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quality of Traditional Chinese
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Health Industrial Technology), Shandong University of Traditional Chinese Medicine, Jinan, China

The clinical safety and therapeutic performance of Traditional Chinese Medicine
(TCM) are closely tied to its quality. However, with the rapid expansion of the TCM
industry, conventional quality control approaches based on empirical
observations and single-metabolite quantification have become increasingly
inadequate for addressing the complex and variable requirements of quality
assessment. In recent years, artificial intelligence (Al)—with strong capabilities
in data processing and pattern recognition—has emerged as a promising tool for
establishing predictive models to efficiently handle heterogeneous, multi-source
datasets (such as spectra, chromatograms, images, and textual information). This
enables intelligent prediction of quality indicators and anomaly detection, and
offering novel strategies for modernizing TCM quality control. This review
provides a comprehensive synthesis of commonly applied machine learning
and deep learning algorithms, systematically outlining recent advances in Al-
enabled sensing applications such as image recognition, odor analysis,
authenticity verification, origin tracing, quality grading, and storage-age
determination. It further emphasizes the integration of Al with multi-omics
and bioinformatics approaches for efficacy-oriented evaluation and safety
assessment, including identification of Q-markers, elucidation of
pharmacodynamic mechanisms, and predictive modeling of both endogenous
and exogenous toxic metabolites. It also identifies key challenges and technical
bottlenecks, and outlines priorities for building scalable, regulation-aware, data-
driven quality-control systems that support the sustainable, high-quality
development of the TCM industry.

KEYWORDS
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mechanism, multi-omics technologies

1 Introduction

Traditional Chinese Medicine (TCM) receives growing international attention for its
integrative treatment principles, clinically validated efficacy, favorable safety profile, and
emphasis on personalized care (Monakhova et al.,, 2018). TCM has long emphasized the
integration of medicinal materials with clinical practice. In this context, identifying,
selecting, and applying TCM are closely tied to clinical decisions. Among these factors,
the consistency of TCM quality is essential for maintaining the clinical reliability of TCM
interventions (Zhao J. et al., 2018; Liu C.-L. et al., 2024; Soltani et al., 2025).
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However, the heterogeneous sources of medicinal materials,
chemical complexity of TCM, absence of unified quality control
standards, and incomplete understanding of pharmacological
mechanisms collectively lead to substantial inconsistencies in the
quality and therapeutic performance of TCM (Wang and Li, 2022;
Busia, 2024). Conventional quality control in TCM primarily relies
on sensory-based techniques and basic physicochemical
assessments. These include traditional diagnostic methods such
as  wang, and gie olfaction and

auscultation, inquiry, and palpation), as well as organoleptic

wen, wen, (inspection,
evaluation to determine the Four Qi (cold, hot, warm, cool) and
Five Flavors (pungent, sweet, sour, bitter, salty). Despite their
convenience, such methods are inherently subjective and lack
reproducibility, rendering them inadequate for modern quality

evaluation standards (Li et al., 2020; Luo et al,, 2024). Modern

analytical  technologies, including chromatography and
spectroscopy, have enabled metabolite profiling systems.
However, these platforms predominantly quantify selected

marker metabolites. Such approaches often fail to capture the
intrinsic complexity of TCM, which involves multiple bioactive
metabolites acting synergistically through diverse targets and
pathways. Furthermore, the correlation between such analytical
data and actual pharmacological efficacy or safety remains weak
(Liand Zhang, 2013). The widespread application of modern quality
control approaches is also limited by their reliance on elaborate
sample preparation, costly instrumentation, and the need for
specialized personnel (Liu Y. et al., 2025).

The modernization and globalization of TCM demand the
development of a standardized, data-driven, and intelligent
quality control system to support accurate assessment and
effective regulation of product quality. Advances in artificial
intelligence (AI) technologies have opened new avenues for
innovation in TCM quality control. Machine learning (ML)
algorithms have been effectively deployed in phenotypic tasks
such as origin traceability, species authentication, and quality
grade classification, thereby improving the objectivity and
consistency of TCM characterization. Meanwhile, the integration
of AI with analytical platforms such as chromatography, mass
spectrometry, and multi-omics technologies has advanced the
automation and standardization of TCM quality evaluation
(Caratti et al., 2024; Chi et al., 2024).

TCM-derived metabolites
heterogeneity, while their pharmacological actions are often

exhibit pronounced structural
complex and synergistic. As a result, phenotypic-level intelligent
recognition alone is insufficient to capture the multi-metabolite,
multi-target and multi-pathway characteristics of TCM. In contrast,
bioinformatics and multi-omics platforms—including
transcriptomics, metabolomics, and proteomics—offer a
multidimensional perspective on the underlying therapeutic
mechanisms. When combined with Al-driven computational
modeling, these approaches make it possible to trace the pathway
from bioactive metabolites to defined molecular targets, and further
to the modulation of signaling networks that mediate therapeutic
efficacy (Soon et al.,, 2013; Liu and Guo, 2020; Wang et al., 2021; Li
D. et al., 2022).

Within the intelligent quality control framework, Al-assisted
phenotypic recognition—covering morphological features and
spectral fingerprints—functions as the primary entry point for
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assessment. At a deeper analytical tier, the integration of AI with

bioinformatics ~ enables  the  elucidation  of intricate
target—pathway-outcome relationships, thereby linking chemical
composition and pharmacodynamic mechanisms to the holistic
efficacy of TCM. Notably, such a dual-level strategy strengthens
the scientific rigor and reproducibility of quality evaluation.
Collectively, these advances pave the way for the establishment of

an efficacy-driven, mechanism-informed quality control system.

2 Artificial intelligence technologies

Among various Al approaches, ML—particularly its subset deep
learning (DL)—has found the broadest application in the medical
field (Russell and Norvig, 2022) (Figure 1A). Since its inception, Al
has maintained a close connection with healthcare and has gradually
expanded to encompass diverse domains of human activity
(Figure 1B) (Aydin Temel et al., 2023). In the context of TCM
research, Al facilitates the recognition, modeling, and prediction of
complex and heterogeneous data. It enables automated extraction of
sensory features and chemical fingerprints—parameters that have
traditionally been challenging to quantify—and can be integrated
with mechanistic models to inform

efficacy and safety

assessment in TCM.

2.1 Machine learning techniques

ML is typically categorized into three main types: supervised
learning, unsupervised learning, and reinforcement learning. This
review primarily focuses on supervised learning and unsupervised
learning relevant to TCM quality assessment (Figure 2).

2.1.1 Supervised learning

Supervised learning constitutes a fundamental framework
within ML, wherein models are trained on labeled datasets to
establish explicit mappings between inputs and outputs
(Suriyaamporn et al., 2024). By capturing such relationships,
supervised algorithms can perform both classification tasks and
tasks
classification assigns inputs to discrete categories, while

regression with high predictive accuracy, where
regression predicts continuous outcomes (Maione et al., 2019).
A broad spectrum of algorithms is routinely employed, including
Naive Bayes (NB), linear discriminant analysis (LDA), decision
trees (DT), random forests (RF), support vector machines
(SVM), logistic regression (LR), k-nearest neighbors (KNN),
and regression approaches such as simple linear, multiple
linear, and polynomial regression. These models support both
classification and regression pipelines commonly encountered in
TCM quality evaluation, spectrum-structure correlation, and
pharmacokinetic modeling.

NB: NB is a probabilistic classifier grounded in Bayes’ theorem
and the conditional-independence assumption among features (Ou
etal, 2025). By combining prior distributions with class-conditional
likelihoods, it estimates posterior probabilities and assigns each
sample to the most probable class. Despite its austerity, NB is
computationally frugal, robust on small or high-dimensional

spaces, and comparatively tolerant of irrelevant variables.
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Artificial intelligence (Al), machine learning (ML), and deep learning (DL): advances in healthcare. (A) Relationship among Al, ML, and DL. (B) Evolution

of Al in daily life and healthcare.
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FIGURE 2

Classification of ML techniques: distinction between supervised learning and unsupervised learning.

Notably, NB has been used across TCM-related tasks—including
classical medical text categorization, adulteration screening of
decoction pieces, and time-series analyses of pharmacodynamic
readouts—where rapid, baseline performance is desirable.

LDA: LDA is a supervised method for classification and
dimensionality reduction that seeks projections maximizing
interclass separation while minimizing intraclass variance (Lam
et al,, 2024). Assuming multivariate normality with a common
covariance structure, LDA yields linear decision boundaries,
which in turn facilitate interpretability and efficient computation.
In contrast to previous reports focusing solely on visualization,
recent TCM studies deploy LDA for spectral feature extraction (e.g.,
NIR, HSI), geographic-origin authentication, and prediction of
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chemical-composition ~ profiles  aligned  with ~ Q-markers
frameworks and multi-omics fingerprints.

DT: DT is supervised learners applicable to both classification
and regression, representing decision rules in a hierarchical, tree-like
structure. Through recursive partitioning on feature thresholds, DT's
generate models that are straightforward to visualize and implement
(Sarker, 2021). In TCM research, they have been widely adopted for
efficacy prediction, quantification of active metabolites, and routine
quality control of medicinal materials (Ren et al., 2022; Zhang W.
et al.,, 2025).

RF: RF is an ensemble learning approach that builds multiple
decision trees and aggregates their outputs to generate the final

prediction. In classification tasks, the predicted class is determined
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FIGURE 3

Schematic representation of 4 ML models employed in TCM research: Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors

(KNN), and Backpropagation Neural Network (BPNN).

by majority voting, whereas in regression tasks, the results are
obtained by averaging the outputs of individual tree (Figure 3A).
Due to its strong robustness to noise and ability to capture complex
feature interactions, RF has shown high accuracy for botanical drug
origin traceability and in recognizing multi-metabolite feature
patterns characteristic of TCM formulations (Gong et al., 2023).

SVM: SVM is a versatile ML technique used for various
purposes, including classification and regression. It projects input
data into a high-dimensional feature space using kernel functions,
enabling the linear separation of inherently nonlinear patterns
(Figure 3B) (Kremer et al.,, 2014). In the TCM domain, SVM has
been widely employed for spectral data analysis—such as near-
infrared spectroscopy (NIR) and hyperspectral imaging (HSI)—as
well as for classifying pharmacological effects across different
decoction pieces and TCM prescriptions (Kumari et al, 2021;
Ouyang et al., 2023).

LR: LR is a supervised statistical learning method used chiefly for
binary classification and, via standard extensions, multiclass tasks. It
maps a linear combination of predictors through the logistic
(sigmoid) link to obtain class-membership probabilities, with
coefficients directly interpretable as odds ratios. In TCM
research, LR has been applied to classify TCM species from
spectral to predict the
therapeutic efficacy of metabolites, and to assess toxicity risks in

chromatographic or fingerprints,
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complex multi-metabolite formulations, consistent with the field’s
focus on holistic efficacy and rigorous quality evaluation.

KNN: K-NN is an ML algorithm for classification and
regression. It assigns a label to a sample based on the majority
class among its k nearest neighbors, identified using distance metrics
such as Euclidean or Mahalanobis distance (Figure 3C). Owing to its
ease of implementation and dependable performance, this approach
has proven to be a practical choice for a range of applications in
TCM, including species authentication of TCM materials, tracing
geographic origin, and assigning quality grades (Boniecki et al.,
2014; Li et al., 2022b).

