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Introduction: Optimizing glimepiride therapy for type 2 diabetes (T2DM) is
challenged by pronounced inter-individual variability in pharmacokinetics.
Methods: We developed a whole-body physiologically based pharmacokinetic
(PBPK) model as a digital twin of glimepiride, enabling systematic evaluation of
how patient-specific factors influence drug disposition. Using curated data from
20 clinical studies, the digital twin mechanistically simulates glimepiride’s
absorption, distribution, metabolism, and excretion (ADME). It accounts for
key determinants of variability including renal and hepatic function, CYP2C9
genotype, and bodyweight.
Results: The model accurately reproduced observed pharmacokinetics and
quantified these factors’ impact on drug exposure. Increased glimepiride
exposure was predicted in individuals with hepatic dysfunction or specific
CYP2C9 variants, highlighting substantial genetic and physiological effects.
Discussion: This digital twin provides mechanistic insights into pharmacokinetic
variability and serves as an in silico platform for exploring individualized dosing
and patient stratification strategies, laying the foundation for clinical decision
support tools to improve T2DM management.
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1 Introduction

The global burden of type 2 diabetes mellitus (T2DM) has reached critical levels, which
poses substantial health and economic challenges (American Diabetes Association
Professional Practice Committee, 2024; Institute for Health Metrics and Evaluation
(IHME), 2024). However, a major challenge in T2DM management is optimizing
treatment, as standardized drug dosing approaches can lead to inadequate glycemic
control and increase the risk of adverse events like hypoglycemia (Douros et al., 2017).
To address this, personalized dosing strategies, integrating patient-specific data, are
increasingly recognized as vital for improving therapeutic effect and safety
(Hartmanshenn et al., 2016).

Glimepiride, a second-generation sulfonylurea, is widely used in the management of
type 2 diabetes mellitus (McCall, 2001; Langtry and Glimepiride, 1998). It primarily acts by
binding to the sulfonylurea receptor 1 (SUR1) subunit of ATP-sensitive potassium channels
in pancreatic β-cells, which triggers channel closure, membrane depolarization, and calcium
influx, ultimately stimulating insulin secretion and thereby lowering blood glucose levels
(McCall, 2001; Ashcroft, 1996). Following oral administration, glimepiride achieves near-
complete bioavailability (99.7%) with a half-life of 5–8 h, though its active metabolite
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M1 retains approximately 30% activity, prolonging glucose-lowering
effects (Langtry and Glimepiride, 1998).

Despite its widespread use, glimepiride exhibits notable inter-
individual variability in its pharmacokinetic (PK) and
pharmacodynamic (PD) response (Yoo et al., 2011). This
variability is largely driven by factors such as genetic
polymorphisms in the metabolizing enzyme CYP2C9, as well
as common comorbidities in T2DM including renal and hepatic
impairment (Yoo et al., 2011; Langtry and Glimepiride, 1998;
U.S. Food and Drug Administration (FDA), 1995). CYP2C9
genetic variants, particularly *2 (Arg144Cys) and *3
(Ile359Leu) alleles, greatly reduce enzymatic activity compared
to the wild-type *1, with carriers demonstrating up to 2.5-fold
increased glimepiride exposure and heightened hypoglycemia
risk (Suzuki et al., 2006; Yoo et al., 2011). Similarly, renal
dysfunction can lead to accumulation of glimepiride
metabolites, particularly the active M1 metabolite, potentially
prolonging hypoglycemic effects, while hepatic impairment
shows minimal impact in mild-moderate cases but may
compromise CYP2C9 activity in severe dysfunction
(Rosenkranz, 1996; Rosenkranz et al., 1996). Additional
factors including bodyweight (Shukla et al., 2004) and varying
CYP2C9 allele frequencies across populations further contribute
to variability. Consequently, reliably predicting patient response
and selecting optimal, safe glimepiride doses remains a
clinical difficulty.

While empirical glimepiride pharmacokinetics models have
explored aspects like genetic polymorphisms (Yoo et al., 2011),
PK-PD relationships (Yun et al., 2006), diabetes-induced
physiological changes (Li et al., 2015), or obesity effects (Berton
et al., 2023), they address individual factors without modeling their
collective effect on glimepiride pharmacokinetics. While each
provides important insights, without integrated modeling they
offer limited utility for dose optimization across diverse patient
populations.

Physiologically based pharmacokinetic (PBPK) modeling
provides a potentially powerful framework to address this
challenge (Sager et al., 2015; Hartmanshenn et al., 2016; Berton
et al., 2023). Unlike traditional empirical pharmacokinetic
methods, PBPK simulates drug absorption, distribution,
metabolism and excretion based on drug specific properties
integrated with physiological systems (Hartmanshenn et al.,
2016; Khalil and Läer, 2011). This allows the integration of
patient-specific factors (e.g., genetics, organ function) to predict
individual drug exposure (Hartmanshenn et al., 2016; Sager et al.,
2015). This enables the development of a digital twin, a validated
computational replica designed to mirror the drug’s behavior
within specific patient populations or individuals, facilitating in
silico pharmacokinetic prediction and personalized simulation of
dosing outcomes.

