copper, iron, and disulfide homeostasis in melanoma pathogenesis
and therapeutic resistance. This review focuses on the molecular
interplay in metabolic cell death including ferroptosis, cuproptosis
and disulfidptosis. How dysregulation of these pathways leads to
melanoma initiation, metastasis, and resistance to conventional
therapies. We also evaluate their therapeutic potential, focusing on
the interactions between metabolic stress and immune responses in
melanoma, thereby providing critical insights for the development of
novel therapeutic strategies.

2 Ferroptosis in melanoma: an iron-
dependent cell death driven by lipid
peroxidation

Thirteen years ago, Dixon’s lab proposed the concept of a unique
form of regulated, iron-dependent cell death driven by lipid
peroxidation, along with the term “Ferroptosis.” Three key
establish  the
understanding of the field of “ferroptosis™

research areas converged to foundational
(i) metabolic
mechanisms, (ii) regulation of reactive oxygen species (ROS), and

(iii) iron homeostasis (Stockwell, 2022), as illustrated in Figure 1.

2.1 Lipid metabolism and ferroptosis
induction in melanoma

Ferroptosis is closely linked to dysregulated lipid metabolism in
melanoma, in which polyunsaturated fatty acid (PUFA) metabolism
serves as the central molecular mechanism. Figure 2 shows the
process of fatty acid formation in melanoma cells. Mitochondrial
acetyl-CoA combines with oxaloacetate to form citrate via citrate
synthase (CS) (Koundouros and Poulogiannis, 2020; Chhimpa et al.,
2023), exported via citrate carrier (CIC). Notably, during metabolic
stress such as hypoxia, the synthesis of acetyl-CoA preferentially
originates from acetate. And melanoma, particularly brain
metastases with poor prognosis, exhibits increased dependency
on above-mentioned acetate, a weakness specific to BRAF-mutant
tumors (Kamphorst et al., 2014; Mashimo et al., 2014; Lakhter et al.,
2016). Cytosolic ATP-citrate lyase (ACLY) cleaves citrate into
acetyl-CoA and oxaloacetate. Subsequent oxaloacetate conversion
to malate (via MDH) and pyruvate (via ME) generates NADPH for
biosynthesis (Simmen et al., 2020).

Fatty acid (FA) synthesis initiates with acetyl-CoA carboxylase
(ACC) producing malonyl-CoA. Then, the fatty acid synthase (FASN)
complex iteratively elongates the chain to produce palmitate (C16:0)
(Wedan et al.,, 2024). Li and Kapur et al. discovered that ACC and
FASN are significantly upregulated in human melanoma (Kapur et al.,
2005; Li et al., 2016). Long-chain fatty acid (LCFA) elongation occurs
mainly in the endoplasmic reticulum (ER), with desaturation being
(SCD) (Kubota and
Espenshade, 2022). Research indicates that SCD activity may play

mediated by stearoyl-CoA desaturase
a key role in melanoma phenotype switching: under low SCD
conditions, ER stress is induced, suppresses microphthalmia-
associated transcription factor (MITF), and promotes melanoma
dedifferentiation (Vivas-Garcia et al., 2020).
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Pathway map of mechanisms associated with ferroptosis in melanoma. Ferroptosis is a form of cell death triggered by lipid peroxidation, which

primarily occurs on polyunsaturated fatty acid-containing phospholipids (PUFA-PLs). Notably, PE-PUFA exhibit high susceptibility to ferroptosis. The
synthesis of PE-PUFA is regulated by enzymes such as ACSL4, LPCAT3, and ALOXs. Ferroptosis relies on iron-mediated Fenton reactions, making the
process highly sensitive to alterations in iron metabolism. This involves multiple steps including iron uptake (e.g., via transferrin), storage (e.g., via
ferritin), release (e.g., via DMT1), and efflux (e.g., via ferroportin). To counteract lipid peroxidation and prevent ferroptosis, cells primarily depend on the
GPX4 pathway as well as GPX4-independent pathways, such as those mediated by CoQ;oH,, DHODH, and BH;—which constitute key antioxidant
defense mechanisms. ROS, reactive oxygen species; Glu, glutamic acid; Cys, cysteine; GS, glutamine synthetase; GR, glutathione reductase; GSH,
glutathione (Reduced); GSSH:glutathione (Oxidized); GPX4, glutathione peroxidase 4; GCH1, GTP cyclohydrolase 1; BH4:tetrahydrobiopterin; CoQq,
coenzyme Q10; CoQ;oH>, reduced coenzyme Q10; FSP1, ferroptosis suppressor protein 1; IFSP1, ferroptosis suppressor protein 1; NOX, NADPH oxidase;
PPP, pentose phosphate pathway; akG, a-ketoglutaric acid; OAA, oxaloacetic acid; HO-1, Heme oxygenase 1; ALOXs, arachidonate lipoxygenases;
LPCAT3, lysophosphatidylcholine Acyltransferase 3; DHODH, dihydroorotate dehydrogenase; ACSL4, acyl-CoA synthetase long-chain family member 4;
TPD52, tumor protein D52; NCOA4, nuclear receptor coactivator 4; PUFA, polyunsaturated fatty acid; PE, phosphatidylethanolamine; CoA, coenzyme A;
DMTY1, divalent metal transporter 1; STEAP3, six-transmembrane epithelial antigen of prostate 3; Cp, ceruloplasmin; Tf, transferrin; TfRC, transferrin
receptor; FPN/SLC40AL, ferroportin; SLC3A2, recombinant solute carrier family 3, member 2; SLC7A11, recombinant solute carrier family 7, member 11;

ASCT2/SLC1A5, solute carrier family 1, member 5; GLS:glutaminase; GDH:glutamate dehydrogenase.

In melanoma ferroptosis, the oxidative modification of
polyunsaturated =~ PUFAs  incorporated  into  membrane
phospholipids plays a decisive role. Under oxidative stress,
Reactive Oxygen Species (ROS) selectively attack hydrogen atoms
from PUFA double bonds, triggering lipid peroxidation chain
reactions  (Yan et al, 2021). Studies that
phosphatidylethanolamine (PE)-bound PUFAs, particularly PE-
AA and PE-AdA, exhibit marked sensitivity to ferroptosis (Fang
et al., 2023), with their abundance positively correlating with acyl-
CoA synthetase long-chain family member 4 (ACSL4) activity.
Meanwhile, ACSL3, which belongs to the same family as ACSL4,
is also associated with the poor prognosis of melanoma (Chen et al.,
2016). One study indicates that the abundant oleic acid in
lymphocytes protects melanoma cells from ferroptosis in an

reveal
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ACSL3-dependent manner. Notably, enzymatic oxidation of
PUFAs is catalyzed by lipoxygenases (LOXs, particularly 15-
LOX1/2) (Bouchaoui et al., 2023). This process is antagonized by
ferroptosis inhibitors such as glutathione peroxidase 4 (GPX4),
forming a key regulatory node that maintains redox balance in
ferroptosis control.