BPNN: A feed-forward artificial neural network trained using
the backpropagation learning algorithm, the BPNN is particularly
effective in modeling complex and nonlinear relationships between
chemical composition and pharmacological efficacy (Figure 3D). In
the field of TCM research, BPNN has been extensively applied to
optimize processing parameters, enhance extraction protocols, and
predict multi-index quality attributes (Yi, 2019).

Regression analysis—an essential supervised approach for
continuous outcomes—has been increasingly applied in TCM to
quantify links between chemical composition and quality attributes.
By integrating spectral or metabolomic data with regression models
such as partial least squares (PLS), these workflows enable rapid
estimation of active metabolite levels, discrimination of authentic
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metabolites from adulterants, and the construction of robust
quality-control frameworks (Moreno-Torres et al., 2024; Zhang
X. et al., 2024).

2.1.2 Unsupervised learning

Unsupervised learning refers to algorithms that discover hidden
structures and patterns in unlabeled data without predefined
outputs. Typical methods include clustering and dimensionality
reduction (Castiglioni et al, 2021).The following introduces
several common unsupervised algorithms, including K-means
clustering (K-means), Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), Gaussian Mixture Models
(GMMs) and Principal Metabolite Analysis (PCA).

K-means: K-means is an unsupervised learning algorithm that
partitions data into k clusters by minimizing the within-cluster
variance. It iteratively assigns samples to the nearest cluster centroid
and updates centroids until convergence.

DBSCAN:DBSCAN is an unsupervised clustering algorithm that
groups data points based on density, identifying high-density
regions as clusters and treating sparse points as noise or outliers.
Unlike K-means, it does not require specifying the number of
clusters in advance and can discover clusters of arbitrary shape.

GMMs: GMMs are probabilistic unsupervised learning algorithms
that assume data are generated from a mixture of multiple Gaussian
distributions, each representing a cluster. Unlike K-means, GMMs
provide soft clustering by assigning probabilities for each data point
belonging to different clusters. In TCM research, GMMs have been used
to classify TCM samples based on spectral or metabolomic data and to
distinguish authentic materials from adulterants with overlapping
chemical features (Bai and Zhang, 2024).

PCA: A linear dimensionality reduction method that transforms
correlated variables into a smaller set of uncorrelated principal
metabolites while retaining most of the variance. In TCM, PCA
is widely used to simplify spectral or chromatographic data for
quality evaluation (Thapa et al.,, 2025).

In parallel, unsupervised techniques—such as hierarchical
clustering, t-SNE, and autoencoders—have been applied to data
visualization, authenticity verification of decoction pieces,
adulteration detection, and quality evaluation (Paolanti and
Frontoni, 2020; Bansal et al., 2024). Taken together, supervised
and unsupervised workflows constitute an integrated ML toolkit that
supports classification, regression, clustering, and dimensionality
reduction across complex TCM systems.

2.2 Deep learning techniques

DL, a prominent branch of supervised learning within ML, is
known for its remarkable capacity to extract high-level, discriminative
features from complex datasets. Leveraging neural network (NN)
architectures, DL enables data-driven decision-making in intricate
systems by uncovering latent patterns from both large-scale
structured data—such as images, spectral profiles, and textual
corpora—and diverse unstructured datasets (Chen et al, 2022). Its
superior representational and predictive capacity has positioned DL as a
pivotal methodological tool in data-intensive TCM research.

Convolutional Neural Network (CNN): CNNs typically
comprise convolutional layers, pooling layers, and fully connected
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layers. Through convolutional operations, they automatically learn
hierarchical feature representations, which makes them particularly
effective for high-dimensional image and signal processing in big
data environments (Zeng et al., 2023a). Within TCM, CNNs have
been applied to analyze surface morphology and microstructural
features of medicinal materials, facilitating image-based
authentication, geographic origin tracing, and the detection of
pest (Kabir et al., 2022a).

Recurrent Neural Network (RNN): RNNs are designed to
capture temporal dependencies and sequential patterns, rendering
them well suited for time series and textual data. They have achieved
wide application in natural language processing and biomedical
literature mining. In the TCM context, RNNs support structured
knowledge extraction from classical medical texts, the modeling of
prescription sequences, and the analysis of biological time-series
data, thereby contributing to knowledge standardization and
semantic modeling (Tian et al., 2024).

Deep Neural Network (DNN): DNNs, characterized by multiple
hidden layers, can model complex, high-dimensional relationships
between input features and target outputs. In TCM research, they
have been used to develop predictive models of pharmacological
efficacy based on chemical composition profiles. Such end-to-end
learning frameworks allow direct inference of pharmacological
mechanisms from raw, multi-modal data (He et al., 2015).

Beyond CNN, RNN, and DNN, DL encompasses other
Adversarial ~ Networks

(GANSs) can generate realistic synthetic data to augment limited

influential ~ architectures. ~Generative
datasets; Variational Autoencoders (VAEs) enable efficient feature
compression and latent space modeling; and Deep Reinforcement
Learning (DRL) optimizes decision-making policies through
interaction with complex environments. These methods are
widely adopted in fields such as natural language processing,

robotics, and autonomous systems.

3 Mechanism-oriented transformation
of TCM quality control: from sensing to
mechanistic evaluation

In recent years, the TCM industry have been undergoing a
transition toward the integration of intelligent technologies. This
shift reflects a broader transformation from experience- and
perception-based evaluation to data-driven, mechanistically informed
quality control model. AI has shown particular strengths in sensing.
When integrated with bioinformatics, it supports the systematic
construction of mechanistic frameworks for assessing efficacy and
safety of TCM (Figure 4). This chapter focuses on the two major
stages of this intelligent transformation and illustrates representative
applications and recent advancements in TCM quality control.

3.1 Al-enabled sensing for the quality
assessment of botanical drugs

Al leverages a range of ML techniques to strengthen TCM quality
address the inherent limitations of conventional
statistical ~ approaches.  These
increasingly utilized in key domains—including origin traceability,

control and

multivariate technologies  are
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FIGURE 4

Applications of Al and bioinformatics in the quality control of TCM.

species authentication, and quality grading—reflecting the multi-
dimensional nature of TCM quality evaluation (Figure 5). Table 1
summarizes representative case of Al applications in TCM quality
control, highlighting algorithm types, data modalities, and specific
application scenarios.

3.1.1 Image recognition

Morphological identification is a fundamental step in ensuring
the quality consistency of TCM. It requires systematic recognition of
key features such as color, shape, leaf structure, and texture.
However, inter-species similarity and intra-species morphological
variation often compromise the reliability of manual identification,
introducing subjectivity and reducing reproducibility.

Al-powered image recognition has emerged as a highly effective
strategy for enhancing both the accuracy and efficiency of
morphological identification in medicinal botanical drugs (Sun et al,
2022c). To overcome performance constraints, researchers have
optimized ML architectures to improve classification precision and

Frontiers in Pharmacology

generalizability in botanical drug image recognition tasks (Xu et al,
2016). For example, transfer learning strategies have been applied using
five pre-trained deep neural network architectures—ResNet34,
DenseNet121, VGGI11, ConvNeXt,
improve classification accuracy. Among these, ConvNeXt achieved

and Swin Transformer—to

accuracies of 92.8% for Vietnamese samples and 92.5% for
highlighting  its adaptability to
geographically diverse TCM datasets. In a related development, Xu
et al. (2021) proposed an Attention Pyramid Network (APN) designed
to dynamically capture multi-scale features from medicinal botanical

Indonesian samples, strong

drug images. Comparative evaluations revealed that APN consistently
outperformed conventional Feature Pyramid Networks (FPN) within
attention-based frameworks, confirming its superior accuracy and
practical applicability.

The morphological authentication of certain medicinal
officinale
instance—has traditionally depended on
Although  highly

species—Dendrobium Kimura et Migo, for

expert judgment.

effective  when performed by trained
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FIGURE 5

Quality control of
Chinese medicines

Representative applications of ML in TCM quality control. (A) Morphological identification based on image analysis: for instance, an improved
ConvNeXt model is used for feature extraction and image classification to accurately identify TCM. (B) Species identification: for example, ATR-FTIR
spectroscopy combined with partial least squares discriminant analysis (PLS-DA) is used to distinguish different varieties of Ophiocordyceps sinensis
(Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora. (C) Authenticity verification: for example, hyperspectral imaging (HSI) combined with ML
algorithms is used to differentiate naturally sun-dried from sulfur-fumigated TCM materials. (D) Origin tracing: for example, HSI combined with CNNs is
applied to determine the production region of Chrysanthemum morifolium Ramat.

professionals, such reliance poses practical challenges for non-
specialist users, especially in cases involving subtle interspecific
variations or closely related adulterants. To overcome the barrier
and facilitate field deployment, researchers have developed an
image-based recognition system optimized through an enhanced
YOLOVS5 algorithm. This system can be deployed on smartphones,
enabling real-time identification of D. officinale Kimura et Migo and
supporting on-site market regulation (Chang et al, 2024).
Additionally, Sun et al. (2022b) design a DL-driven mobile

Frontiers in Pharmacology

application that maintains reliable performance on smartphones,
thereby extending the accessibility of botanical drug recognition
technologies to resource-limited settings.

3.1.2 Odor identification

The identification and quality evaluation of TCM have
historically relied on sensory assessment, focusing primarily on
visual appearance, odor, and taste (Li et al, 2013). The
therapeutic efficacy of TCM is often attributed to the synergistic
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TABLE 1 Representative studies on the application of artificial intelligence in the quality control of TCM.

Main research
contents

Research objective

Substance types

10.3389/fphar.2025.1687681

Algorithms

References

Image Recognition Development of a smartphone-based TCM image Smartphone DNN Sun et al. (2022b)
recognition application
Image Recognition Detection of various Dendrobium officinale Kimura et Smartphone Improved YOLOvV5; CV; ML Chang et al.
Migo via images (2024)
Odor identification Analysis of flavor metabolites in Boswellia carterii Birdw = HS-SPME-GC-MS; E-nose PCA; PLS-DA Chen et al.
(2024c¢)

Odor identification

Rapid discrimination of tea quality grades based on odor

NIRS; E-nose

SVM; KNN; ANN

Xia et al. (2024)

Odor identification

Discrimination of cultivation methods based on the odor
and taste of Citrus reticulata Blanco

GC-MS; HPLC-Q-TOE-MS;
Electronic Nose; ET

PCA; PLS-DA

Li et al. (2022b)

Odor identification

Establishment of rice wine quality evaluation model

Flash GC Electronic Nose; NIR

OPLS-DA, DA, ELM, SVM,
KNN, and LSTM; NN

Zhang et al.
(2024d)

TCM authentication

Detection of adulteration in Ziziphus jujuba Mill. var.
spinosa (Bunge) Hu ex H. F. Chou and improvement of
prediction accuracy

FT-NIR Spectral Data

PLSR; SVM; KNN; ANN

Li et al. (2023)

TCM authentication Identification and quantification of chemical dyes in SERS PLSR; SVM; SSA-BP Zhang et al.
Chinese medicinal products (2023a)

TCM authentication Low-cost and rapid identification of Crocus sativus L. FT-NIR RF, SVM and CNN Husaini et al.
adulteration (2022)

TCM authentication Discrimination of sun-dried vs sulfur-fumigated TCM HSI PCA; PLS-DA Zhang et al.
products (2016)

TCM authentication Detection of adulteration and grade differentiation in ET, E-nose, and electronic eye- AIS; MIF Li et al. (2024a)