This study details the development and evaluation of a whole-
body PBPK model serving as a digital twin for glimepiride.
Incorporating key determinants of patient variability, the model
demonstrates strong predictive performance against clinical data
from diverse patient groups. This digital twin serves as a quantitative
tool for exploring individual therapeutic scenarios, enabling patient
stratification, and laying the foundation for future clinical decision
support tools.

2 Results

2.1 Glimepiride database

Clinical pharmacokinetic data from 20 studies (Table 1) were
systematically curated to develop the glimepiride digital twin,
encompassing diverse patient populations, dosing regimens, and
physiological conditions. The workflow for the study selection is
illustrated in the Supplementary Figure S1. Each study received a
unique PK-DB identifier linked to its PubMed ID for traceability,
and the curated dataset was made publicly available to promote
transparency and reproducibility.

2.2 Computational model

A whole-body physiologically based pharmacokinetic (PBPK)
model was developed to serve as a digital twin of glimepiride,
integrating key determinants of inter-individual pharmacokinetic
variability (Figure 1). The model comprises key organs involved in
glimepiride pharmacokinetics: gastrointestinal tract (dissolution
and absorption), liver (CYP2C9-mediated metabolism to
metabolites M1 and M2), and kidneys (metabolite excretion),
connected via the systemic circulation. Visualizations of the
submodels are provided in the supplements (Supplementary
Figure S2). The digital twin incorporates patient-specific factors
known to influence glimepiride pharmacokinetics: CYP2C9
genotype variants (*1, *2, *3) through enzyme activity scaling
(fcyp2c9), renal function impairment via glomerular filtration rate
scaling (frenal_function), hepatic dysfunction through Child-Turcotte-
Pugh score-based scaling (fcirrhosis), and anthropometric
characteristics including bodyweight. Food effects on absorption
are captured through bioavailability (fabsorption). Model parameters
were optimized against a subset of the curated clinical dataset,
achieving good agreement between predictions and observed data
across diverse patient populations and dosing scenarios (see
Supplementary Table S1; Supplementary Figure S3 for optimized
parameters). This framework enables systematic exploration of how
genetic polymorphisms, organ dysfunction, and physiological
characteristics influence drug exposure, providing a foundation
for personalized dosing strategies. Mathematical descriptions of
the model equations and ODEs for all submodels are provided in
the supplements (Supplementary Section S3). Further study
simulations can be found in the supplements (Supplementary
Figures S9–S33).

2.3 Dose dependency

The model confirmed dose-proportional pharmacokinetics
within the therapeutic dose range (1–8 mg), with Cmax and AUC
showing linear increases while Tmax and half-life remained
consistent across doses (Figure 2). Specifically, glimepiride Cmax

increased linearly from approximately 100 ng/mL at 1 mg to 700 ng/
mL at 8 mg, while AUC increased proportionally from 500 to
4,000 ng*hr/mL. Tmax remained stable at 2.0–2.5 h and half-life
at approximately 4 h across all doses, confirming linear
pharmacokinetics. Metabolites M1 and M2 demonstrated similar
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dose-proportional behavior. Simulations showed good agreement
with clinical data from both Helmy 2013 (Helmy et al., 2013) and
Malerczyk 1994 (Malerczyk et al., 1994) for plasma concentrations,
with the model also accurately predicting cumulative urinary
excretion of metabolites from Malerczyk 1994 (Malerczyk et al.,
1994) (reaching about 7 μmol by 48 h for the 8 mg dose). See
Supplementary Figure S4 for additional dose dependency
simulations.

2.4 Renal impairment

The model incorporated four categories of renal function
based on glomerular filtration rate [mL/min/1.73 m2]: normal
(>90), mild impairment (50–90), moderate impairment (35–49),
and severe impairment (<35) based on current KDIGO guidelines
(Stevens et al., 2024). Renal dysfunction primarily affected

metabolite clearance with unchanged parent drug exposure
(Figure 3). Simulations accurately reproduced clinical
observations from (Rosenkranz et al., 1996). While the model
predicted stable glimepiride clearance, the clinical data showed
an apparent increase in clearance with declining renal function.
In contrast, metabolites M1 and M2 showed progressive
accumulation with worsening renal function, with
M1 clearance declining from approx. 140 mL/min in normal
function to 50 mL/min in severe impairment, and M2 clearance
dropping from 250 mL/min to 70 mL/min. The cumulative
urinary excretion of metabolites decreased from approx.
3 μmol at 48 h in normal function to 1 μmol in severe
impairment following a 3 mg dose. This effect confirms the
unchanged dosing requirements in renal impairment, though
M1 accumulation may be relevant for any residual
pharmacological activity. See Supplementary Figure S5 for
additional renal impairment simulations.