2.2 GPX4 and its role in suppressing
ferroptosis in melanoma

ROS, which include hydrogen peroxide (H,0,), hydroxyl

radicals (-OH), singlet oxygen ('O,), and superoxide (-O,),
among others (Bedard and Krause, 2007), function as key
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Fatty acid metabolic pathways and key enzymes. This figure illustrates the interconnected mechanisms of fatty acid synthesis, mitochondrial
metabolism (involving the conversion of intermediate metabolites such as pyruvate, acetyl-CoA, and citrate), and glucose metabolic pathways. It
demonstrates how these distinct metabolic processes are linked through key metabolites and enzymes (e.g., ME, FASN, ACLY), working in concert to
coordinately regulate cellular material and energy metabolism. ME, malic enzyme; MDH, malate dehydrogenase; PC, pyruvate carboxylase; PDHC,
pyruvate dehydrogenase complex; CS, citrate synthase; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; ACLY, ATP citrate lyase.

signaling mediators in redox processes and are critically involved in
both the and progression of ferroptosis. The
mitochondrial electron transport chain is considered major
contributor to ROS generation. During coenzyme Q10 (CoQ;)

initiation

mediated electron transfer, approximately 1%-2% of electrons leak
during their transport from Complex I and II to Complex III
(Gutierrez-Mariscal et al., 2021). Under specific conditions, these
leaked electrons react with molecular oxygen to generate superoxide
radicals (-O,") (Parascandolo and Laukkanen, 2019), later converted
to H,O, by SOD. H,0, can then react with free Fe’" through the
Fenton reaction, yielding highly reactive hydroxyl radicals (-OH). In
BRAF-mutant melanoma, BRAF inhibitors upregulate oxidative
phosphorylation (OXPHOS), enhancing mitochondrial ROS
accumulation and cellular susceptibility to ferroptosis (Haq et al.,
2013; Schockel et al., 2015). Additionally, the NADPH oxidase
(NOX) family specifically catalyzes the generation of O, via
transmembrane electron transfer. NOX2 activation stimulates
ROS production through a calcium signaling pathway dependent
on the Ryanodine receptor (RyR) (Prosser et al., 2011).

The cystine/GSH/GPX4 axis represents a central defense
mechanism against ferroptosis. System Xc’, which is a heterodimeric
transmembrane transporter consisting of the light chain xCT
(SLC7A11) and heavy chain 4F2hc (SLC3A2) (Koppula et al., 2018),
facilitates the exchange of cystine and glutamate at a 1:1 ratio (Liu et al,,
2021). Tt has been observed that BRAF inhibitor-resistant melanomas
display increased reliance on glutamine and activate the NRF2 pathway,
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increasing XCT expression and GSH levels to evade ferroptosis
(Khamari et al, 2018). Conversely, dedifferentiated melanomas are
characterized by lower basal GSH levels and greater susceptibility to
ferroptosis (Tsoi et al, 2018). Cystine within the cells is reduced to
cysteine for glutathione (GSH) biosynthesis. GSH exists in reduced
(GSH) and oxidized (GSSG) forms, dynamically balanced by
glutathione peroxidase 4 (GPX4) and glutathione reductase (GR)
(Gonzélez-Dominguez et al., 2020). Among mammalian GPX family
members (GPX1-GPX8), GPX4 is uniquely capable of clearing
membrane lipid hydroperoxides. GSH biosynthesis is regulated in a
stepwise manner: y-glutamylcysteine ligase (GCL) catalyzes the
conjugation of glutamate and cysteine to form y-glutamylcysteine
(y-Glu-Cys) (Oppenheimer et al, 1979), followed by glycine
addition via glutathione synthetase (GS) to produce GSH (Gasmi
et al, 2024). In addition to System Xc -mediated cystine uptake,
mammalian cells utilize the transsulfuration pathway to derive
cysteine from methionine. Studies indicate that elevated tumor
microenvironmental —methionine levels may disrupt GSH
homeostasis through this pathway (Kamphorst et al., 2015).

2.3 Iron regulation and sensitivity to
ferroptosis in melanoma

Iron, as an essential trace metal element in living organisms,
participates in a wide range of critical biochemical processes,
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FIGURE 3

Systemic transport of iron and copper, related genes and their chromosomal localization. This figure shows the metabolic processes of iron (Fe) and
copper (Cu) in intestinal epithelial cells and melanoma cells, including the uptake, transport, and storage of metal ions, as well as the roles of associated
functional proteins such as CTR1, DMTY, Ferritin and so on. It also displays the chromosomal locations of key genes involved in these metabolic
pathways—including SLC46A1, FTL, SOD1, etc., thereby revealing the molecular mechanisms and regulatory gene networks underlying copper and

iron metabolism across different cell types. DCYTB, duodenal cytochrome b; DMT1/SLC11A2, divalent metal transporter 1; HCP1/SLC46A1, heme carrier
protein 1 (HCP1); STEAP, six-transmembrane epithelial antigen of prostate; CTR1/SLC31A1, copper transport protein 1; Hp/HEPH, hephaestin; FPN/
SLC40AL, ferroportin; Cp, ceruloplasmin; FTL, ferritin light chain; FTH, ferritin heavy chain 1; TFRC, transferrin receptor; ATOX1, antioxidant 1; CCS,
copper chaperone for superoxide dismutase; COX17, cytochrome c oxidase copper chaperone; SOD1, superoxide dismutase 1; ATP7A, copper-

transporting ATPase 1; MTs, metallothioneins.

including oxygen transport, DNA synthesis and repair, and electron
transfer in mitochondria (Galaris et al., 2019). From a chemical
perspective, iron exhibits valence states ranging from -2 to +7.
However, biological systems mainly utilize the +2 [ferrous, Fe (II)]
and +3 [ferric, Fe (III)] redox states (Bayir et al, 2023). In
melanoma, iron metabolism drives ferroptosis through multiple
pathways. Heme iron is taken up by enterocytes via heme carrier
protein 1 (HCP1) on their apical membrane as an intact porphyrin
complex. Conversely, absorption of non-heme iron requires
reduction of Fe’* to Fe’*, which is catalyzed by duodenal
cytochrome B (DCYTB), followed by transport across the
membrane through divalent metal transporter 1 (DMT1/
SLC11A2) (Dutt et al., 2022). Figure 3 illustrates the iron
transport process, while the copper transport mechanism will be
detailed in the next chapter.