Classification of TCM
varieties

Classification of TCM
varieties

Panax notoginseng (Burk.) F.H.Chen powder

Evaluation of HSI combined with CNN for Fritillaria
spp. identification

Discrimination of 10 different species of Ophiocordyceps
sinensis (Berk.) G.H.Sung, ].M.Sung, Hywel-Jones and
Spatafora

based Al-sensing Technologies

High-Spectral-Imaging HSI

ATR-FTIR

SVM, PLS-DA, CNN

PLS-DA; DD-SIMCA model

Kabir et al.
(2022b)

Li et al. (2022d)

Classification of TCM | Species identification of Zanthoxyli Pericarpium using Camera, Smartphone CNN; SVM; BP Tan et al. (2024)

varieties multiple analytical methods

Identification of origin | Development of a DL model for identifying the HSI CNN; ML Cai et al. (2023)
geographical origin and variety of Chrysanthemum
morifolium Ramat

Identification of origin | Validation of NIR-HSI combined with ML for HSI DT; LDA; KNN; SVM Zhao et al. (2024)
geographical origin detection of Lilium brownii F. E.
Brown var. viridulum Baker

Identification of origin | Identification of the geographical origin of Paeonia HSI CNN; AM; KNN; RF; SVM Cai (2023)
Paconia lactiflora Pall

Identification of origin | Determination of geographical origin of Tetrastigma E-nose PCA; PLS; HCA; Radial Basis =~ Wu et al. (2022)
hemsleyanum Diels et Gilg Function (RBF)

Grade evaluation Development of a classification model to identify UPLC-MS/MS Naive Bayes, KNN, RF, and Wu et al. (2024)
cultivation region, growth mode, species, and grade of four other ML algorithms
Astragalus membranaceus (Fisch.) Bge

Grade evaluation Grade classification of TCM samples from different UPLC SVM Li et al. (2022c)
sources

Identification of Non-destructive method for accurate storage period HSI PCA; ELM; SVM; RF Hu et al. (2024)

storage age identification of moxa wool

Identification of Analysis of storage duration of Lonicera japonica Thunb. | E-Nose LDA; NN Xiong et al.

storage age across different months (2014)
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interplay among multiple bioactive metabolites, some of which
possess distinctive volatile profiles that contribute both to sensory
recognition and to potential pharmacological effects (Ye et al., 2011).
Consequently, reliable odor detection constitutes a critical
foundation for the standardization and quality control of TCM.
Conventional odor analysis—whether based on manual assessment,
instrumental detection, or a combination of both—remains
susceptible to variability introduced by individual factors (e.g.,
physical condition, mood) and environmental influences (e.g.,
temperature, humidity).

In recent years, ML models have gained notable traction in odor
profiling and predictive analytics within TCM research, offering
greater efficiency, reproducibility, and resistance to subjective bias
than conventional sensory evaluation methods (Zeng et al., 2023b).
One particularly effective strategy integrates headspace solid-phase
microextraction gas chromatography-mass spectrometry (HS-
SPME-GC-MS) with electronic nose (E-nose) systems, enabling
comprehensive characterization of volatile organic metabolites
(VOCGs) and decoding complex aromatic signatures (Xia et al,
2024; Xu et al, 2024). For example, the aroma profile of
Boswellia carterii Birdw. has long been regarded as a critical
determinant of both product quality and consumer acceptance
(Di Stefano et al, 2020). Using the dual analytical approach,
researchers determined that alcohols constituted the dominant
VOC class (22.15%), with p-cymenol identified as a principal
contributor to the characteristic fragrance, thereby providing a
chemical basis for quality differentiation (Chen X. et al., 2024).
In a related application, Xia et al. (2024) employed the same
methodology to differentiate tea grades according to olfactory
profiles, highlighting its potential for sensory-driven quality
assessment in TCM contexts.

Li et al. (2022b) combined E-nose and electronic tongue (ET)
technologies with chemometric analysis to discriminate Citrus
reticulata Blanco samples derived from different cultivation
practices. Key volatile metabolites—including p-myrcene,
limonene, B-trans-ocimene, y-terpinene, and terpinolene—were
identified as flavor-dominant metabolites and proposed as
potential chemical markers for quality stratification. Huangjiu, a
traditional fermented product frequently used as an excipient in
TCM, can influence both physicochemical attributes and sensory
characteristics of formulations, thereby modulating therapeutic
outcomes (Wu et al,, 2018). Taking Jimo rice wine (JRW) as a
case study, researchers combined Flash gas chromatography-based
electronic nose (Flash GC E-nose) and NIR with ML algorithms to
develop a rapid quality evaluation model. This integrative strategy
provides a reference framework for the intelligent quality control of
other TCM and auxiliary materials (Zhang Z.-T. et al., 2024).

3.1.3 TCM authentication

The presence of counterfeit and adulterated TCM constitutes a
serious threat to clinical safety and public health (Lord et al., 2001).
Adulteration in the TCM market can be broadly classified into three
categories (Lau et al., 2003): 1) substitution with morphologically
similar species; (2) cost-driven adulteration by incorporating foreign
substances; and (3) post-harvest treatments, including sulfur
fumigation and artificial coloring to improve visual appeal. The
high morphological similarity between adulterants and authentic
specimens complicates visual authentication, particularly in the
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absence of standardized evaluation criteria. The incorporation of
Al techniques into authenticity assessment has enhanced objectivity,
analytical ~ throughput, and  reproducibility in TCM
authentication practices.

Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou
(ZZS), which features a chemically diverse profile with multiple
metabolites reported to have sedative or hypnotic potential, has
experienced growing demand and price inflation, which has
economically incentivized its adulteration using Ziziphus
mauritiana Lam. (ZMS) and Hovenia acerba Lindl. (HAS) (Ren
et al,, 2023; Yang et al., 2023). To address this issue, Li et al. (2023)
established an authentication model integrating Fourier Transform
Near-Infrared Spectroscopy (FT-NIR) with multivariate statistical
analysis. By incorporating pattern recognition algorithms—namely
SVM, KNN, and ANN—the model achieved a significant
improvement in identification accuracy, increasing from 77.06%
to 97.58%.

In response to complex adulteration forms such as synthetic
dyeing and sulfur fumigation, integrated spectroscopic and
algorithmic approaches have demonstrated superior precision
and analytical robustness. In a representative study, Zhang L.
et al. (2023) addressed the challenge of counterfeit Crocus sativus
L., which had been fraudulently dyed to mimic the distinctive red
hue of authentic material. Using surface-enhanced Raman
spectroscopy (SERS) in with ML
algorithms—including Partial Least Squares Regression (PLSR),
SVM, and Sparrow Search Algorithm based BP Neural Network
(SSA-BP)—the authors developed a quantitative detection model

combination

capable of identifying both the type and concentration of added
dyes. Husaini et al. (2022) combined CNNs with a Foldscope—a
portable optical microscope—to create a mobile platform for saffron
authentication. This lightweight yet robust system delivered
markedly higher classification accuracy than conventional ML
approaches such as SF and SVM. Similarly, Zhang et al. (2016)
utilized hyperspectral imaging (HSI) in conjunction with
chemometric analysis to identify C. sativus L. subjected to illicit
sulfur fumigation. PCA was applied to extract key spectral features,
while partial least squares discriminant analysis (PLS-DA) enabled
precise classification, achieving a sensitivity of 96.4% and a
specificity of 98.3%. Together, these studies provide compelling
technical support for the establishment of standardized detection
protocols in TCM processing and quality assurance.

To address complex adulteration scenarios, Li H. et al. (2024)
developed a multimodal detection framework that integrates
Artificial Intelligence Sensory (AIS) technology with Multisource
Information Fusion (MIF), enabling simultaneous analysis across
multiple sensory modalities. By combining data from ET, E-nose,
and computer vision system, the authors constructed a
comprehensive quality assessment model for Panax notoginseng
(Burk.) F.H.Chen powder (PNP). Under controlled laboratory
conditions, this model achieved a classification accuracy of 100%,
underscoring its potential as a precise and reliable authentication

tool for TCM quality control.

3.1.4 Classification of TCM varieties

Accurate species identification of Chinese medicinal materials is
critical for safeguarding clinical efficacy and advancing the
standardization and modernization of TCM research (Malik
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et al., 2022). Conventional morphological identification methods,
which rely heavily on empirical observation, are inherently
subjective and low-throughput, rendering them insufficient for
distinguishing morphologically similar species or processed
medicinal products (Li et al., 2016; Chen et al., 2021). Fritillaria
thunbergia Miq., for instance, exhibits substantial germplasm
diversity, which in turn leads to pronounced interspecific
variation in its bioactive metabolites (Nile et al., 2021). To
address this challenge, Kong et al. (Kabir et al., 2022b) developed
a classification model that integrates HSI with CNN to discriminate
among 12 Fritillaria species, achieving higher cross-validation
accuracy than conventional approaches.

In parallel, infrared spectroscopy coupled with chemometric
analysis has emerged as a robust, non-destructive analytical
approach for quality evaluation in spectroscopic studies (Cheng,
2003; Cheng et al., 2004). Li et al. (2022d) utilized attenuated total
reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) in
conjunction with PLS-DA to distinguish 10 species of
Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-
Jones and Spatafora with high accuracy. This method has also
demonstrated effectiveness in the classification of other medicinal
TCM, including Houttuynia cordata Thunb., Mentha haplocalyx
Briq., Andrographis paniculate (Burm. f.) Nees, and D. officinale
Kimura et Migo (Wang et al., 2018; Song et al., 2025). DL techniques
have been increasingly applied to image-based recognition tasks in
TCM, particularly for the analysis of macrostructural characteristics
of medicinal materials. In response to the frequent confusion in
species identification of Zanthoxylum bungeanum Maxim., Tan et al.
(2024) established a CNN-based recognition model capable of
differentiating multiple species with a classification accuracy
of 99.35%.

3.1.5 Identification of origin

Geo-authentic medicinal materials refer to TCM cultivated in
defined ecological zones, where unique environmental conditions
contribute to consistent quality and validated therapeutic efficacy
(Zhao et al.,, 2012). Clinical evidence indicates that variations in
geographical origin and seasonal factors markedly influence the
secondary metabolite composition of a given species, potentially
altering its pharmacodynamic properties (Yang et al., 2018; Miao
et al., 2023). Consequently, the establishment of scientifically
validated origin traceability technologies is critical for ensuring
batch-to-batch the of Chinese
medicinal materials.

consistency  in quality

HSI enables the simultaneous acquisition of spatial and spectral
data, allowing non-destructive analysis of both morphological traits
and chemical signatures. It has become a widely adopted tool for
rapid origin identification of TCM. Recent advances have shown
that combining HSI with DL algorithms can substantially enhance
the accuracy of geographic origin classification for medicinal TCM.
For instance, HSI integrated with CNN has been used to differentiate
Chrysanthemum morifolium Ramat. samples from 14 distinct
production regions, vyielding markedly higher classification
performance than conventional methods (Cai et al, 2023).
Similarly, NIR-HSI coupled with ML classifiers—such as SVM
and RF—has demonstrated strong robustness in distinguishing
Lilium species from different origins, with notable generalizability
across geographically diverse datasets (Zhao et al., 2024). In another
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study, He et al. (2024) combined HSI, nuclear magnetic resonance
(NMR), and ResNet-34 DL framework to classify the origin of
Lilium brownii F. E. Brown var. viridulum Baker, with the
optimized model achieving an accuracy of 95.63%. Likewise, Cai
(2023) extracted spectral features from both the visible-near-
infrared (VNIR) and NIR bands to develop an attention-
enhanced CNN model for the origin authentication of Paeonia
lactiflora Pall., which significantly outperformed traditional
classifiers—including KNN, RF, and SVM—in both accuracy and
robustness.