TABLE 1 Summary of studies for modeling. Overview of study identifiers, PK-DB IDs, administration routes, dosing regimens, doses (mg), co-administered
drugs (Co-admin.), and participant characteristics, including health status, renal impairment (Ren. imp.), type 2 diabetes mellitus (T2DM), and the studied
genotypes/alleles (Allele).

Study PK-
DB ID

Route Dosing Dose [mg] Co-
admin

Healthy Ren.
Imp

T2DM Allele

Ahmed et al. (2016) PKDB00904 oral,
transdermal

single 1 ✓

Badian et al. (1994) PKDB00907 oral, iv single 1 ✓

Badian et al. (1996)* PKDB00908 iv single 1.5 ✓

Choi et al. (2014) PKDB00903 oral single 4 gemigliptin ✓

US Food and Drug
Administration, (1995)

PKDB00946 oral, iv single 1, 1.5 ✓

Helmy et al. (2013) PKDB00905 oral single 1, 2, 3, 4, 6 ✓

Kasichayanula et al. (2011) PKDB00924 oral single 4 dapagliflozin ✓

Kim et al. (2017) PKDB00947 oral multiple 4 rosuvastatin ✓

Lee et al. (2012) PKDB00948 oral single 2 ✓ *1, *3

Lehr and Damm (1990) PKDB00949 oral single 3 ✓

Liu et al. (2010) PKDB00950 oral multiple 2 ✓

Malerczyk et al. (1994) PKDB00906 oral single 1, 2, 4, 8 ✓

Matsuki et al. (2007) PKDB00951 oral single,
multiple

2, 1 + 1 ✓

Niemi et al. (2002) PKDB00952 oral single 0.5 ✓ *1,
*2, *3

Ratheiser et al. (1993) PKDB01022 iv single 0.25, 0.5, 0.75, 1.0,
1.25, 1.5

✓

Rosenkranz et al. (1996) PKDB00954 oral single,
multiple

3, 1 to 8 ✓ ✓

Shukla et al. (2004) PKDB00955 oral single 8 ✓

Suzuki et al. (2006) PKDB00956 oral single 1 ✓ *1, *3

Wang et al. (2005) PKDB00957 oral single 4 ✓ *1, *3

Yoo et al. (2011) PKDB00958 oral single 2 ✓ *1, *3

*Metabolite M1 was administered.
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FIGURE 1
Whole-body PBPK model of glimepiride and key factors influencing its disposition. (A) Whole-body model illustrating glimepiride (GLI)
administration (oral and intravenous), its systemic circulation via venous and arterial blood, and the key organs (liver, kidney, GI tract) involved in GLI
metabolism, distribution, and excretion. (B) Intestinal model showing dissolution and absorption of GLI by enterocytes. No enterohepatic circulation of
M1 and M2 is assumed, but reverse transport via enterocytes is included. (C) Hepatic model depicting CYP2C9-mediated metabolism of GLI to
M1 and M2. (D) Renal model highlighting the elimination of M1 and M2 via urine; unchanged GLI is not excreted renally. (E) Key factors influencing
glimepiride disposition accounted for by the model: administered dose, renal impairment, liver function (cirrhosis), bodyweight, andCYP2C9 genotypes.
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2.5 Hepatic impairment

The model incorporated Child-Turcotte-Pugh (CTP)
classifications: CTP A (mild cirrhosis, 5–6 points), CTP B (moderate

cirrhosis, 7–9 points), and CTP C (severe cirrhosis, 10–15 points)
(Child and Turcotte, 1964; Infante-Rivard et al., 1987). Hepatic
dysfunction demonstrated a strong impact on parent drug exposure
(Figure 4). Model predictions matched limited clinical data, showing

FIGURE 2
Dose dependent pharmacokinetics of glimepiride and its metabolites. (A) Illustration of the glimepiride oral dose range (1–8 mg) evaluated in the
simulations. (B) Simulated (solid lines) versus observed (squares connected by dashed lines) plasma concentration-time profiles of glimepiride from
Helmy et al. (2013), glimepiride plasma concentrations and cumulative M1+M2 urinary excretion from (Malerczyk et al., 1994 and Ratheiser et al., 1993)
across various oral doses. Observed data are presented as mean or mean±SD where available. (C) Dose dependency relationships for key
pharmacokinetic parameters for glimepiride, M1, and M2. Simulation results (solid lines) are compared with experimental data (squares with error bars,
representing mean or mean±SD where available) aggregated from all 20 clinical studies used in the model development.
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progressive increases in glimepiride concentrations with worsening liver
function. Cmax nearly doubled from 75 ng/mL in normal function to
125 ng/mL in severe cirrhosis, while AUC increased even more
substantially by approximately 3.5-fold. Conversely, metabolite
concentrations decreased greatly, reflecting reduced CYP2C9-

mediated metabolism due to liver impairment. Comparison with
limited clinical data from Rosenkranz 1996 (Rosenkranz, 1996)
showed reasonable agreement. These findings strongly support dose
reduction recommendations in hepatic impairment. See Supplementary
Figure S6 for additional hepatic impairment simulations.