Iron efflux from intestinal epithelial cells depends on the
coordinated activity of ferroportin (FPN/SLC40A1) and hepcidin
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(Hp) at the basolateral membrane. Iron is extruded into the
extracellular space by FPN, after which it is oxidized to Fe’* by
Hp, enabling its binding to transferrin (TF). The transferrin-iron
complex in plasma is internalized by target cells via transferrin
receptor (TfR)-mediated endocytosis (Tang et al, 2021). This
process involves vesicular acidification, iron dissociation, reduction
of Fe’* catalyzed by STEAP3 (six-transmembrane epithelial antigen of
the prostate 3), and final transport into the cytoplasm via DMT1.
In melanoma, the labile iron pool (LIP) expansion promotes
Fenton reactions, which produce hydroxyl radicals that initiate lipid
peroxidation, a key feature of ferroptosis. Excess iron is normally
stored by ferritin, but ferritin degradation through ferritinophagy
releases iron back into the pool, accelerating ferroptosis in
melanoma (Gao et al.,, 2016). Crucially, iron regulatory protein 1
(IRP1) is upregulated by ferroptosis inducers (e.g., erastin, RSL3) in
A375 and G361 melanoma cells, promoting ferroptosis by
modulating TfR, FPN to increase intracellular iron (Yao et al., 2021).

frontiersin.org


mailto:Image of FPHAR_fphar-2025-1685331_wc_f3|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1685331

Li et al.

Iron metabolism within the skin also plays a critical role in
melanoma development. Disruption of iron balance induces
oxidative stress in the skin microenvironment, accelerating
inflammation and melanoma risk. Iron lack impairs skin
metabolism, while excess iron promotes ferroptosis through ROS
accumulation, weakness  in

representing a  targetable

melanoma treatment.

2.4 Alternative antioxidant pathways in
ferroptosis resistance

Recent advancements in ferroptosis regulation research have
revealed multiple novel antioxidant defense systems independent
of the classic GSH-GPX4 pathway, offering new targeted strategies
for cancer therapy. Non-GPX4 dependent pathways also play
crucial roles in ferroptosis resistance, together constituting a
defense system that operates across multiple cellular
compartments.

Ferroptosis suppressor protein 1 (FSP1), primarily localized in
lipid droplets and plasma membranes (Bersuker et al., 2018), acts
as a key regulatory factor independent of the glutathione system. It
uses NAD(P)H to reduce ubiquinone (CoQ;) to ubiquinol
(CoQ;0H,), which can directly neutralize lipid radicals and thus
suppress lipid peroxidation (Bersuker et al., 2019; Doll et al., 2019).
Emerging evidence indicates FSP1 can also exert ferroptosis
resistance through mechanisms not involving CoQL0 by
promoting membrane repair via the ESCRT-III complex (Dai
et al., 2020). The STARD?7 protein controls both the production
and spatial distribution of CoQI10: its mitochondrial form
synthesizes CoQ;, while the cytosolic form delivers it to
various membranes, helping to form a trans-membrane
antioxidant system (Deshwal et al., 2023).

Within mitochondria, DHODH and SQRDL constitute
another protective layer. DHODH, a key enzyme in the
pyrimidine synthesis pathway, reduces mitochondrial CoQ;q to
CoQ;oH; and collaborating with mitochondrial GPX4 to combat
mitochondrial specific lipid peroxidation. When GPX4 activity is
DHODH  maintains

homeostasis through compensatory upregulation (Mao et al,

compromised, mitochondrial redox
2021). SQRDL utilizes selenite as an electron donor to catalyze
This pathway not only

effects but also

mitochondrial CoQ;¢ reduction.

participates in antioxidant modulates

ferroptosis  susceptibility through mitochondrial electron
transport chain regulation (Zarrinpar, 2022; Gui et al., 2021). It
has been experimentally shown that combined inhibition of both
DHODH and mitochondrial GPX4 induces
mitochondrial lipid peroxidation and irreversible ferroptosis,

dual

extensive

underscoring the functional synergy within this
mitochondrial antioxidant system.

Furthermore, GCH1 (GTP cyclohydrolase 1), which is the rate-
limiting enzyme for synthesizing tetrahydrobiopterin (BH4),
inhibits ferroptosis through GPX4-independent mechanisms. As
a potent free radical scavenger (Soula et al, 2020; Kraft et al,
2020), BH4 directly neutralizes lipid peroxidation radicals. In
tumor cells lacking GPX4, the GCHI1-BH4 pathway is often
activated as a compensatory survival mechanism, becoming

essential for maintaining cell viability.
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3 Cuproptosis in melanoma: a
mitochondrial damage activated by
copper overload

In 2022, Tsvetkov et al. discovered a new type of regulated cell
death that depends on copper and is induced by mitochondrial
protein aggregation, which they named “cuproptosis”.

3.1 Dysregulated copper homeostasis
promotes cuproptosis in melanoma

Both Systemic and cellular copper levels are tightly controlled to
prevent toxicity. Dietary Cu** is reduced to Cu' by STEAP or
DCYTB and then imported through the high-affinity copper
transporter CTR1 (SLC31A1) (Figure 3). CTR1 is overexpressed
in melanoma biopsies compared to normal tissue (Mason, 1979; Lv
et al,, 2022; Georgatsou et al., 1997). DMT1 provides an alternative
uptake when CTR1 is insufficient. Inside the cell, copper distribution
is guided by specific chaperones: COX17 delivers copper to
mitochondria (Horng et al, 2004; Cobine et al, 2006; Banci
et al, 2008), CCS supplies copper to superoxide dismutase 1
(SOD1) for redox defense (Bertinato and L’Abbé, 2003; Prohaska
et al.,, 2003), and ATOXI is responsible for transferring copper to
Cu-ATPases (ATP7A/B) in the trans-Golgi network (TGN) and
supports the synthesis of cuproenzymes such as ceruloplasmin
(Hamza et al, 2003). Meanwhile, the Cu-ATPases ATP7A
(ubiquitous) and ATP7B (liver-specific) also act as the major
transporters for exporting cellular copper (Lutsenko et al., 2007).
Excess copper is stored by metallothioneins (MT's) or removed from
the cell primarily through ATP7A and ATP7B (La Fontaine and
Mercer, 2007; Palmgren and Nissen, 2011). Importantly, disruptions
in copper export or storage trigger cytotoxic copper accumulation,
directly linking cuproptosis in melanoma cells (Schmidt et al., 2018;
Tsvetkov et al, 2022). Copper chelating active substance (e.g.,
D-penicillamine) induce phorbol-12-myristate-13-acetate-induced
protein 1 (PMAIP1) expression, which upregulates NOXA protein, a
necessary condition for melanoma cell death, highlighting the
potential of targeting copper homeostasis as a therapeutic
strategy (Qiao et al., 2012).