Beyond HSI-based methods, infrared spectroscopy coupled with
ML algorithms has also been successfully applied to origin
identification of diverse medicinal TCM, such as Bos taurus
demonstrating  high
performance and reliable inter-regional generalization (Wei et al.,

domesticus Gmelin, classification
2024). Although still in an early stage of development, E-nose
technology has shown promising potential for geographic origin
determination based on volatile metabolite profiles. For example,
E-nose data combined with ML algorithms have been used to
differentiate the origin of Tetrastigma hemsleyanum Diels et
Gilg. illustrating the feasibility of volatile-based traceability for
TCM species (Wu et al., 2022).

3.1.6 Grade evaluation

Grading evaluation of TCM is essential for ensuring clinical
efficacy and maintaining batch-to-batch consistency, and is
traditionally performed by quantifying selected active metabolites
(Zhang and Wang, 2023; Lin et al, 2024). In recent years, the
integration of histological analysis, metabolomics, and ML has
introduced a novel, data-driven paradigm for TCM quality
grading. For instance, the Chinese Pharmacopoeia designates
astragaloside IV and calycosin-7-O-glucoside as quality control
markers for Astragalus membranaceus (Fisch.) Bge. (AR). While
sufficient for meeting Pharmacopoeia standards, these markers
alone are inadequate for distinguishing between different quality
grades. Wu et al. (2024) integrated metabolomic profiling with 7 ML
algorithms to identify discriminatory metabolites and construct a
robust classification framework for quality grading. Among the
identified metabolites, amino acids—such as alanine and
phenylalanine—emerged as key markers for grade differentiation,
while long-chain fatty acids, including behenic acid and lignoceric
acid, were critical for distinguishing wild from cultivated sources.
This integrative analytical strategy has also been applied to rare and
economically valuable medicinal materials. Li et al. (2022c)
developed a classification model for B. taurus domesticus Gmelin
by combining transcriptomic and metabolomic datasets, enabling
reliable discrimination between natural B. taurus domesticus Gmelin
and synthetic substitutes.

For  rapid  quality  assessment, attenuated  total
reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
combined with ML was applied to classify Gastrodia elata powder
into four distinct quality levels. Compared with HPLC-based
protocols, this approach offered higher efficiency, reduced labor
requirements, and allowed for non-destructive testing (Zhan
et al.,, 2022).

Furthermore, for the the

integration of X-ray imaging with a YOLOV5 deep learning

detection of internal defects,

architecture substantially improved sensitivity and accuracy in
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identifying internal cavities and pest-induced damage in Panax
ginseng, significantly outperforming conventional —manual
inspection methods (Boniecki et al., 2014; Xue et al., 2023).

3.1.7 ldentification of storage age

The traditional adage, “For a 7-year illness, seek three-year-old
moxa wool (MW),” reflects the critical role of storage duration in
shaping the therapeutic efficacy of TCM (Xue et al., 2020). Extended
storage can markedly alter the VOCs of MW, with potential
consequences for its pharmacological activity. Therefore, precise
determination of the storage period for TCM materials is essential to
ensure product quality, preserve chemical stability, and promote
standardization in both clinical practice and industrial production.

Recent studies have shown that combining HSI with ML
provides a powerful non-destructive approach for determining
the storage age of TCM. For instance, Hu et al. (Hu et al,, 2024)
developed a rapid classification model for MW with varying storage
durations by integrating HSI data with ML algorithms. The
optimized model achieved classification accuracies of 99.78% in
the VNIR range and 99.47% in the short-wave infrared (SWIR)
range, offering a practical, non-invasive solution for rapid quality
assessment based on storage-dependent spectral signatures.
Similarly, for C. reticulata Blanco (CRP), HSI data acquired in
the 874-1734 nm range were combined with an extreme learning
machine (ELM) classifier to differentiate samples stored for 1, 5, 10,
and 15 years. The resulting model achieved an accuracy exceeding
85%, confirming the feasibility of the HSI-ELM approach for
storage-age classification of CRP (Li et al., 2024c). In parallel,
E-nose systems have demonstrated considerable potential for
distinguishing Lonicera japonica Thunb. samples by capturing
storage-dependent odor fingerprints, thereby offering a
complementary, sensory-based modality for non-destructive
quality evaluation (Xiong et al., 2014).

3.1.8 Analysis of TCM metabolites

Advances in Al provide sophisticated tools for identifying
chemical metabolites of TCM, thereby improving the precision
and efficiency of metabolite analysis and deepening mechanistic
understanding. In particular, Al-assisted interpretation of
chromatographic fingerprints and spectroscopic data (e.g.,
mass spectrometry and nuclear magnetic resonance) enables
rapid, accurate identification of metabolites within TCM and
complex formulations. For example, Guo et al. (2021) integrated
DL with UHPLC-Q-TOF/MS to enhance the chemical profiling
of Qianghuoshengshi decoction; the model achieved TCM-
specific classification of coumarins and chromones, guided
identification via characteristic ions and neutral-loss patterns,
and produced fingerprints that supported sensitive, multi-target
quantification by UHPLC-sMRM. Building on this theme, Zuo
etal. (2021) orthogonally optimized LC-QTOF/MS conditions to
maximize metabolite coverage in Gelsemium elegans
(Gardn.&Champ.) Benth., and then implemented an AI-
assisted data-mining pipeline—database-guided annotation
combined with diagnostic-ion and neutral-loss filters—to
automate high-intensity chemical profiling. Collectively, these
studies illustrate how rule-based Al embedded in MS data mining
accelerates metabolite discovery while enabling validated
quantitation in complex TCM matrices.
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Beyond organic-metabolite profiling, AI also facilitates the
identification, classification, and prediction of elemental
fingerprints in TCM (Zhang and Wang, 2023; Ding et al., 2024a).
For instance, Zhao Y. et al. (2018) compared 13 trace elements and
caffeoylquinic-acid-based actives in Lonicera confusa (Sweet) DC.
and L. japonica Thunb. by using PCA and DA and achieved clear
interspecies classification. Wei et al. (2024) combined NIR with
SVM regression to non-destructively quantify seven active
metabolites and elements in Cornus officinalis Sieb. et Zucc.,
while ICP-AES multi-element profiling plus correlation analysis
demonstrated stronger associations between in-sample inorganic
elements and active metabolites than with rhizosphere soil elements
and revealed notable K/Ca enrichment patterns.

3.1.9 Process optimization

Variability in TCM processing remains common due to
unstandardized operations, imprecise temperature control, and
metabolite loss, leading to inconsistent quality (Kouadio et al,
2024; Zhang J. et al, 2024). Batch-to-batch uniformity and
efficiency are also difficult to maintain under manual workflows
(Ni et al,, 2020). AI coupled with big-data analytics and model
training has been applied to processing and quality control.
Procedures can be optimized, quality monitored, metabolite
thereby
improving overall quality and efficacy (Zhang et al., 2020).

consistency supported, and production automated,

At raw-material procurement, big-data analyses have been used
to evaluate origin, season, and climate effects on TCM quality (Xu
et al., 2023). Predictive models trained on historical sources and
standards can rank high-quality suppliers and flag noncompliant
lots, informing purchasing decisions (Ameer et al., 2020).

During concoction, Al-assisted optimization of technique
selection and parameters has been reported to enhance efficacy
and reduce adverse reactions (Chen H. et al.,, 2024). ML has been
used to analyze the effects of frying, roasting, and calcining on active

2016).
and

metabolites (Kang et al,, Processing
humidity, be

automatically optimized. For example, E-nose and NIR combined

conditions—temperature, time—can
with Al have been used to detect internal and surface changes during
Curcuma longa L. processing. Liu Q. et al. (2025) employed HSI for
nondestructive monitoring of jujube quality during hot-air drying
and built deep-learning models that accurately predict dried-
product attributes. Historical and experimental data have also
been used to predict and adjust parameters in real time, reducing
thermal degradation of active metabolites at high temperatures (Liu
et al.,, 2023).

3.2 Al-driven mechanistic evaluation using
bioinformatics

The therapeutic efficacy of TCM often derives from synergistic
interactions that cannot be fully explained by quantifying a limited
subset of chemical metabolites. The integration of bioinformatics
with AI has notably facilitated the development of a mechanism-
oriented quality control framework, offering a forward-looking
pathway toward the scientific modernization of TCM.

This emerging paradigm emphasizes the creation of a causality-
driven system that seamlessly links the identification of Q-markers,
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Applications of Al and bioinformatics in TCM.

the elucidation of therapeutic targets and detailed mechanistic
By
network-level datasets with advanced intelligent algorithms, the

analysis. integrating transcriptomic, metabolomic, and

framework enables automated prediction of pharmacological

mechanisms, target profiles, and potential risks

(Figure 6). Table 2 summarizes typical cases of the application of

toxicity

Al combined with various technologies in the mechanism
evaluation of TCM.

3.2.1 Efficacy-oriented evaluation based on
pharmacological mechanisms

The modernization of TCM efficacy evaluation calls for a
decisive transition from the conventional model—rooted in
metabolite quantification and empirical judgment—to a
precision-oriented framework anchored in pharmacologically
relevant mechanisms. This shift depends on the identification of
biomarkers that are closely linked to therapeutic efficacy and on the

elucidation of pharmacodynamic mechanisms.

3.2.1.1 Identification of Q-markers

Reliable biomarkers that accurately capture the pharmacological
effects of TCM are essential for precision quality control. Unlike
conventional

indicators—typically derived from quantitative

chemical assays or empirical selection—modern evaluation
frameworks place greater emphasis on Q-markers that are
directly linked to therapeutic efficacy and possess clearly defined
pharmacological functions (Zhou et al., 2023).

For example, Hypericum perforatum L., which exhibits

pronounced chemical variation across its medicinal parts, has
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been studied using ultra-performance liquid chromatography
coupled with  quadrupole time-of-flight tandem  mass
spectrometry (UPLC-Q-TOF-MS/MS), orthogonal projections to
latent structures discriminant analysis (OPLS-DA), and network-
based analytical approaches. Through these methods, bioactive
differential metabolites were identified as candidate Q-markers
and subsequently validated using ML models—including SVM,
KNN, and RF—confirming their utility in quality assessment
(Zhang Z. et al, 2024). Fu et al. (2023) developed DeepDGC, a
DL-based framework that integrates network pharmacology with
molecular docking to predict novel bioactive metabolites. Among
the predicted candidates, glabrone and vestitol showed binding
affinity for SARS-CoV-2-associated proteins and modulated
inflammation-related targets such as PTEN and MAP3KS,
highlighting their potential as Q-markers.

Moreover, integrating DL with similarity network fusion
(SNF) has shown substantial promise in elucidating the
mechanisms underlying complex diseases. For instance, in
assessing the hepatocellular carcinoma-inhibitory potential of
Phytolacca acinose Roxb., Liu et al. (Liu J. et al., 2024) combined
biological network analysis, transcriptome sequencing,
molecular docking, and molecular dynamics simulations to
identify xanthomicrol as a promising therapeutic candidate.
Subsequent in vivo experiments not only validated its
antitumor efficacy but also clarified its molecular mechanism
of action. Collectively, this integrative research framework
exemplifies a representative paradigm for Q-markers studies in
TCM, seamlessly bridging predictive modeling, mechanistic

elucidation, and experimental validation.
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TABLE 2 Representative studies on the application of Al in the mechanistic evaluation of TCM.