FIGURE 3
Impact of renal function on the pharmacokinetics of glimepiride and itsmetabolites. (A)Classification of renal function based on glomerular filtration
rate (GFR), illustrating normal function, mild, moderate, and severe renal impairment. (B) Simulated (solid lines) versus observed (squares connected by
dashed lines) plasma concentration-time profiles for glimepiride, M1, and M2, and cumulative M1+M2 urinary excretion, following a 3 mg oral dose in
subjects with varying degrees of renal function. Observed data from (Rosenkranz et al., 1996). (C) Relationship between creatinine clearance and key
pharmacokinetic parameters for glimepiride, M1, and M2, following a 3 mg oral dose. Simulation results (solid lines) are compared with observed clinical
data (symbols; dashed lines: regression fits where applicable) from (Rosenkranz et al., 1996).
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FIGURE 4
Impact of hepatic function (cirrhosis) on the pharmacokinetics of glimepiride and its metabolites. (A) Classification of liver function based on the
Child-Turcotte-Pugh (CTP) score, illustrating normal function, mild cirrhosis (CTP A), moderate cirrhosis (CTP B), and severe cirrhosis (CTP C). (B)
Simulated plasma concentration-time profiles for glimepiride, M1, and M2, and cumulative M1+M2 urinary excretion, following a 1 mg oral dose in
subjects with varying degrees of cirrhosis severity (control, mild, moderate, severe). (C) Relationship between cirrhosis severity and key
pharmacokinetic parameters for glimepiride, M1, and M2, following a 1 mg oral dose. Simulation results (solid lines) are compared with observed clinical
data (symbols with error bars where available, representing range/mean±SD) from (Rosenkranz, 1996).
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FIGURE 5
Impact of bodyweight on the pharmacokinetics of glimepiride and its metabolites. (A) Illustration of bodyweight categories: underweight, normal
weight, overweight, and obese. (B) Simulated (solid lines) versus observed (squares connected by dashed lines) plasma concentration-time profiles and
cumulative urinary excretion for glimepiride, M1, and M2, following an 8 mg oral dose in normal weight and morbidly obese individuals. Observed data
from (Shukla et al., 2004). (C) Relationship between bodyweight and key pharmacokinetic parameters for glimepiride, M1, and M2, following a 8 mg
oral dose. Simulation results (solid lines) are compared with observed clinical data (mean±SD) from (Shukla et al., 2004) (8 mg PO, normal weight and
morbidly obese groups) and dose-normalized AUC data for glimepiride from (Gu et al., 2010) (original 2 mg PO scaled to 8 mg).
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2.6 Bodyweight dependency

An inverse relationship between bodyweight and systemic
exposure was confirmed through simulations across a wide
weight range (40–170 kg) and compared against clinical studies
(Figure 5). Glimepiride Cmax decreased from 1,000 ng/mL at 40 kg to
300 ng/mL at 170 kg, while AUC declined from 6,000 to

approximately 2,000 ng*hr/mL. Despite these exposure changes,
Tmax and half-life remained stable across the weight range. Model
predictions accurately captured observed differences between
normal-weight and morbidly obese patients in (Shukla et al.,
2004), with peak concentrations of 1.4 μg/mL in normal-weight
versus 0.8 μg/mL in obese individuals following an 8 mg dose.
Metabolites showed similar behavior. Additional comparison using