3.2 FDX1 and lipoylated proteins in
cuproptosis activation

Distinct from ferroptosis, cuproptosis is directly triggered by
copper overload and exhibits unique resistance to classical cell death
inhibitors (Tsvetkov et al., 2022). Melanoma shows particular
sensitivity to copper toxicity due to its metabolic characteristics:
35%-50% BRAF-mutant,
melanoma cells rely heavily on oxidative phosphorylation

of wild-type, and patient-derived
(OXPHOS) for energy, making them sensitive to copper-induced
mitochondrial damage (Fischer et al, 2018). The mechanism of
cuproptosis is closely tied to mitochondrial function, as it can be
suppressed via electron transport chain inhibitors (Tsvetkov et al.,
2022). A key player is ferredoxin 1 (FDX1), which is highly
expressed in melanoma and other cancers (Lu et al, 2023).
FDX1 Cu* toxic Cu® and activates

reduces to more
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Pathway map of mechanisms associated with cuproptosis in melanoma. Extracellular copper enters cells through copper ionophores, such as
elesclomol. Inside the cell, FDX1 reduces Cu?* to Cu*. FDX1 also works with LIAS to support the lipoylation of certain metabolic enzymes, such as DLAT.
When Cu* binds directly to lipoylated proteins, it causes proteins to form oligomers. This abnormal process can lead to a toxic function that results in
cuproptosis. At the same time, Cu* can lead to the loss of iron-sulfur clusters in a process dependent on FDX1. These combined effects cause
proteotoxic stress and eventually lead to cell death. FDX1, Ferredoxin 1; LIAS, Lipoic Acid Synthetase.

mitochondrial protein lipoylation by interacting with lipoic acid
synthetase (LIAS) (Dreishpoon et al., 2023). Lipoylation, a post-
translational modification, be disrupted during cuproptosis
(Tsvetkov et al., 2022; Rowland et al., 2018). Notably, copper binds
directly to lipoylated DLAT, triggering its oligomerization. This is
thought to produce toxic protein aggregates that lead to cell death
(Tsvetkov et al, 2022). Interestingly, high FDX1 expression in
melanoma is linked to improved response to anti-PD-
L1 immunotherapy (Lu et al, 2023), but FDX1 knockdown
inhibits the in vitro proliferation of melanoma cells (Liu et al,
2022). Copper toxicity also damages iron-sulfur (Fe-S) cluster
integrity. Recent studies have found that treating cells with a
copper ionophore resulted in FDX1-dependent loss of Fe-S cluster
proteins (Walshe, 2007), Figure 4 visually presents this process.

4 Disulfidptosis in melanoma: a novel
cell death mechanism triggered by
disulfide stress

Disulfidptosis, identified in 2023, is a type of regulated cell death
that occurs in cells with high SLC7A11 expression when glucose is
scarce. Upon glucose starvation, cells with high expression of
SLC7A11 experience rapid NADPH depletion and abnormal
accumulation of insoluble disulfides, leading to disulfidptosis, as
shown in Figure 5 (Liu et al., 2020; Goji et al, 2017; Liu X. et al,
2023; Joly et al., 2020). Importantly, this death mechanism differs from
apoptosis, necroptosis and ferroptosis, as evidenced by insensitivity to
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their inhibitors and absence of classical markers like caspase-3 cleavage,
cystine crystal formation or ATP depletion (Liu X. et al, 2023;
Elmonem et al,, 2016; Pereira et al., 2015). Cystine removal rescues
these cells from glucose starvation-induced death (Liu et al., 2020; Goji
et al,, 2017), while thiol oxidizing agents worsen it (Liu X. et al,, 2023).
The glycolysis inhibitor 2-deoxyglucose (2DG) unexpectedly reduces
cell death by shifting glucose analogs into the PPP to replenish NADPH
(Liu et al., 2020; Zhang et al., 2014), confirming that NADPH supply
not glycolytic is the key determinant. Disulfide-reducing agents (e.g.,
N-acetyl cysteine, tris (2-carboxyethyl) phosphine) restore NADPH
levels and prevent cell death, further supporting disulfide overload as
the main cause (Liu et al.,, 2020).

ROS scavengers show different effectiveness among various cell
lines, indicating that ROS may influence but not initiate disulfidptosis
(Liu et al., 20205 Joly et al,, 2020). Further mechanistic insights reveal
that glucose-starved cells with high expression of SLC7A11 leads to
abnormal disulfide bonding within actin cytoskeleton proteins (ACPs),
which results in the breakdown of the actin network, detachment of the
plasma membrane, and ultimately disulfidptosis cell death (Liu D.
et al,, 2023). The Racl-WAVE regulatory complex (WRC) pathway
plays a critical role by activating Arp2/3-mediated branched actin
polymerization and lamellipodia formation. This branched structure
provides a site for disulfide bonding. Disulfidptosis is diminished upon
WRC disruption and enhanced by Racl activation (Liu D. et al., 2023;
Ibarra et al., 2005; Alekhina et al., 2017).

Correlatively, the movement and invasion of melanoma cells
strongly rely on changes in the actin cytoskeleton. Although the
WRC-Arp2/3 pathway is a main controller of this process,
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Pathway map of mechanisms associated with disulfidptosis in melanoma. In cells exhibiting high SLC7A11 expression, cystine uptake is significantly
elevated, followed by its reduction to cysteine. This reduction process depends on NADPH as a key reducing agent, which is primarily supplied through
the pentose phosphate pathway (PPP) using glucose. Abundant glucose is essential to prevent abnormal intracellular cystine accumulation and avoid
disulfide bond formation within actin cytoskeleton proteins, thereby supporting cell survival in SLC7A11-high contexts. Under glucose-deficient
conditions, limited NADPH availability leads to excessive buildup of cystine and other disulfide species. This promotes aberrant disulfide bonding in actin
cytoskeletal proteins, resulting in the disruption of the actin network and ultimately inducing disulfidptosis. It is suggested that Rac1-WRC-Arp2/3-
mediated branched actin polymerization may provide a structural environment conducive to disulfide bond formation among actin filaments, thereby
promoting disulfidptosis. GLUT, glucose transporter; Racl, Rac family small GTPase 1; ACPs, actin cytoskeleton proteins; WRC, Racl-wave

regulatory complex.

melanoma cells show a high level of flexibility. The co-activator
YAP, which promotes melanoma growth and spread, controls the
Arp2/3 subunit ARPC5. This subunit is essential for keeping focal
adhesions stable and supporting the ability of melanoma cells to
invade (Lui et al., 2022). This YAP-ARPC5 axis represents an
alternative pathway influencing Arp2/3 activity and actin
dynamics in melanoma. In studies using B16F1 melanoma cells,
it was found that lamellipodia-like structures (LLS) driven by Arp2/
3 and regulated by Rac/Cdc42 can form without the WRC. This
suggests there is more complexity in how the actin network is
controlled in melanoma cells (Kage et al, 2022). These results
indicate that melanoma cells may have other or backup ways to
reshape their actin structures, which might change how they
respond to disulfidptosis caused by WRC activation.

5 Interactions between three
metabolism-linked cell death pathways

Ferroptosis, cuproptosis, and disulfidptosis are programmed cell
death pathways triggered by metabolic stress. They form a dynamic
antagonistic-synergistic network through shared key molecular
hubs. Table 1 of their

provides a comparative analysis
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characteristics, while Table 2 lists common or potential inducers
and inhibitors for these three forms of programmed cell death.