Main research
contents

Research objective

Substance types

10.3389/fphar.2025.1687681

Algorithms

References

Identification of
Q-markers

Identification of
Q-markers

Identification of
Q-markers

Identify Q-markers from Hypericum
perforatum L. for quality assessment

Predict novel bioactive metabolites from TCM
To discover candidate for inhibiting

hepatocellular carcinoma from Phytolacca
acinose Roxb

UPLC-Q-TOF-MS/MS; OPLS-DA, network-
based analysis

Network pharmacology; molecular docking
Transcriptome sequencing; molecular docking,

molecular dynamics; biological network
analysis

SVM; KNN; RF

DeepDGC

DL; SNF

Zhang et al.
(2024¢)

Fu et al. (2023)

Liu et al. (2024b)

Elucidation of
mechanisms

To investigate the anti-osteoporotic
mechanism of curcumin

Network pharmacology; multi-omics
integration

data mining

Chen et al.
(2024b)

Elucidation of
mechanisms

To elucidate the mechanism of Scutellaria
baicalensis Georgi in treating NSCLC

Network pharmacology; bioinformatics;
radiomics

ML

Su et al. (2025)

Elucidation of
mechanisms

Elucidation of
mechanisms

Exogenous toxicity
mechanism prediction

Exogenous toxicity
mechanism prediction

Exogenous toxicity
mechanism prediction

Exogenous toxicity
mechanism prediction

Develop a prediction model for HILI and
explore toxicity mechanisms

Analyze the pharmacological mechanism of
Xiaoxuming decoction

Elucidate the mechanism of hepatotoxicity
of TW

To investigate the hepatoprotective effect of
SC against TW-induced toxicity

To predict hepatotoxic metabolites in
Polygonum multiflorum Thunb

To screen TCM-related metabolites for
nephrotoxicity

HILI database

Pharmacological data

UPLC-Q-TOEF-MS; network toxicology;
Western blot

Network pharmacology; molecular docking;
qRT-PCR; Western blot

TCM-induced liver injury dataset

QSAR model based on 609 metabolites

ML-based predictive
modeling

NB network
Mechanistic network
construction
Mechanistic modeling

Ensemble ML classifier

ANN; SVM

Wu et al. (2019)

Yang et al. (2019)

Zhou et al. (2025)

Ji et al. (2025)

He et al. (2019)

Sun et al. (2019)

Exogenous toxicity To improve high-throughput detection of UV-Vis spectroscopy Transformer deep Zhang et al.
mechanism prediction pesticide residues under structural ambiguity learning architecture (2025a)
Exogenous toxicity To achieve ultrasensitive visual detection of | SERS with silver nanoparticles 1D-CNN; other CNN Wang et al.
mechanism prediction pesticide residues architectures (2025)

3.2.1.2 Elucidation of pharmacodynamic mechanisms

TCM is characterized by its inherently multi-target and multi-
pathway therapeutic strategies. While such characteristic have
yielded substantial clinical benefits, they also present considerable
challenges in elucidating the underlying mechanisms (Zhai et al.,
2019). The long-standing issues of “unclear mechanisms” and
“undefined targets” remain central points of critique toward
TCM (Guo et al, 2019). In this context, integrating AI with
multi-omics technologies and network pharmacology provides a
robust and systematic approach to dissect the complex
pharmacodynamic networks underlying TCM interventions. This,
in turn, enables a more precise and evidence-based interpretation of
their therapeutic mechanisms. A representative example is the
mechanistic investigation of curcumin in the treatment of
osteoporosis (OP). Chen S. et al. (2024) employed bioinformatics
and data mining techniques to examine the involvement of
ferroptosis in OP, with the aim of identifying key regulatory
factors. Their analysis revealed MAPK3, TGFB1, CYBB, EGFR,
and PTGS2 as hub genes closely linked to ferroptosis, offering
novel insights into the molecular basis of curcumin’s anti-
osteoporotic effects. Subsequent analysis revealed that curcumin
modulates iron homeostasis via EGFR and PTGS2, supporting its
potential therapeutic role in OP management.
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In cancer therapy, Su et al. (2025) conducted a comprehensive
analysis of the therapeutic potential of Scutellaria baicalensis Georgi
in treating non-small cell lung cancer (NSCLC) through the
integration of network pharmacology, bioinformatics, ML, and
radiomics. They constructed an “active metabolite-target-disease”
(ATD) network and, through computational analysis, identified five
core targets—FABP4, XDH, GPBARI1, CA4, and CDH1—as pivotal
nodes within this network. This study elucidated the multi-target
pharmacological mechanisms of S. baicalensis and offered
theoretical insights into personalized therapeutic
through a data-driven analytical framework.

strategies

In TCM toxicology, Wu et al. (2019) created a prediction model
using the TCM-induced liver injury (HILI) database to support
large-scale screening and explore toxicity mechanisms. Yang et al.
(2019) used Bayesian network to analyze the pharmacological
mechanism of Xiaoxuming decoction. The model demonstrated
robust performance in characterizing the pharmacological profiles
of multi-metabolite formulations, highlighting the utility of
probabilistic inference methods in elucidating complex TCM
mechanisms.

With advances in Al and bioinformatics, TCM research is
undergoing a transformation from empirical knowledge to data-
driven analysis. This shift includes analysis of both single TCMs and
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complex prescriptions, and expands from single-target prediction to
network-level mechanism reconstruction.

3.2.2 Safety assessment driven by toxicological
mechanisms

The safety of TCM is fundamental to its clinical application and
global acceptance. Nevertheless, TCM safety evaluation still faces
several critical challenges, such as the complex and variable nature of
toxic metabolites, the absence of clearly defined toxic thresholds, the
limited understanding of detoxification mechanisms, and the lack of
precise and standardized detection technologies. Conventional
safety assessments primarily depend on animal experimentation
and empirical judgment, which fail to elucidate the causal links
between endogenous and exogenous toxicants in TCM and their
corresponding target organs or toxicological pathways. To meet the
urgent needs and technical challenges in TCM safety evaluation, it is
crucial to enhance fundamental research both internally and
externally, with particular emphasis on in-depth exploration and
comprehensive understanding of the biological mechanisms
underlying toxic effects. In this context, the integration of
bioinformatics, multi-omics technologies, and AI has facilitated
the establishment of a multi-dimensional safety evaluation
framework encompassing mechanistic

toxicology, predictive

modeling, and risk screening.

3.2.2.1 Mechanistic prediction of endogenous toxic
metabolites

Numerous natural bioactive metabolites in TCM possess
intrinsic toxicity, among which hepatotoxicity and nephrotoxicity
are the most frequently observed, raising considerable safety
concerns. The integration of modern multi-omics approaches
with network toxicology offers a robust strategy for identifying
key toxic metabolites, their molecular targets, and associated
Zhou (2025)
based on ultra-high performance
chromatography ~ with ~ quadrupole  time-of-flight
spectrometry (UPLC-Q-TOF-MS) combined with network
toxicology and Western blotting, to reveal that the hepatotoxicity

signaling pathways. et al used untargeted

metabolomics liquid

mass

of Tripterygium wilfordii Hook. f. (TW) involves multiple signaling
pathways and abnormal protein expression. They also constructed a
mechanistic network linking metabolites to their target proteins. In
clinical practice, Spatholobus suberectus Dunn (SC) has been
reported to alleviate the adverse effects induced by TW. Ji et al.
(2025) explored the hepatoprotective mechanisms of SC through
network pharmacology and molecular docking, followed by
experimental validation using quantitative real-time PCR (qRT-
PCR) and Western blot analysis. The results demonstrated that
SC mitigates TW-induced hepatotoxicity by inhibiting the HIF-1a/
VEGFA signaling axis and lowering triptolide levels, while
preserving its anti-inflammatory efficacy (He et al, 2020; Sun S.
et al.,, 2022).

AT has emerged as a crucial tool in advancing TCM quality and
safety evaluation, particularly in the prediction of hepatotoxicity and
nephrotoxicity. He et al. (2019) developed a large-scale dataset on
TCM-induced liver injury and applied multiple ML algorithms to
construct an ensemble classifier, which identified 25 potentially
hepatotoxic metabolites in Polygonum multiflorum Thunb. Sun
et al. (2019) established a

quantitative  structure-activity
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relationship (QSAR) model based on 609 metabolites, including
natural products, modern drugs, and hybrid datasets. ANN and
SVM algorithms were applied for nephrotoxicity prediction, and
validation demonstrated the highest accuracy in the natural product
subset, with ANN and SVM achieving 96.7% and 93.3%,
respectively. These modeling approaches provide practical tools
and valuable references for screening TCM-related metabolites
for nephrotoxicity and for evaluating the toxicological profiles of
natural products.

AT has emerged as a crucial tool in advancing TCM quality and
safety evaluation, particularly in the prediction of hepatotoxicity and
nephrotoxicity. He et al. [106] developed a large-scale dataset on
TCM-induced liver injury and applied multiple ML algorithms to
construct an ensemble classifier, which identified 25 potentially
hepatotoxic metabolites in Polygonum multiflorum Thunb. Sun
al. [107] established quantitative ~ structure-activity
relationship (QSAR) model based on 609 metabolites, including
natural products, modern drugs, and hybrid datasets. ANN and

et a

SVM algorithms were applied for nephrotoxicity prediction, and
validation demonstrated the highest accuracy in the natural product
subset, with ANN and SVM achieving 96.7% and 93.3%,
respectively. These modeling approaches provide practical tools
and valuable references for screening TCM-related metabolites
for nephrotoxicity and for evaluating the toxicological profiles of
natural products.

3.2.2.2 Mechanistic studies of exogenous toxic metabolites

Exogenous hazardous substances—such as heavy metals and
pesticide residues—are commonly present during the cultivation,
harvesting, processing, and storage of medicinal TCMs, posing
substantial risks to the safety and quality control of TCM. These
substances can interact complexly with the bioactive or toxic
metabolites of TCM, potentially interfering with therapeutic
efficacy or exacerbating toxicity. Therefore, elucidating the
toxicological mechanisms of exogenous substances in the context
of TCM is essential for ensuring medicinal safety and advancing
TCM modernization.

Heavy metal contaminants—such as As, Cd, Pb, and
Hg—commonly detected in medicinal materials primarily arise
from plant bioaccumulation, cross-contamination  during
processing, and the application of heavy metal-containing
therapeutic agents or metalloids (Nagarajan et al., 2014b; 2014a).
Integrating  ionomics, metabolomics, and transcriptomics,
researchers have shown that Cd induces neurotoxicity and multi-
organ dysfunction through disruption of metabolic pathways and
alteration of gene expression. Meanwhile, Se has shown significant
protective and detoxifying effects, alleviating Cd-induced toxicity
(Zhang X. et al,, 2023). Xie et al. (2023) further employed spatially
resolved metallomics to systematically map the Se distribution in
seeds of the hyperaccumulator plant Cardamine violifolia O.E.
Schulz, revealing selenium-associated tolerance mechanisms. This
study offers theoretical insights into metalloid accumulation and
detoxification mechanisms in medicinal TCMs.