FIGURE 6
Impact of CYP2C9 genetic variants on glimepiride pharmacokinetics. (A) Illustration of key CYP2C9 genotypes (*1/*1, *1/*2, *1/*3, *3/*3) and their
corresponding enzymatic activities. (B) Simulated pharmacokinetic profiles of glimepiride, M1, M2, and cumulative M1+M2 urinary excretion, following a
4 mg oral dose, based on fixed enzyme activity values for different CYP2C9 genotypes. (C) Comparison of simulated (solid lines, using fixed CYP2C9
activity values) versus observed (symbols connected by dashed lines) glimepiride plasma concentrations in individuals with different CYP2C9
genotypes across five clinical studies (Lee et al., 2012; Niemi et al., 2002; Suzuki et al., 2006; Wang et al., 2005 and Yoo et al., 2011). (D) Boxplots
comparing simulated glimepiride pharmacokinetic parameters derived from the probabilistic sampling approach (colored boxplots) with observed
clinical data (grey squares: individual data points; black squares: weighted arithmetic mean) across different CYP2C9 genotypes. Simulations correspond
to a 4 mg oral dose. Observed data was aggregated from the clinical studies cited and dose-scaled to 4 mg where necessary.
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FIGURE 7
Global CYP2C9 genetic variability and population-level impact on glimepiride pharmacokinetics. (A) CYP2C9 allele frequencies across
biogeographical groups (ClinPGx, 2025), showing the distribution of key alleles. (B) CYP2C9 genotype frequencies across biogeographical groups
(ClinPGx, 2025), showing the distribution of key genotypes. (C) Individual genetic variability representation within each biogeographical group. (D)World
map displaying population-specific CYP2C9 activity distributions derived from allele frequencies, with kernel density estimation (KDE) curves and
mean enzymatic activity values shown for each biogeographical group. (E) Ridgeline plots comparing glimepiride, M1, and M2 AUC distributions across
biogeographical populations. (F) Statistical comparison of population pairs showing the relationship between significance and magnitude of
pharmacokinetic differences, with some comparisons showing statistically significant but clinically modest differences in glimepiride AUC.
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AUC data from (Gu et al., 2010) further confirmed the model’s
accuracy. These findings show exposure differences that may explain
variable glycemic responses in obese patients, suggesting
bodyweight may be an underappreciated factor in dosing
practices. See Supplementary Figure S7 for additional bodyweight
simulations.

2.7 CYP2C9 polymorphisms

CYP2C9 genetic polymorphisms showed the most pronounced
impact on individual pharmacokinetics (Figure 6). The model
incorporated allele-specific enzyme activities (*1 = 100%, *2 =
68%, *3 = 23%), resulting in diplotype activities of 100% (*1/*1),
84% (*1/*2), 62% (*1/*3), and 23% (*3/*3). Supplementary Table S2
contains all CYP2C9 allele activities derived from literature.
Simulations accurately captured substantially increased
glimepiride exposure in carriers of reduced-function alleles with
*3/*3 homozygotes showing up to 2.5-fold higher AUC compared to
wild-type carriers. Metabolites displayed inverse patterns, with
reduced formation and excretion in poor metabolizers. Model
predictions demonstrated good agreement across five clinical
studies (Lee et al., 2012; Yoo et al., 2011; Niemi et al., 2002;
Suzuki et al., 2006; Wang et al., 2005) with doses ranging from
0.5 to 4 mg. See Supplementary Figure S8 for additional CYP2C9
polymorphism simulations. A probabilistic modeling approach
incorporating lognormal distributions of enzyme activity within
genotypes captured inter-individual variability more realistically
than fixed scaling factors. Supplementary Tables S3, S4
summarize the intrinsic clearance data and the fitted lognormal
distribution used in the probabilistic modeling approach. This
approach successfully reproduced the observed variability in
pharmacokinetic parameters across genotypes. Supplementary
Table S5–8 summarize the probabilistically sampled
CYP2C9 allele activities, and genotype-specific glimepiride,
M1 and M2 pharmacokinetics.

2.8 Populations

Population-level simulations incorporating known genotype
frequencies across biogeographical groups revealed modest
differences in average CYP2C9 activity and pharmacokinetic
parameters between populations, despite varying genotype
frequencies (Figure 7). The *2 allele showed highest frequencies
in European (12.7%) and Central/South Asian (11.4%) populations,
while the *3 allele was most prevalent in Central/South Asians
(11.0%). Mean CYP2C9 activity ranged from 0.88 in Central/
South Asian to 0.98 in Oceanian populations. Despite these
differences in genetic makeup, ridgeline plots of AUC
distributions showed substantial overlap across all populations.
While Kolmogorov-Smirnov testing identified statistically
significant differences between certain population pairs (e.g.,
Central/South Asian and Oceanian, Near Eastern and Oceanian,
European and Oceanian; all p< 0.01), the clinical magnitude
remained small with mean differences less than 10%.
Supplementary Table S9–13 provide results of the population-
level simulations, including AUC, Cmax, and Tmax values for

glimepiride and its metabolites across biogeographical groups,
significant pairwise differences, and sampled genotype frequencies.

2.9 Web application

The web application of the digital twin enables real-time
simulation and visualization of plasma concentration-time profiles
for glimepiride and its metabolites (M1, M2) based on individual
patient characteristics (Figure 8). Users can simulate personalized
pharmacokinetic profiles by adjusting clinically relevant parameters
and accessing calculated values for Cmax, Tmax, AUC, and half-life.
Freely accessible at https://glimepiride.de, the tool supports interactive
exploration of model-informed variability in drug exposure.