5.1 The metabolic resource competition
paradox among ferroptosis, cuproptosis,
and disulfidptosis

Ferroptosis and disulfidptosis exhibit competitive regulatory
NADPH  generation control.
Ferroptosis relies on the enrichment of GSH precursors by
system Xc and the antioxidant capacity of the GPX4-GSH
system. In contrast, disulfidptosis arises from an imbalance

features in and metabolic

between cystine intake driven by SLC7A11 and the use of
NADPH. When glucose is limited, the PPP is unable to provide
enough NADPH, which affects the activity of GPX4. The
competition for metabolic resources between these two forms of
cell death is notable. Specifically, high levels of SLC7A11 increase
resistance to ferroptosis but also increase the risk of disulfidptosis
due to excessive NADPH depletion. In addition, GPX4 also
functions as an intracellular copper chelator to control copper
levels inside the cell. Meanwhile, research has been shown that
glutathione depletion induced by buthionine sulfoximine sensitizes
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TABLE 1 Comparison of characteristics of ferroptosis, cuproptosis and disulfidptosis.

Feature Ferroptosis Cuproptosis Disulfidptosis

Core Inducer Iron ions (Fe**) Copper ions (Cu®) Disulfide bonds

Morphological Increased mitochondrial membrane density; Mitochondrial shrinkage; Plasma membrane Cell membrane contraction; loss of contents;
Features Mitochondrial shrinkage; Reduction or rupture; Endoplasmic reticulum damage collapse of the F-actin network; Cytoskeleton
disappearance of mitochondrial cristae; Outer (Tsvetkov et al., 2022) collapse (Liu et al., 2025)
membrane rupture (Li et al.,, 2023)
Hallmark Lipid peroxidation of membrane phospholipid Oligomerization of lipoylated TCA cycle Actin disulfide crosslinking

Metabolic Event

Key Defense GPX4-GSH axis
Pathways FSP1-CoQ10 axis
DHODH

Death Executor Accumulation of lipid ROS — Loss of membrane

integrity

cancer cells to cuproptosis (Mao et al., 2024; Tsvetkov et al., 2022).
This competition at the metabolic level may help cells maintain a
balance for cell fate selection.

5.2 Mitochondrial damage and disrupted
metal homeostasis in ferroptosis,
cuproptosis, and disulfidptosis

The interaction between cuproptosis and disulfidptosis mainly
occurs at key points in mitochondrial metabolism. Copper ions
induce abnormal aggregation of lipoylated DLAT in mitochondria
via the FDXI1-LIAS pathway, while NADPH deficiency in
disulfidptosis may worsen mitochondrial function, forming a
harmful cycle. The copper release mechanism involving
ATP7A/B in cuproptosis shares similarities with the iron export
process controlled by FPN in ferroptosis. At the same time, the
stability of iron-sulfur clusters inside the cell affects whether
cuproptosis is triggered, while ferroptosis also relies on Fe-S
cluster biogenesis (Lee and Roh, 2023). This suggests that
interfering with metal transport systems could impact multiple
types of cell death simultaneously.

From an evolutionary perspective, the redox reactions involving
metal ions naturally conflict with the precise control of cell
metabolism especially in the tumor environment. To support
rapid growth, cancer cells often accumulate metal ions in excess,
but this makes them more sensitive to the activation of multiple

death signals.

5.3 Molecular crosstalk among tumor
microenvironment, ferroptosis, cuproptosis,
and disulfidptosis

Ferroptosis, cuproptosis and disulfidptosis share certain
common features in immune regulation, yet each exhibits distinct
biological characteristics and mechanisms of action. Within the
tumor microenvironment (TME), they collectively influence anti-
tumor immune responses through metabolic reprogramming,
immune cell polarization, and regulation of immune checkpoint
expression.
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Copper chaperones (ATOX1, CCS)Copper
efflux pumps (ATP7A/B)

Mitochondrial protein aggregation —

proteins

NADPH regeneration

F-actin contraction — Plasma membrane

Proteotoxic stress detachment

The interaction between ferroptosis and the TME is complex.
The sensitivity of immune cells to ferroptosis varies greatly. CD8"
T cells play a crucial role in triggering ferroptosis in cancer cells:
IFNy produced by CD8" T cells suppresses the Xc~ system and
upregulates ACSL4 expression, promoting ferroptosis in tumor cells
(Dixon et al., 2012; Wang et al., 2019; Liao et al., 2022). However,
some studies indicate that T cells themselves are also vulnerable to
ferroptosis. Tumor-associated macrophages (TAMs) exhibit high
plasticity and can differentiate into either immunostimulatory
M1 or immunosuppressive M2 phenotypes. M2 macrophages,
due to their lower antioxidant capacity, are more possible to
ferroptosis than M1 macrophages (Kapralov et al., 2020; Luo
et al,, 2021). Inducing ferroptosis in M2 macrophages alleviates
the immunosuppressive microenvironment, and modulating the
M1/M2 macrophage ratio enhances the responsiveness to PD-1
therapy (Jiang et al., 2021), thereby improving the efficacy of cancer
immunotherapy. NK cells also play a central role in anti-tumor
immunity. NK cells inactivation in the TME are associated with
oxidative stress, and activation of the transcription factor NRF2 has
been shown to restore NK cells function (Sun et al., 2016; Poznanski
et al,, 2021). As the most potent antigen-presenting cells, dendritic
cells (DCs) are essential for activating naive T cells and initiating
T cell (Marmonti et al., 2022). Both the GPX4 inhibitor RSL3 and the
lipid peroxidation product 4-hydroxynonenal (4-HNE) can impair
dendritic cells (DCs) function (Cubillos-Ruiz et al., 2015). The effect
of ferroptotic cancer cells on DCs may depend on the stage of
ferroptosis. In early stages, cancer cells promote DCs maturation;
however, as ferroptosis advances, this ability declines. Nonetheless,
these late-stage ferroptotic cells remain susceptible to efficient
phagocytosis by DCs (Efimova et al., 2020).

Cuproptosis modulates immune responses through copper-
dependent mechanisms. Elevated copper levels in tumor tissues
not only promote tumor proliferation and angiogenesis (Garber,
2015; Ge et al, 2022) but also specifically upregulate PD-L1
expression (Zhang et al., 2024), promoting immune escape. The
copper transporter CTRI is associated with infiltration of multiple
immune cells (Wang J. et al, 2023) and correlates with poor
prognosis in cancers such as breast cancer and melanoma (Lv
et al, 2022; Wu et al., 2023). Copper chelators can reverse
copper-induced immunosuppression and enhance infiltration of
CD8" T and NK cells (Cheng et al., 2022).
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TABLE 2 The effects of common or potential inhibitors and inducers of ferroptosis, cuproptosis and disulfidptosis in melanoma.