For pesticide residue detection, conventional methods—such as
spectrophotometry, GC, thin layer chromatography (TLC), and
HPLC—generally provide sufficient sensitivity and specificity.
However, their application to metabolites with undefined or

poorly characterized structures remains limited, primarily due to
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Advantages of the integrated strategy of Al and bioinformatics.

restricted analytical throughput and heavy reliance on predefined
molecular targets (Xiong et al., 2018; Pan et al., 2022; Wang et al,,
2023). To address these challenges, Al-enhanced spectroscopic
strategies have emerged as promising alternatives. For example,
Zhang H. et al. (2025) integrated UV-Vis spectroscopy with a
Transformer deep learning architecture, where the self-attention
mechanism captured complex spectral dependencies and resolved
overlap, offering a feasible approach for high-throughput pesticide
residue detection in cases of structural ambiguity. Moreover, to

overcome these limitations, researchers have established a
multifunctional ~ SERS-based  detection  system for the
simultaneous visualization and quantification of pesticide

residues. The system employs silver nanoparticles as the SERS
substrate and combines vertex metabolite analysis with the
Euclidean distance algorithm to achieve ultrasensitive visual
detection of pesticide residues (Wang et al,, 2025). Building on
this, SERS has to be integrated with AI
algorithms—such as one-dimensional convolutional neural
networks (1D-CNN) and other CNN architectures—to enable
precise identification, classification, and quantification of multiple
pesticide residues (Li et al., 2021; Zhu et al., 2021; Wang et al., 2024).
The emergence of these “SERS + AI” hybrid models has enhanced
the efficiency and sensitivity of pesticide residue detection in

the potential

medicinal TCMs, while providing advanced tools and theoretical
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foundations for developing intelligent quality control systems in
accordance with modern TCM quality standards.

4 Advantages and challenges
4.1 Advantages

The integration of AI and bioinformatics into TCM quality
control provides systematic, data-driven solutions to overcome the
limitations of conventional methods. As shown in Figure 7, these
advantages are mainly reflected in the following aspects:

1. Enhancing holistic understanding of TCM and supporting
multi-link quality traceability

Al can be applied across the full TCM lifecycle, from cultivation to
storage, and concurrently support mechanistic analyses to safeguard
clinical safety and efficacy. By modeling multidimensional data—such
growth and phytochemical

identify  pharmacologically

environmental factors, traits,
help
metabolites and intrinsic Q-markers. This supports the development
of evaluation systems with features specific to TCM (Yang et al., 2022;

Kousar et al., 2023). Crucially, along the time axis, Al consolidates what

as

profiles—these  tools active
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conventional non-Al workflows treat as sequential, manual

steps—literature  triage,  feature  curation, and  repeated
chromatographic re-runs—into a front-loaded model training phase
followed by millisecond-to-second per-sample inference, thereby
shortening batch turnaround and reducing reviewer time in routine

quality control.

2. Enhancing research efficiency, reducing costs, and supporting
environmentally sustainable development

Al algorithms can rapidly identify pharmacologically active and
potentially toxic metabolites from large-scale datasets, thereby
streamlining and accelerating fundamental TCM research. In the
investigation of rare medicinal TCMs or complex formulations, Al
reduces iterative experimental cycles, shortens research timelines,
and minimizes reliance on animal testing, in accordance with ethical
and sustainability principles (Liu T. et al, 2025). Relative to
conventional trial-and-error or rule-based screening, once
trained, Al yields lower per-sample operating cost and markedly
faster inference throughput, shifting costs from repeated assays to

one-time model development.

3. Enhancing objectivity in quality control and promoting
standardization

Traditional identification hinges on inspector expertise,
introducing subjectivity and variability. Incorporating ML enables
advanced analysis of high-throughput imaging and spectroscopic
profiles, improving the objectivity and reproducibility of
assessments (Ding et al., 2024b). Under external validation, Al
models generally show higher accuracy and better cross-batch
robustness than non-Al chemometric baselines, providing firmer
ground for standardization and inter-lab transfer. In addition,
aligning mechanisms with quality models establishes a robust

scientific basis for standardized quality control.

4. Supporting multidimensional quality evaluation aligned with
the holistic nature of TCM formulas

AT and bioinformatics enable multidimensional evaluation of
TCM quality—spanning
pathways—addressing the limitations of single-parameter models.

metabolites, targets, and
This better reflects TCM’s intrinsic characteristics (multiple

metabolites, diverse targets, interconnected pathways). In
practice, Al supports scalable fusion of origin, growth duration,
and mechanistic readouts, yielding more comprehensive and
clinically applicable quality attributes than conventional one-

factor approaches (Li et al., 2022¢; 2024b).

4.2 Challenges

Despite their promising applications in TCM quality control, Al
and bioinformatics face several practical challenges, summarized
as follows:

1. Data standardization and model reliability require further
improvement
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The effectiveness of Al and bioinformatics models relies heavily
on high-quality, standardized, and representative datasets. However,
in the context of TCM, heterogeneous data types, outdated omics
databases, and inconsistent metadata annotations significantly
reduce model performance, reproducibility, and cross-context
generalizability. In addition, Al-based predictions often lack
mechanistic interpretability, highlighting the need for biological
validation to enhance reliability and reduce the risks posed by
opaque “black-box” that
conclusions (Messeri and Crockett, 2024).

models may mislead scientific

2. Insufficient privacy protection mechanisms

TCM-related clinical and multi-omics datasets often contain
sensitive personal information (Jin and Qin, 2021). However, a
comprehensive, TCM-specific data governance framework for
privacy protection remains underdeveloped. AI model training
poses significant risks of patient data leakage and unauthorized
use. Moreover, data-sharing mechanisms on bioinformatics
platforms require further refinement under strict regulatory and
ethical standards (Khalid et al., 2023).

3. Limited adaptability of current models

The inherent complexity of TCM, characterized by multi-
metabolite formulations and nonlinear multi-target interactions,
poses substantial challenges to the design and optimization of
intelligent predictive models. At present, dedicated algorithms
and predictive frameworks capable of systematically capturing
multi-metabolite synergy in TCM remain underdeveloped. This
deficiency impedes the advancement of intelligent research
architectures that are consistent with the holistic and integrative
therapeutic principles of TCM (Jiang et al., 2025).

4. Practical barriers to Al implementation in TCM production
and regulatory

In TCM quality control, Al faces practical obstacles on
production and regulatory contexts. The lack of demonstrated
method equivalence and commutability under real raw-material
variability (origin, season, processing) prevents Al outputs from
replacing pharmacopeial release tests. Workflow integration
remains fragile, with predictions not consistently mapped to SOP
decision points or written to LIMS/MES and electronic batch
records, limiting timely batch disposition. Transferability and
model drift across instruments and sites necessitate frequent
recalibration and external-batch re-validation, raising operational
burden. Regulatory acceptance is further constrained by incomplete
evidence packages—predefined statistical criteria, multicenter
comparability, and audit-ready data lineage—together with
that  links
attributions to pharmacopeial peaks or Q-markers. Finally,

insufficiently  actionable  explainability model
change control and potential re-approval for model updates,
coupled with uncertain return on investment and limited analyst

training, slow sustained adoption.

5. Key advantages and obstacles for explainable AI in TCM
clinical and production

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

Li et al.

Explainable artificial intelligence can improve trust in TCM
clinical and production settings. It links model rationales to
pharmacopeial thresholds and SOP decision points. It also
communicates calibrated reasoning and uncertainty and records
traceable outputs in LIMS, MES, and electronic batch records.
However, implementation remains constrained. Heterogeneous
fingerprints and spectral collinearity can distort post hoc
explanations such as partial dependence and Shapley attribution.
Many explanations lack monotonic or shape constraints that match
process windows. Communication of uncertainty and distribution
shift is often inadequate. Standardized external validation remains
limited, including fidelity, stability, calibration, and violation rates.
Links to laboratory and manufacturing records are not consistently
traceable. Human-in-the-loop triggers and change control with
revalidation are immature. These issues temper adoption despite
clear potential benefits.

5 Conclusion and prospect

In recent years, various Al-driven strategies have shown
promising results in addressing core challenges in TCM quality
control. As summarized in the preceding sections, representative
ML and DL systems have been evaluated across three key
dimensions: First, statistical validation employed cross-validation
protocols—often nested—and bootstrap confidence intervals, with
head-to-head comparisons against conventional chemometric
baselines to quantify incremental benefit. Second, external and
transfer validation was performed using geographically and
temporally independent datasets (e.g., cross-region and cross-
batch cross-instrument  splits), demonstrating
generalization under realistic shifts in fingerprint heterogeneity

acquisitions,

and spectral collinearity; representative tasks reported high
discriminative performance in external settings. Third, clinical
and regulatory alignment was addressed by anchoring model
thresholds to pharmacopeial quality indices and predefined
Q-markers ranges, and—where available—linking predictions to
operational or clinical endpoints such as batch-release pass rate,
rework rate, and turnaround time.
these
statistics,

Collectively, layers  provide adoption-relevant
evidence—rigorous

linkage—that
implementation, and they frame the strategic directions that follow.

external testing, and outcome
bridge algorithmic feasibility and real-world

Nonetheless, TCM’s unique holistic framework—centered on
multi-TCM prescriptions, syndrome differentiation, and synergistic
pharmacology—continues to pose system-level complexity that
conventional methods cannot fully capture. Future efforts should
therefore focus on the following strategic directions:

1. Building multidimensional databases to enable AI-domain
knowledge co-modeling

Priority should be given to constructing a standardized,
multidimensional TCM database that encompasses chemical
composition profiles, target networks, toxicological pathways,
data, By
incorporating ontologies, knowledge graphs, and domain-specific

multi-omics and clinical efficacy information.

knowledge to enhance learning, AT models can be endowed with
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semantic understanding and reasoning capabilities in the TCM
domain. This promotes the deep integration of theory and Al
the
“data-knowledge-mechanism” system in TCM research.

and facilitates reconstruction of a  closed-loop

2. Developing explainable AI and causal inference approaches to
improve model transparency and trust

ATl models with attention mechanisms can help dissect

internal decision pathways, improving traceability and

interpretability for scientific reproducibility. Incorporating

causal directed acyclic graphs (causal DAGs) into
bioinformatics  analyses allows the identification of
mechanistic targets and intervention pathways, reducing

spurious predictions and enhancing biological relevance.

3. Strengthening privacy protection and ethical guidelines to
build a compliant intelligent system

The application of privacy-preserving machine learning (PPML)
is essential for secure and ethical TCM data sharing and model
A multi-level, ethical
should be established to cover the entire data

development. regulation-compliant
framework
lifecycle—from acquisition and storage to sharing and analysis

(Khalid et al., 2023).

4. Promoting visualization and low-code tools to support cross-
disciplinary applications

Since most TCM researchers lack computational training,
developing low-code or no-code AI platforms for biomedical
applications is essential to facilitate adoption. Such tools can
the threshold Al
interdisciplinary innovation and translational

reduce for adoption and promote
research and

clinical application (Sundberg and Holmstrom, 2023).