3 Discussion

In this study, we developed a whole-body PBPK model as a
digital twin for glimepiride, integrating key patient-specific factors
like organ function, bodyweight, and CYP2C9 genetics. The model
accurately reproduced glimepiride pharmacokinetics across diverse
clinical scenarios, providing a quantitative framework to explore the
drivers of variability and support personalized dosing strategies for
type 2 diabetes.

The digital twin quantifies the influence of various patient factors,
enabling patient stratification. It provides a quantitative platform that
guides the personalization of glimepiride therapy and supports clinical
decisions on initial dosing to ensure patient safety. A key strength of
this PBPK approach is its ability to integrate multiple patient factors
simultaneously. Unlike traditional studies that often isolate single
variables, our integrated model more accurately reflects the complex
clinical reality where patients present with multiple conditions
affecting drug disposition. This framework is especially valuable for
evaluating pharmacokinetic risks in underrepresented populations or
complex scenarios where clinical evidence is lacking, providing a
robust platform to support dosing decisions.

While our model confirms that glimepiride exposure is unaffected
by renal impairment, it highlights the clinical significance of metabolite
accumulation. The progressive buildup of the active M1 metabolite,
which retains approximately 30% of the parent compound’s
hypoglycemic activity, suggests a risk of prolonged adverse effects
in patients with severe renal dysfunction. Rosenkranz et al. (1996)
reported an apparent increase in glimepiride clearance with declining
renal function, whichmay be explained by reduced albumin binding in
chronic kidney disease. Lower albumin levels, structural modifications,
and competing uremic toxins could increase the unbound drug
fraction available for hepatic metabolism (Reidenberg and Drayer,
1984; Gibaldi, 1977; Gibson, 1986). Ourmodel does not yet account for
these protein binding changes, representing an area for future
refinement. Therefore, although glimepiride dose adjustments may
not be required, enhanced glycemic monitoring is warranted in this
population. Themodel’s characterization of metabolite disposition was
constrained by limited public data on elimination pathways and the
specific enzymes responsible for M1-to-M2 conversion, with the
M2 hepatic export parameter reaching its optimization boundary,
yet provided physiologically reasonable predictions across diverse renal
function states.

Frontiers in Pharmacology frontiersin.org11

Elias and König 10.3389/fphar.2025.1686415

https://glimepiride.de
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1686415


In contrast to renal function, hepatic impairment substantially
increased glimepiride exposure by hindering its CYP2C9-mediated
metabolism, with a progressive increase in plasma concentrations
corresponding to worsening cirrhosis severity. This was accompanied
by reduced metabolite formation, an inverse relationship that directly
reflects impaired hepatic drug metabolism. Standard doses in patients
with moderate to severe cirrhosis could lead to a significant risk of
hypoglycemia. Current clinical guidelines are qualitative, only
advising caution. Our digital twin provides a quantitative tool that
addresses this issue by enabling in silico evaluation of dose
adjustments needed to maintain safety in this vulnerable population.

The model demonstrated an inverse relationship between
bodyweight and glimepiride exposure, with both Cmax and AUC

decreasing with increasing bodyweight while elimination kinetics
remained constant. This suggests bodyweight predominantly
influences volume of distribution rather than clearance, aligning
with clinical observations in obese patients. This understanding
supports the current clinical practice, where this level of variability is
effectively managed by titrating the dose according to a patient’s
glycemic response, rather than adhering to weight-based protocols.

CYP2C9 genetic polymorphism substantially influences
glimepiride exposure, with carriers of the *3/*3 genotype
exhibiting approximately two-fold higher AUC compared to
wild-type individuals. Despite lacking glimepiride-specific enzyme
kinetic data, the model successfully leveraged CYP2C9 clearance
data from related substrates to predict genotype effects,

FIGURE 8
Glimepiride Web Application. The glimepiride digital twin web application simulates the pharmacokinetics of glimepiride using the PBPK model.
Users can input patient-specific parameters such as bodyweight, renal or hepatic impairment, and CYP2C9 genotype. The web application visualizes
individual drug time-course profiles and calculates and displays key pharmacokinetic parameters including Cmax, Tmax, AUC, and half-life. The interface
allows interactive exploration of model predictions under various clinical scenarios. The web application is available at https://glimepiride.de.
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demonstrating a key strength of mechanistic PBPK approaches.
Those with reduced-function alleles are at a higher risk of
experiencing adverse events from a standard dose. However, our
analysis shows substantial pharmacokinetic variability even within
the same genotype group, with considerable overlap between
different genotypes. This indicates that genotype alone is not a
good predictor of patient response. Furthermore, although genotype
effects were evident at the individual level, the model predicted only
modest differences in pharmacokinetics across biogeographical
populations. Therefore, ethnicity alone provides limited value for
guiding dosing decisions. A targeted genotyping strategy focusing on
patients with poor glycemic control or adverse effects may be more
cost-effective than universal screening.