Category

Compound

Research

Stage

Mechanism
related to
ferroptosis

Current
application

Existing
research on
melanoma

Research
material

Ferroptosis ACSL4 Indirect
Inhibitors Regulation

Rosiglitazone

Clinical use

PPARy agonist;
indirectly inhibits
ACSL4 expression
(Kung et al., 2022)

Type 2 diabetes

Promote the
development of
human melanoma
in xenografts

A375 (Pich et al,,
2018)

Pioglitazone

Clinical use

PPARy agonist; similar
to Rosiglitazone (Kung
et al,, 2022)

Type 2 diabetes

Interfer TLR4-
dependent signaling
pathways to exert
protective effects
against melanoma

B16F10 (Dana
et al, 2019)

LOX Inhibition

Zileuton

Clinical use

Inhibits LOX activity;
reducing lipid
peroxidation (Costa
et al., 2023)

Asthma treatment

Antioxidant Ferrostatin-1 Preclinical Radicals scavenging; Tool compound Inhibit melanoma A375 (Tyurina
iron chelation for mechanism ferroptosis et al., 2023)
(Guerrero-Hue et al., studies
2019)
Liproxstatin-1 Preclinical Clearing ROS; activates Tool compound Inhibit melanoma M21 (Kim et al,,
the Nrf2 pathway and for mechanism ferroptosis 2016)
restores GPX4 levels studies
(Cao et al., 2021)
ROS Scavenging PHOXNO Preclinical Nitrogen oxide; blocks Tool compound — —
Fenton reaction and for mechanism
ROS generation (Xu studies
et al.,, 2025)
Ferroptosis Targeting Erastin Preclinical Inhibits System Xc; Tool compound Induce melanoma | A375 G361 (Yao
Inducers System Xc activates Nrf2/HO- for mechanism ferroptosis et al., 2021)
1 pathway in cervical studies
cancer cells (Dixon
et al., 2012; Wei et al.,
2023; Fishman et al.,
2015)
Sorafenib Clinical use Inhibits System Xc'; Advanced Induce melanoma B16F10 (Yu
suppresses BXIP/SCD HCC, RCC ferroptosis et al,, 2022)
axis in HCC (Dixon
et al., 2012; Wei et al,,
2023; Zhang et al,,
2023a)
Sulfasalazine (SAS) Clinical use Inhibits System Xc; Inflammation Decrease B16F10 (Nagane
increases Fe’* and ROS glutathione content, et al., 2018)
levels in Neuroblastoma enhance
with MYCN susceptibility to
amplification (Floros radiation therapy
et al,, 2021)
Targeting RSL3 Preclinical Reduces Tool compound Induce melanoma | A375 G361 (Yao
GPX4 GPX4 expression; for mechanism ferroptosis et al., 2021)
increases ROS (Sui studies
et al., 2018)
ML162 Preclinical Inhibits GPX4; induces Tool compound — —
ROS accumulation for mechanism
(Zou et al., 2019) studies
Targeting iFSP1 Preclinical Inhibits FSP1; reduces Tool compound — —

CoQ10 Biosynthesis

CoQ10 synthesis (Cheu
et al., 2023)

for mechanism
studies
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TABLE 2 (Continued) The effects of common or potential inhibitors and inducers of ferroptosis, cuproptosis and disulfidptosis in melanoma.

Category

Compound

Research

Stage

Mechanism
related to
ferroptosis

Current
application

Existing
research on
melanoma

Research
material

Simvastatin Clinical use Inhibit HMGR, block Anti Combine A375 (Zhang
MVA pathway and -hyperlipidemic simvastatin with et al., 2021)
CoQ10/ drug tanshinone | to
GPX4 biosynthesis in regulate the
Triple-negative breast expression of
cancer (Xu et al., 2025) PARP1 and inhibit
melanoma
Targeting Cisplatin Clinical use Depletes GSH via Pt-GS Solid tumors Anti melanoma Patients with
GSH complex formation; melanoma
induces ferroptosis in
NSCLC (Min et al.,
2012)
Acetaminophen Clinical use Metabolite NAPQI Pain/fever — —
(APAP) depletes GSH; induces
ferroptosis in
hepatocytes (Lorincz
et al.,, 2015)
Targeting Ferumoxytol Clinical use Increases Fe*" levels Anemia in chronic = Enhance immune B16F10 (Stater
Fe’*/PUFA (Rosner and Bolton, kidney disease effect of et al., 2023)
2009; Birben et al., macrophages on
2012) melanoma
FINO2 Preclinical Oxidizes iron, induces Tool compound —
lipid peroxidation for mechanism
(Gaschler et al., 2018) studies
Salinomycin Preclinical Induce iron loading in Broad-spectrum Obviate liver 92.1 Mel270
the lysosomes, induces anti-bacterial metastasis of uveal Omml
ROS (Zhao et al., 2018) agent; melanoma Omm2.3 (Zhou
selective agent for et al., 2019)
cancer stem cells
(CSCs)
Cuproptosis Targeting Ammonium Phase II clinical =~ Copper chelating agents Breast cancer — —
Inhibitors Cu** tetrathiomolybdate trials are also a type of sulfide
donor (Chan et al.,
2017)
Penicillamine Preclinical Copper chelating agents =~ Tool compound Induce Noxa A375 G361
(Wang et al., 2023a) for mechanism (PMAIP1)- (Qiao et al.,
studies dependent 2012)
mitochondrial
apoptosis
Cuproptosis Targeting Disulfiram Preclinical The active form of DSF = Tool compound Induce copper- B16F10
Inducers Cu** transports copper to for mechanism dependent reactive (Mohapatra
intracellular studies oxygen species et al., 2024)
compartments (Nie stimulation
et al., 2022)
Elesclomol Preclinical Highly lipophilic Tool compound Load copper and B16 (Lu et al,
copper ion carrier for mechanism induce cuproptosis 2024)
(Zheng et al., 2022) studies
Zinc Pyrithione Market exit Copper ion carrier Antibacterial Increase the zinc Primary culture
(Huo et al.,, 2023) action content within (Rudolf and
melanoma cells and Rudolf, 2021)
induce autophagy
Disulfidptosis Targeting Erastin Preclinical Block the cystine uptake = Tool compound Induce ferroptosis
Inhibitors System Xc mediated by SLC7A11 for mechanism (the main function)
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TABLE 2 (Continued) The effects of common or potential inhibitors and inducers of ferroptosis, cuproptosis and disulfidptosis in melanoma.