Author contributions

M-YL: Data
Conceptualization, ~ Writing review and  editing,
Writing - original draft. J-QZ: Writing - original draft, Data
curation, Conceptualization. X-NL: Writing — original draft, Data
M-YW: Methodology,
Writing - review and editing, Data curation. KD: Data curation,

Visualization, =~ Methodology, curation,

curation, Conceptualization.
Writing - original draft. X-YL: Methodology, Writing — original
draft. PG: Validation, Supervision, Funding
Writing - review and editing. Z-HJ: Funding acquisition,

acquisition,

Resources, Writing — original draft.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Science and Technology Co-construction Project of the State
Administration of Traditional Chinese Medicine’s Science and
Technology Department (GZY-KJS-SD-2024-055).

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

Li et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

References

Ameer, K., Jo, Y., Amir, R. M., Shahbaz, H. M., and Kwon, J.-H. (2020). Screening and
identification of electron-beam irradiated dried spice-mixture products by electronic
sensing and standard analytical methods through dose estimation. LWT 125, 108957.
doi:10.1016/j.1wt.2019.108957

Aydin Temel, F., Cagcag Yolcu, O., and Turan, N. G. (2023). Artificial intelligence and
machine learning approaches in composting process: a review. Bioresour. Technol. 370,
128539. doi:10.1016/j.biortech.2022.128539

Bai, Y., and Zhang, H. (2024). The cluster analysis of traditional Chinese medicine
authenticity identification technique assisted by chemometrics. Heliyon 10, e37479.
doi:10.1016/j.heliyon.2024.e37479

Bansal, C., Deepa, P. R, Agarwal, V., and Chandra, R. (2024). A clustering and graph
deep learning-based framework for COVID-19 drug repurposing. Expert Syst. Appl.
249, 123560. doi:10.1016/j.eswa.2024.123560

Boniecki, P., Piekarska-Boniecka, H., Swierczyr’lski, K., Koszela, K., Zaborowicz, M.,
and Przybyl, J. (2014). Detection of the granary weevil based on X-ray images of
damaged wheat kernels. J. Stored Prod. Res. 56, 38-42. doi:10.1016/j.jspr.2013.11.001

Busia, K. (2024). Herbal medicine dosage standardisation. J. Herb. Med. 46, 100889.
doi:10.1016/j.hermed.2024.100889

Cai, Z., Huang, Z., Li, C., Qi, H,, Peng, J., et al. (2023). Identification of geographical
origins of Radix paeoniae Alba using hyperspectral imaging with deep learning-based
fusion approaches. Food Chem. 422, 136169. doi:10.1016/j.foodchem.2023.136169

Cai, Z, He, M., Li, C, Qi, H., Bai, R, Yang, J, et al. (2023). Identification of
chrysanthemum using hyperspectral imaging based on few-shot class incremental
learning. Comput. Electron. Agric. 215, 108371. doi:10.1016/j.compag.2023.108371

Caratti, A., Squara, S., Bicchi, C., Liberto, E., Vincenti, M., Reichenbach, S. E., et al.
(2024). Boosting comprehensive two-dimensional chromatography with artificial
intelligence: application to food-omics. TrAC Trends Anal. Chem. 174, 117669.
doi:10.1016/j.trac.2024.117669

Castiglioni, I, Rundo, L., Codari, M., Di Leo, G., Salvatore, C., Interlenghi, M., et al.
(2021). AI applications to medical images: from machine learning to deep learning.
Phys. Medica 83, 9-24. doi:10.1016/j.ejmp.2021.02.006

Chang, Y., Zhou, D,, Tang, Y., Ou, S., and Wang, S. (2024). An improved deep
learning network for image detection and its application in dendrobii caulis decoction
piece. Sci. Rep. 14, 13505. doi:10.1038/5s41598-024-63398-w

Chen, S, Li, X., Wu, ], Li, J., Xiao, M., Yang, Y., et al. (2021). Plumula nelumbinis: a
review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety.
J. Ethnopharmacol. 266, 113429. doi:10.1016/j.jep.2020.113429

Chen, X,, Leung, Y.-L. A, and Shen, J. (2022). Artificial intelligence and its application
for cardiovascular diseases in Chinese medicine. Digit. Chin. Med. 5, 367-376. doi:10.
1016/j.dcmed.2022.12.003

Chen, H., Li, J., Chen, X, Mei, L., Feng, S., Duan, P,, et al. (2024a). Development and
characterization of Artemisia argyi essential oil-loaded nanoemulsion for sustainable
weed control: enhanced stability, amplified activity, protected non-target. J. Clean. Prod.
457, 142487. doi:10.1016/j.jclepro.2024.142487

Chen, S., Pan, Y., Guo, Y., Sun, X, Bai, X,, Liu, M,, et al. (2024b). Integrative
bioinformatics and experimental analysis of curcumin’s role in regulating ferroptosis to
combat osteoporosis. Biochem. Biophysical Res. Commun. 739, 150949. doi:10.1016/j.
bbrc.2024.150949

Chen, X,, Yang, D., Huang, L., Li, M., Gao, J., Liu, C,, et al. (2024c). Comparison and
identification of aroma components in 21 kinds of frankincense with variety and region

Frontiers in Pharmacology

18

10.3389/fphar.2025.1687681

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1687681/
full#supplementary-material

based on the odor intensity characteristic spectrum constructed by HS-SPME-GC-MS
combined with E-nose. Food Res. Int. 195, 114942. doi:10.1016/j.foodres.2024.114942

Cheng, C. (2003). Direct identification of Perilla frutescens seeds from its confusable
varieties by FTIR. Guang Pu Xue Yu Guang Pu Fen Xi 23, 282-284. Available online at:
https://pm.yuntsg.com/details.html?pmid=12961871 (Accessed March 19, 2025).

Cheng, C., Ruan, Y., and Li, B. (2004). Studied on the identification of fructus amomi
from its confusable varieties by fourier transform infrared spectroscopy. Guang Pu Xue
Yu Guang Pu Fen Xi 24, 1355-1358. Available online at: https://pm.yuntsg.com/details.
html?pmid=15762475 (Accessed March 19, 2025).

Chi, J., Shu, J., Li, M., Mudappathi, R,, Jin, Y., Lewis, F., et al. (2024). Artificial
intelligence in metabolomics: a current review. TrAC Trends Anal. Chem. 178, 117852.
doi:10.1016/j.trac.2024.117852

Di Stefano, V., Schillaci, D., Cusimano, M. G., Rishan, M., and Rashan, L. (2020). In
vitro antimicrobial activity of frankincense oils from boswellia sacra grown in different
locations of the dhofar region (oman). Antibiot. (Basel) 9, 195. doi:10.3390/
antibiotics9040195

Ding, R., Yu, L., Wang, C,, Zhong, S., and Gu, R. (2024a). Quality assessment of
traditional Chinese medicine based on data fusion combined with machine learning: a
review. Crit. Rev. Anal. Chem. 54, 2618-2635. doi:10.1080/10408347.202.2189477

Ding, R, Yu, L., Wang, C., Zhong, S., and Gu, R. (2024b). Quality assessment of
traditional Chinese medicine based on data fusion combined with machine learning: a
review. Crit. Rev. Anal. Chem. 54, 2618-2635. doi:10.1080/10408347.2023.2189477

Fu, Y., Fang, Y., Gong, S., Xue, T., Wang, P., She, L., et al. (2023). Deep learning-based
network pharmacology for exploring the mechanism of licorice for the treatment of
COVID-19. Sci. Rep. 13, 5844. doi:10.1038/s41598-023-31380-7

Gong, S, Liy, J,, Liu, Y., Zhu, Y., Zeng, C., Peng, C,, et al. (2023). A mid-infrared
spectroscopy-random forest system for the origin tracing of Chinese geographical
indication aconiti lateralis radix praeparata. Spectrochim. Acta A Mol. Biomol. Spectrosc.
292, 122394. doi:10.1016/j.5aa.2023.122394

Guo, S., Wang, J., Wang, Y., Zhang, Y., Bi, K., Zhang, Z., et al. (2019). Study on the
multitarget synergistic effects of kai-xin-san against alzheimer’s disease based on
systems biology. Oxid. Med. Cell Longev. 2019, 1707218. doi:10.1155/2019/1707218

Guo, J.,, Zhang, L., Shang, Y., Yang, X,, Li, J., He, J., et al. (2021). A strategy for
intelligent chemical profiling-guided precise quantitation of multi-components in
traditional ~ Chinese medicine formulae-QiangHuoShengShi decoction.
J. Chromatogr. A 1649, 462178. doi:10.1016/j.chroma.2021.462178

He, K, Zhang, X,, Ren, S., and Sun, J. (2015). Deep residual learning for image
recognition. doi:10.48550/arXiv.1512.03385

He, S., Zhang, X, Lu, S., Zhu, T., Sun, G., and Sun, X. (2019). A computational
toxicology approach to screen the hepatotoxic ingredients in traditional Chinese
medicines: polygonum multiflorum thunb as a case Study. Biomolecules 9, 577.
doi:10.3390/biom9100577

He, T, Liu, ], Wang, X,, Duan, C, Li, X,, and Zhang, J. (2020). Analysis of
cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics
and an integrative network pharmacology analysis. Food Chem. Toxicol. 146,
111845. doi:10.1016/j.fct.2020.111845

He, C., Shi, X,, Lin, H., Li, Q., Xia, F., Shen, G,, et al. (2024). The combination of HSI
and NMR techniques with deep learning for identification of geographical origin and GI
markers of Lycium barbarum L. Food Chem. 461, 140903. doi:10.1016/j.foodchem.2024.
140903

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphar.2025.1687681/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2025.1687681/full#supplementary-material
https://doi.org/10.1016/j.lwt.2019.108957
https://doi.org/10.1016/j.biortech.2022.128539
https://doi.org/10.1016/j.heliyon.2024.e37479
https://doi.org/10.1016/j.eswa.2024.123560
https://doi.org/10.1016/j.jspr.2013.11.001
https://doi.org/10.1016/j.hermed.2024.100889
https://doi.org/10.1016/j.foodchem.2023.136169
https://doi.org/10.1016/j.compag.2023.108371
https://doi.org/10.1016/j.trac.2024.117669
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1038/s41598-024-63398-w
https://doi.org/10.1016/j.jep.2020.113429
https://doi.org/10.1016/j.dcmed.2022.12.003
https://doi.org/10.1016/j.dcmed.2022.12.003
https://doi.org/10.1016/j.jclepro.2024.142487
https://doi.org/10.1016/j.bbrc.2024.150949
https://doi.org/10.1016/j.bbrc.2024.150949
https://doi.org/10.1016/j.foodres.2024.114942
https://pm.yuntsg.com/details.html?pmid=12961871
https://pm.yuntsg.com/details.html?pmid=15762475
https://pm.yuntsg.com/details.html?pmid=15762475
https://doi.org/10.1016/j.trac.2024.117852
https://doi.org/10.3390/antibiotics9040195
https://doi.org/10.3390/antibiotics9040195
https://doi.org/10.1080/10408347.202.2189477
https://doi.org/10.1080/10408347.2023.2189477
https://doi.org/10.1038/s41598-023-31380-7
https://doi.org/10.1016/j.saa.2023.122394
https://doi.org/10.1155/2019/1707218
https://doi.org/10.1016/j.chroma.2021.462178
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.3390/biom9100577
https://doi.org/10.1016/j.fct.2020.111845
https://doi.org/10.1016/j.foodchem.2024.140903
https://doi.org/10.1016/j.foodchem.2024.140903
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

Li et al.