This digital twin of glimepiride successfully quantifies the impact
of genetics, organ function, and physiology on pharmacokinetic
variability and lays the basis for future clinical decision support
tools that can guide personalized initial dosing, especially for
patients with high-risk profiles. To facilitate clinical translation and
educational use, we deployed the model as an interactive web
application that enables real-time simulation of patient-specific
pharmacokinetic profiles. This tool allows clinicians and researchers
to explore how different patient characteristics influence drug
exposure, providing immediate visual feedback for various clinical
scenarios. While the specific parameters and pathways are unique to
glimepiride, the modeling framework and approach demonstrated
here could inform the development of similar digital twins for
other medications where inter-patient variability poses clinical
challenges, particularly other sulfonylureas that share CYP2C9-
mediated metabolism and similar organ function dependencies.
Future work should focus on refining the model using larger
population studies and expanding its application to include
pharmacodynamics between drug exposure and glycemic response.
However, this requires dedicated clinical studies that simultaneously
capture detailed PK profiles and glycemic outcomes–data that are
currently limited in the literature. Another potential refinement would
be to incorporate sex-specific physiological differences. Currently, our
mean model does not differentiate between sex because most
glimepiride clinical pharmacokinetics studies were conducted in
male or mixed cohorts without reporting sex-stratified results.
Although the FDA label (U.S. Food and Drug Administration
(FDA), 1995) reports no sex-related differences in glimepiride
pharmacokinetics after adjusting for bodyweight, more balanced
datasets would allow future modeling efforts to address potential
sex-related effects. As precision medicine advances, such digital
twin approaches have clear potential to become valuable tools for
optimizing drug therapy in complex diseases like type 2 diabetes.

4 Methods

4.1 Systematic literature research and
data curation

A systematic literature search was conducted for studies
reporting glimepiride pharmacokinetic data. PubMed was
searched using the keywords glimepiride AND

pharmacokinetics, and the PKPDAI database (Gonzalez
Hernandez et al., 2021) was queried on 2024–08–30. Inclusion

criteria focused on clinical trials involving healthy volunteers or
patients with T2DM, and studies investigating the effects of renal
impairment, hepatic impairment, bodyweight variations, orCYP2C9
genotypes on glimepiride pharmacokinetics. Studies involving
pediatric populations, non-human subjects, or with insufficiently
reported pharmacokinetic data were excluded. The systematic
review also included in vitro studies providing kinetic parameters
(particularly CYP2C9 activity) required for PBPK model
development. The literature review process yielded 20 clinical
studies for analysis.

Data from these selected studies were systematically curated and
uploaded to the open pharmacokinetics database PK-DB
(Grzegorzewski et al., 2021). Patient-specific information (e.g.,
age, sex, comorbidities, dosing regimens, pharmacokinetic
profiles) was extracted following established curation protocols
(Grzegorzewski et al., 2021). Figure-based pharmacokinetic data
were digitized usingWebPlotDigitizer (Rohatgi, 2024), while tabular
and textual data were reformatted according to standardized
guidelines (Grzegorzewski et al., 2021). Curated data
encompassed cohort characteristics, individual-level data,
intervention details, time-course concentration profiles of
glimepiride and its metabolites, and reported pharmacokinetic/
pharmacodynamic parameters. This dataset formed the basis for
PBPK model development, calibration, and validation, and is
publicly accessible via PK-DB to ensure transparency and
reproducibility.

4.2 Computational model

The PBPK model and tissue-specific submodels were developed
using the Systems Biology Markup Language (SBML) (Hucka et al.,
2019; Keating et al., 2020). Programming and visualization of the
models were performed using the sbmlutils (König, 2024) and
cy3sbml (König et al., 2012) libraries. Numerical solutions for the
ordinary differential equations (ODEs) underlying the model were
computed using sbmlsim (König, 2021), powered by the high-
performance SBML simulation engine libRoadRunner (Welsh
et al., 2023; Somogyi et al., 2015).

The developed model comprises a whole-body framework with
submodels for the intestine, liver, and kidney to characterize
glimepiride’s ADME processes. Key processes include oral
dissolution and first-order absorption in the intestine, CYP2C9-
mediated hepatic metabolism of glimepiride to M1 followed by
further metabolism to M2, and renal excretion of M1 and M2. The
mathematical descriptions and ODEs for all submodels are provided
in Supplementary Equations S1.1–S1.3. Themodel and all associated
materials (simulation scripts, parameters, and documentation) are
publicly available in SBML format under a CC-BY 4.0 license at
https://github.com/matthiaskoenig/glimepiride-model, version 0.6.1
(Elias and König, 2025a).