Mechanism
related to
ferroptosis

Research
material

Current
application

Existing

research on
melanoma

Category Compound Research
Stage
Targeting disulfide DL-dithiothreitol Preclinical
bond
Disulfidptosis Targeting Diethyl maleate Preclinical
Inducers System Xc-
Targeting glucose BAY-876 Preclinical

Maintain molecular
structure (Yao et al.,

Upregulate the activity
of system Xc~ (Deneke

Glucose transporter 1
(GLUT1) inhibitor
(Zhang et al., 2023b)

Tool compound
for mechanism
2024) studies

Tool compound
for mechanism

et al., 1989) studies

Tool compound
for mechanism
studies

As a newly identified form of cell death, the direct link between
disulfidptosis and the immune microenvironment remains unclear.
However, its metabolic basis overlaps significantly with immune
regulation. Key metabolites such as glucose, lactate, and cystine not
only influence the occurrence of disulfidptosis but also strongly
modulate immune cell function (Mi et al., 2024). For instance, high
glucose consumption by tumor cells leads to nutrient deprivation in
the TME and accumulation of lactate, which acidifies the TME. This
acidic environment impairs T cell cytolytic activity and cytokine
production (Apostolova and Pearce, 2022), while also promoting
macrophage polarization toward the M2 phenotype and altering
regulatory T cell (Treg) metabolism to sustain their function under
low glucose conditions (Watson et al., 2021; Han et al, 2023).
Furthermore, tumor cell expression of GLUT1 negatively correlates
with CD8" T cell infiltration. Inhibiting GLUT1 may not only induce
disulfidptosis but also increase CD8" T cell infiltration and reduce
PD-LI levels (Singer et al, 2011). Cystine deficiency similarly
destroys T cell function (Wang et al, 2019), suggesting that
modulating metabolite levels may together induce disulfidptosis
and remodel the immune microenvironment.

These three forms of metabolic cell death interact with the TME
through the release of and response to immune signaling molecules,
as well as via metabolic competition. They share common
involvement in metabolic reprogramming and immune
checkpoint regulation, and all hold potential for combination
with immunotherapy. Their distinctions lie in the fact that
ferroptosis closely linked cell regulation,

cuproptosis depends more on metal ion homeostasis and specific

is to immune
protein expression, while disulfidptosis is more intimately associated
with glycolytic pathways. Current understanding of their immune
effects is largely inferred from metabolic substrate competition, and

specific mechanisms need further verification.

6 Therapeutic pros

Elects of using
metabolic cell deat

in melanoma

A complex network of molecular interactions and conflicting
resource among ferroptosis, cuproptosis, and disulfidptosis creates
multiple weakness in melanoma cells. However, effectively using
these death mechanisms requires understanding the metabolic
strategies of melanoma cells, especially when facing treatment
resistance.
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6.1 Strategies to reverse ferroptosis
resistance in melanoma

Ferroptosis regulation in melanoma is closely related to changes
in metabolism that lead to treatment resistance. Studies reveal that
the unique lipid microenvironment of the lymphatic system protects
metastatic melanoma cells from ferroptosis. Compared to blood,
lymphatic fluid contains more glutathione and oleic acid. Oleic acid
increases resistance to ferroptosis and supports the spread of cancer
cells by activating the ACSL3-related signal (Ubellacker et al., 2020).
BRAF inhibitor-resistant melanoma cells show changes in lipid
metabolism, with lower levels of saturated fatty acids and higher
levels of mono/polyunsaturated fatty acids. Targeting cholesterol
esterification enzymes ACAT2 or SOAT helps regain drug
sensitivity (Vergani et al., 2022). Transcriptional networks further
enforce ferroptosis resistance in melanoma: EZH2 copy number
amplification silences KLF14, upregulating SLC7A11 to enhance
glutathione synthesis (Du et al, 2024), while APOE reduces
polyunsaturated fatty acids and upregulates GPX4 (More
et al., 2024). Resistance is similarly mediated by SREBP2-induced
transferrin transcription, which reduces intracellular iron pools,
ROS, and lipid peroxidation (Hong et al., 2021). These metabolic
changes create a safe environment, allowing melanoma cells to avoid
ferroptosis. Propafenone promotes mitochondrial
HMOXI1 expression by activating JNK/JUN signal, induces iron
accumulation and ROS eruption, works together with RSL3 to
promote ferroptosis in melanoma, Similarly, the CDK4/
6 inhibitor palbociclib enhances the efficacy of the ferroptosis
inducer auranofin by inducing cell senescence and depleting
glutathione (GSH) and NADPH, This suggests that metabolic
interventions as a strategy to overcome melanoma heterogeneity
(Fan et al., 2024).

6.2 Amplify the therapeutic effect of
melanoma by combined targeting of
ferroptosis and immune activation

Multiple nanoplatforms combine the two functions of metabolic
control and immune modulation. TPL@TEBF releases Fe** for
Fenton reactions while inhibiting Nrf2, triggering ferroptosis/
pyroptosis and releasing DAMPs to enhance CD8" T cell
infiltration (Wang S. al., 2024). the TCFI

et Similarly,
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nanoplatform combines photodynamic therapy with ferroptosis to
induce immunogenic cell death. Concurrently, interferon-y
secretion suppresses system xc  activity, forming a positive
environment between ferroptosis and antitumor immunity (Hou
et al., 2023).

Post-translational modifications also provide potential targets to
overcome resistance. Studies show that the balance between
SUMOylation and phosphorylation of STATI is crucial for
ferroptosis. A 108-amino acid polypeptide from circular RNA
circPIAS1 interacts with the SUMO E3 ligase Ranbp2 to increase
STAT1 SUMOylation, which in turn reduces its phosphorylation.
This modification blocks the SLC7A11/GPX4 pathway and weakens
interferon-y-induced ferroptosis, ultimately leading to resistance
against immune checkpoint inhibitors (ICB). This mechanism
supports the idea of combining anti-circPIAS] and PD-1
inhibitors in melanoma treatment (Zang et al., 2024). Another
study identifies that the ubiquitin ligase Nedd4 induces resistance
to ferroptosis by promoting VDAC2/3 degradation, a process
inversely regulated by the FOXM1-Nedd4-VDAC2/3 (Yang et al,,
2020). These research above suggest that using ferroptosis inducers
together with agents that disrupt redox balance or promote
immunogenic cell death can create combination therapies.

6.3 Innovative strategies for cuproptosis and
disulfidptosis in melanoma treatment and
the prognostic value of related genes

Cuproptosis and disulfidptosis are recently identified forms of
metabolic cell death, but they show strong potential for melanoma
therapy. Nanotechnology platforms are being developed to trigger
tumor cell cuproptosis or disulfidptosis, aiming to improve
treatment outcomes and solve shortcomings of traditional
methods. For example, the nanocarrier ACM@MCHS-CuMOF@
Dox, combining Mesoporous Carbon Hollow Spheres (MCHS)
loaded with Copper-based Metal-Organic Frameworks (CuMOFs)
and Doxorubicin (Dox), can downregulate FDX1 to induce
apoptosis and cuproptosis, significantly inhibiting proliferation
and migration of melanoma A375 cell line in vitro (Zhang et al.,
2025); the triboelectric-field cuproptosis induction patch (TIP)
utilizes a portable electric field to induce cuproptosis, overcoming
limitations of traditional electrostimulation and effectively
inhibiting postoperative melanoma recurrence (Chen et al., 2025).
Another study developed a copper oxide nanoplateform (ES@CuO),
which is absorbed by tumor cells and degrades to release Cu*
triggering cuproptosis, significantly inhibiting B16 melanoma
growth in mice, while promoting CD8"T cell infiltration and
it with PD-1
antitumor

inflammatory factor secretion. Combining
the
response (Lu et al, 2024); The nanoimmunoagonist pLCGM-
OVA links cuproptosis with the cGAS-STING pathway to

stimulate dendritic cell maturation and strengthen cytotoxic T

immunotherapy further enhances immune

lymphocyte activity against tumors (Li et al., 2025). Additionally,
the ternary heterojunction (HACT) generates reactive oxygen
species (ROS) and releases copper ions through sonodynamic
therapy, inducing oxidative stress and cuproptosis while
exhibiting high tumor-targeting specificity (Huang et al., 2024);

drug-loaded nucleic acid nanomedicine (SNAMA) effectively
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inhibits tumor growth
melanoma models via GSH release and disulfidptosis activation
(Tian et al., 2025).

Key genes associated with cuproptosis and disulfidptosis also

in primary and metastatic uveal

exhibit clinical significance. Among cuproptosis-related genes
(CRGs), LIPT1 is identified as an independent prognostic factor,
positively correlating with PD-L1 expression while negatively
regulating Treg cell infiltration (Lv et al, 2022); PPIC is a
promoter of melanoma progression, enhancing cell invasiveness
while suppressing CD8"T cell activation (Zhou et al., 2024). YAP1, a
core gene in the Hippo pathway, positively correlates with
FDX1 expression in the A2058 cell line, and impacts prognosis
through modulation of M2 macrophage and Treg infiltration (Lv
et al., 2024). Prognostic models constructed based on cuproptosis-
related genes (CRGs) and disulfidptosis-related genes (DRGs) (e.g.,
CRSS score, IncRNA signature, 2-DRL prognostic model, etc.)
enhance prediction accuracy, immunotherapy benefit rate, and
tumor microenvironment (TME) status assessment capability
(Liu D. et al., 2023; Cheng et al., 2024; Li et al., 2024; Lei et al,,
2024; Zhao et al., 2023; Zhou et al., 2022; Yang et al., 2022; Zhu et al.,
2024). These findings confirm that CRGs and DRGs have the
the TME
responsiveness, offering critical strategies personalized
precision medicine (Hu et al.,, 2023; Chen et al., 2022; Sun et al.,
2023; Huang et al.,, 2023; Yang et al,, 2024).

potential to alter and enhance treatment

for

7 Conclusion and perspectives

Ferroptosis, cuproptosis, and disulfidptosis represent three key
forms of metabolic cell death that offer novel therapeutic strategies
for melanoma. This review highlights their dynamic metabolic
competition network in melanoma cells, interconnected through
mitochondrial metabolism and metal ion homeostasis regulation.
For example, GPX4 depletion not only induces ferroptosis but also
functions as an intracellular

copper chelator,

cuproptosis initiation. Overexpression of SLC7All creates a

influencing

paradoxical ~balance between ferroptosis resistance and

disulfidptosis risk. Also, all three pathways profoundly affect the
tumor microenvironment (TME). On the other hand, melanoma

resistance mechanisms are closely linked to metabolic
reprogramming, including the protection of the lipid
microenvironment and the regulation of ACAT2/SOAT,

SLC7A11, APOE, and other related genes. To address treatment
resistance, the review integrates a variety of innovative anti-
melanoma strategies that rely on ferroptosis, cuproptosis, and
disulfidptosis, including nanoplatforms such as ES@CuO, TPL@
TFBF, and ACM@MCHS-CuMOF@Dox. This review also identifies
prognostic models with strong clinical predictive value, such as the
CRSS score, IncRNA signature, and 2-DRL prognostic model. These
findings suggest that precise regulation of metabolic cell death, redox
balance, and interactions with immune checkpoints may overcome
melanoma heterogeneity and drug-resistance bottlenecks.
Although these cell death mechanisms share common features,
being induced by imbalances in intracellular metal ions or metabolic
intermediates, and highlighting the complex interplay between
cellular metabolism and death regulation, their research for
melanoma therapy still faces significant limitations. Ferroptosis,
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being the earliest discovered among them, has relatively well-
established detection methods, including lipid peroxidation
probes, iron level assays, and glutathione metabolism markers. In
contrast, detection methods for the more recently identified
cuproptosis and disulfidptosis remain preliminary. Current
approaches rely on copper ion measurement, FDX1/LIAS protein
detection, F-actin morphology observation, SLC7A11 expression,
and NADP+/NADPH ratio analysis. The lack of highly reliable and
specific biomarkers severely limits accurate assessment and clinical
application under pathological conditions, posing a major
bottleneck for translational research.

Most existing studies are based on retrospective clinical data,
and there is a lack of prospective experiments about melanoma cell
sensitivity to different death, particularly under clinically relevant
conditions such as untreated and treated (including resistant)
conditions. Although metabolic cell death inducers such as
copper ionophores (e.g., Elesclomol) and disulfiram have been
studied in other cancers and non-cancer (e.g., NCT06635252,
NCT05210374), confirming certain translational potential, no
active clinical trials currently focus on melanoma patients.

Although targeting metabolic cell death has made some progress
in melanoma, clinical translation still faces multiple challenges. Most
inducers suffer from poor stability, low solubility, and limited
bioavailability, which greatly restrict their clinical use. Developing
with  better
repurposing FDA-approved anticancer drugs with cell death-
these
biocompatibility,

novel inducers pharmacokinetic properties or

inducing activity may partially solve limitations.

with  their
targeting capabilities, offer potential breakthroughs in melanoma

Nanomaterials, tunability, and
treatment, though their actual efficacy and safety still require to be
systematically verified. Furthermore, since different cell types within
the tumor microenvironment exhibit different sensitivities to these
death pathways, non-specific inducers or inhibitors may interfere
with other cells, leading to experimental bias. Thus, the absence of
cell-specific delivery strategies remains a major limitation.

Future research should focus on solving these critical gaps: first,
deepening the mechanistic understanding of cuproptosis and
disulfidptosis to clarify their molecular pathways and regulatory
networks; second, developing highly specific and sensitive
biomarker detection systems to support clinical diagnosis and
treatment monitoring; and finally, innovating drug delivery
strategies to improve targeting and safety. High-throughput
functional screening and artificial intelligence approaches may
accelerate the discovery of novel compounds targeting these three
death modalities. Subsequent pharmacological studies should
confirm their targeted delivery capabilities to enhance safety and
efficacy. Targeting metabolic cell death holds promise as a new
therapeutic approach in melanoma therapy, especially for patients
who do not respond to conventional treatments. Ultimately, these
efforts will improve our understanding of the mechanisms of cell
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