The model was designed to incorporate several key factors
influencing inter-individual pharmacokinetic variability. Renal
impairment was addressed using the parameter frenal_function
(1.0 for normal function), with scaling factors for mild (0.69),
moderate (0.32), and severe (0.19) impairment derived from
KDIGO guidelines (Stevens et al., 2024) and the approach of
(Mallol et al., 2023). This parameter directly scales M1 and
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M2 metabolite renal excretion rates. Hepatic impairment was
implemented via the fcirrhosis parameter (ranging from 0.0 for
normal function to 1.0 for severe impairment), with values
mapped to the Child-Turcotte-Pugh (CTP) classification (Child
and Turcotte, 1964; Infante-Rivard et al., 1987; Köller et al.,
2021). This parameter modifies the fraction of functional liver
parenchyma and the extent of blood shunting around the liver.
Tissue distribution of glimepiride and its metabolites was described
via the parameters ftissuegli (rate of tissue distribution) and Kpgli
(tissue-plasma partition coefficient), assuming similar distribution
properties for the parent drug and metabolites to reduce model
complexity. Bodyweight effects were incorporated by scaling organ
volumes, blood flows, and metabolic rates according to allometric
relationships. CYP2C9 genetic variability was modeled based on
allele-specific scaling factors for the common alleles *1 (wild-type,
activity 1.0), *2 (activity 0.68), and *3 (activity 0.23), derived from
in vitro data (Yang et al., 2018; Maekawa et al., 2009; Dai et al.,
2014). Genotype-specific activities were calculated as the mean of
the two constituent allele activities. These genetic factors were
implemented via the parameter fcyp2c9, which modulates the
maximal velocity (Vmax) of glimepiride conversion to M1. The
Michaelis constant (GLI2M1Km_gli) was parameterized using
literature values (Suzuki et al., 2006; Maekawa et al., 2009;
Zhang et al., 2023). For population-level simulations, observed
intrinsic clearance (CLint) distribution for diclofenac (a
CYP2C9 substrate) (Yang et al., 2012) was characterized using a
lognormal function. This distribution shape was retained for
modeling allele-specific effects, with the scale parameter
adjusted to match the mean activity of each allele. Diplotype
activities were calculated as the average contribution of both
alleles. Simulations also incorporated published CYP2C9
genotype frequencies across nine biogeographical populations
(ClinPGx, 2025). The Physiome Journal (Elias and König,
2025b) has demonstrated the reproducibility, reusability, and
discoverability of the mathematical model and computational
simulations.

4.3 Model parameterization

Key model parameters related to glimepiride’s absorption,
distribution, metabolism, and excretion were optimized by
minimizing a weighted sum of squared residuals between model
predictions and a curated dataset from clinical studies in healthy,
fasted subjects. This optimization utilized multiple (n = 100) runs of
a local optimization algorithm. The cost function incorporated
weights accounting for study size and measurement variance,
ensuring larger studies and more precise measurements had
appropriate influence on the optimization. The model was
optimized using a subset of the curated clinical data (healthy and
fasted), achieving successful convergence and demonstrating good
predictive performance across the datasets (see Supplementary
Figure S2). The optimized model successfully captured
glimepiride pharmacokinetics with satisfactory goodness-of-fit,
though some inter-study variability was observed, likely reflecting
differences in study design and population characteristics. Final
optimized parameters are provided in the Supplementary Table S1.
The final parameter set (Supplementary Table S1) was used

consistently across all simulations in this study without refitting
for each study. Following parameterization, the model’s predictive
performance was evaluated across diverse physiological and
pathological conditions.

4.4 Pharmacokinetic parameters

Standard pharmacokinetic parameters (Cmax, Tmax, AUC, half-
life, Cl/F) were calculated from simulated and observed
concentration-time profiles using non-compartmental analysis
with trapezoidal integration and terminal phase extrapolation.
Simulated profiles and derived PK parameters were then
compared against the curated experimental data from all
20 clinical studies.

4.5 Web application development

To enable real-time simulations, we deployed the glimepiride
digital twin as a web application using the Marimo framework. The
interface allows users to adjust clinically relevant parameters such as
dose, bodyweight, renal and hepatic function, and CYP2C9
genotype, which are incorporated into the model through the
corresponding scaling factors (frenal_function, fcirrhosis, fcyp2c9).
Pharmacokinetic parameters (Cmax, Tmax, AUC, half-life) are
calculated and displayed alongside the concentration–time
profiles. The interface is designed for intuitive use with
immediate visual feedback and includes pre-configured example
patients for demonstration purposes. The web application is
available at https://glimepiride.de, with the code available at
https://github.com/matthiaskoenig/glimepiride-app.
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