Hu, H., Mei, Y., Wei, Y, Liu, C,, Xu, H., Mao, X,, et al. (2024). Rapid identification of
moxa wool storage period based on hyperspectral imaging technology and machine
learning. Heliyon 10, €37650. doi:10.1016/j.heliyon.2024.e37650

Husaini, A. M., Hag, S. A. U,, Shabir, A., Wani, A. B., and Dedmari, M. A. (2022). The
menace of saffron adulteration: Low-cost rapid identification of fake look-alike saffron
using foldscope and machine learning technology. Front. Plant Sci. 13, 945291. doi:10.
3389/fpls.2022.945291

Ji, L., Zhang, Y., Li, Y., Song, L., Zhang, T., Du, C,, et al. (2025). Concoctive principles
of detoxification and retention of the main toxicity of Tripterygium wilfordii and its
anti-inflammatory efficacy by concocting with the medicinal excipient Spatholobi caulis
juice. Fitoterapia 181, 106400. doi:10.1016/j.fitote.2025.106400

Jiang, Q., Yang, S., He, S., and Li, F. (2025). AI drug discovery tools and analysis
technology: new methods aid in studying the compatibility of traditional Chinese
Medicine. Pharmacol. Res. - Mod. Chin. Med. 14, 100566. doi:10.1016/j.prmcm.2024.
100566

Jin, Y., and Qin, X. (2021). Significance of TP53 mutation in treatment and prognosis
in head and neck squamous cell carcinoma. Biomark. Med. 15, 15-28. doi:10.2217/
bmm-2020-0400

Kabir, M. H., Guindo, M. L., Chen, R,, Liu, F,, Luo, X,, and Kong, W. (2022a). Deep
learning combined with hyperspectral imaging technology for variety discrimination of
Fritillaria thunbergii. Molecules 27, 6042. doi:10.3390/molecules2786042

Kabir, M. H., Guindo, M. L,, Chen, R, Liu, F., Luo, X, and Kong, W. (2022b). Deep
learning combined with hyperspectral imaging technology for variety discrimination of
fritillaria thunbergii. Molecules 27, 6042. doi:10.3390/molecules27186042

Kang, Q., Ru, Q,, Liu, Y., Xu, L., Liu, J., Wang, Y, et al. (2016). On-line monitoring the
extract process of fu-fang shuanghua oral solution using near infrared spectroscopy and
different PLS algorithms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 431-437.
doi:10.1016/j.52a.2015.07.098

Khalid, N., Qayyum, A, Bilal, M., Al-Fuqaha, A., and Qadir, J. (2023). Privacy-
preserving artificial intelligence in healthcare: techniques and applications. Comput.
Biol. Med. 158, 106848. doi:10.1016/j.compbiomed.2023.106848

Kouadio, Y. H., Kouassi, K. N., Kouassi, K. B., Konan, G. A. J., Kouakou, K. A,,
Dappah, K. D, et al. (2024). Effect of warehouse storage on the alteration, cooking and
organoleptic characteristics of kponan yam (dioscorea cayenensis-rotundata) of Cote
d’ivoire. Heliyon 10, €40014. doi:10.1016/j.heliyon.2024.e40014

Kousar, M., Kim, Y. R,, Kim, J. Y., and Park, J. (2023). Enhancement of growth and
secondary metabolites by the combined treatment of trace elements and hydrogen water
in wheat sprouts. Int. . Mol. Sci. 24, 16742. doi:10.3390/ijms242316742

Kremer, J., Steenstrup Pedersen, K., and Igel, C. (2014). Active learning with support
vector machines. WIREs Data Min. Knowl. Discov. 4, 313-326. d0i:10.1002/widm.1132

Kumari, L., Jaiswal, P., and Tripathy, S. S. (2021). Various techniques useful for
determination of adulterants in valuable saffron: a review. Trends Food Sci. and Technol.
111, 301-321. doi:10.1016/j.tifs.2021.02.061

Lam, B. S. Y, Choy, S. K., and Yu, C. K. W. (2024). Linear discriminant analysis with
trimmed and difference distribution modeling. Knowledge-Based Syst. 299, 112093.
doi:10.1016/j.knosys.2024.112093

Lau, A.-J., Holmes, M. J., Woo, S.-O., and Koh, H.-L. (2003). Analysis of adulterants in
a traditional herbal medicinal product using liquid chromatography-mass
spectrometry-mass spectrometry. J. Pharm. Biomed. Anal. 31, 401-406. doi:10.1016/
$0731-7085(02)00637-4

Li, S., and Zhang, B. (2013). Traditional Chinese medicine network pharmacology:
theory, methodology and application. Chin. J. Nat. Med. 11, 110-120. doi:10.1016/
$1875-5364(13)60037-0

Li, C, Xu, F,, Cao, C,, Shang, M.-Y,, Zhang, C.-Y., Yu, J,, et al. (2013). Comparative
analysis of two species of asari radix et rhizoma by electronic nose, headspace GC-MS
and chemometrics. J. Pharm. Biomed. Analysis 85, 231-238. doi:10.1016/j.jpba.2013.
07.034

Li, G., Nikolic, D., and van Breemen, R. B. (2016). Identification and chemical
standardization of licorice raw materials and dietary supplements using UHPLC-MS/
MS. J. Agric. Food Chem. 64, 8062-8070. doi:10.1021/acs.jafc.6b02954

Li, Y., Shen, Y., Yao, C.-L., and Guo, D.-A. (2020). Quality assessment of herbal
medicines based on chemical fingerprints combined with chemometrics approach: a
review. J. Pharm. Biomed. Anal. 185, 113215. doi:10.1016/j.jpba.2020.113215

Li, H., Mehedi Hassan, M., Wang, J., Wei, W., Zou, M., Ouyang, Q., et al. (2021).
Investigation of nonlinear relationship of surface enhanced raman scattering signal for
robust prediction of thiabendazole in apple. Food Chem. 339, 127843. doi:10.1016/j.
foodchem.2020.127843

Li, D., Hu, J,, Zhang, L, Li, L., Yin, Q., Shi, J., et al. (2022a). Deep learning and
machine intelligence: new computational modeling techniques for discovery of the
combination rules and pharmacodynamic characteristics of traditional Chinese
medicine. Eur. J. Pharmacol. 933, 175260. doi:10.1016/j.ejphar.2022.175260

Li, X, Yang, Y., Zhu, Y., Ben, A, and Qi, J. (2022b). A novel strategy for
discriminating different cultivation and screening odor and taste flavor compounds
in xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem. 384,
132519. doi:10.1016/j.foodchem.2022.132519

Frontiers in Pharmacology

19

10.3389/fphar.2025.1687681

Li, X, Yao, Y., Chen, M,, Ding, H.,, Liang, C,, Lv, L, et al. (2022c). Comprehensive
evaluation integrating omics strategy and machine learning algorithms for consistency
of Calculus bovis from different sources. Talanta 237, 122873. doi:10.1016/j.talanta.
2021.122873

Li, Y., Bi, Q., Wei, W,, Yao, C., Zhang, J., and Guo, D. (2022d). Sequential decision
fusion pipeline for the high-throughput species recognition of medicinal caterpillar
fungus by using ATR-FTIR. Microchem. J. 179, 107437. doi:10.1016/j.microc.2022.
107437

Li, Y., Ju, S, Lin, Z,, Wu, H.,, Wang, Y., Jin, H,, et al. (2022e). Bioactive-chemical
quality markers revealed: an integrated strategy for quality control of chicory. Front.
Nutr. 9, 934176. doi:10.3389/fnut.2022.934176

Li, M., Shi, Y., Zhang, J., Wan, X,, Fang, J., Wu, Y., et al. (2023). Rapid evaluation of
Ziziphi spinosae semen and its adulterants based on the combination of FT-NIR and
multivariate algorithms. Food Chem. X 20, 101022. doi:10.1016/j.fochx.2023.101022

Li, H,, Gui, X, Wang, P, Yue, Y., Li, H,, Fan, X,, et al. (2024a). Research on rapid
quality identification method of Panax notoginseng powder based on artificial
intelligence sensory technology and multi-source information fusion technology.
Food Chem. 440, 138210. doi:10.1016/j.foodchem.2023.138210

Li, Y., Wang, L., Yang, W., Xie, Q.,, Xu, H.,, Wen, R, et al. (2024b). Promotion of a
quality standard for Paris polyphylla var. yunnanensis based on the efficacy-oriented
effect-constituent index. J. Pharm. Biomed. Analysis 238, 115843. doi:10.1016/j.jpba.
2023.115843

Li, Y., Zhao, W., Qian, M., Wen, Z., Bai, W., Zeng, X,, et al. (2024c). Recent advances
in the authentication (geographical origins, varieties and aging time) of tangerine peel
(Citri reticulatae pericarpium): a review. Food Chem. 442, 138531. doi:10.1016/j.
foodchem.2024.138531

Lin, L., Liu, G, Zhang, D., Yu, F, Tan, L, Mu, X,, et al. (2024). Quality grade
evaluation of nvjin pills based on traditional Chinese medicine reference drug and
network pharmacology of target-focused compounds. J. Sep. Sci. 47, €2300134. doi:10.
1002/jss¢.202300134

Liu, C., and Guo, D. (2020). Inheriting essence, keeping integrity and innovation.
Chin. Herb. Med. 12, 1-2. doi:10.1016/j.chmed.2020.01.001

Liu, J., Shi, X, Lin, H,, He, C,, Li, Q., Shen, G,, et al. (2023). Geographical origin
identification and quality comparison of ningxia goji berries (lycium barbarum L.) by
NMR-based techniques. J. Food Compos. Analysis 119, 105258. doi:10.1016/j.jfca.2023.
105258

Liu, C.-L, Jiang, Y., and Li, H.-J. (2024a). Quality consistency evaluation of traditional
Chinese medicines: current status and future perspectives. Crit. Rev. Anal. Chem. 55,
684-701. doi:10.1080/10408347.2024.2305267

Liu, ], Zhou, Y., Zhou, P., He, T., Liu, P., Wang, J., et al. (2024b). Mechanistic insights
into xanthomicrol as the active anti-HCC ingredient of Phytolacca acinosa Roxb.: a
network pharmacology analysis and transcriptomics integrated experimental
verification. J. Ethnopharmacol. 333, 118467. doi:10.1016/j.jep.2024.118467

Liu, Q,, Jiang, X., Wang, F., Fan, S., Zhu, B., Yan, L., et al. (2025a). Evaluation and
process monitoring of jujube hot air drying using hyperspectral imaging technology and
deep learning for quality parameters. Food Chem. 467, 141999. doi:10.1016/j.foodchem.
2024.141999

Liu, T., Zhuang, X. X., Zheng, W. ], and Gao, J. R. (2025b). Integrative multi-omics
and network pharmacology reveal the mechanisms of fangji huangqi decoction in
treating IgA nephropathy. J. Ethnopharmacol. 337, 118996. doi:10.1016/j.jep.2024.
118996

Liu, Y., Zhang, L., Zhang, X, Bian, X., and Tian, W. (2025c). Modern spectroscopic
techniques combined with chemometrics for process quality control of traditional
Chinese medicine: a review. Microchem. J. 213, 113605. doi:10.1016/j.microc.2025.
113605

Lord, G. M., Cook, T., Arlt, V. M., Schmeiser, H. H., Williams, G., and Pusey, C. D.
(2001). Urothelial malignant disease and Chinese herbal nephropathy. Lancet 358,
1515-1516. doi:10.1016/s0140-6736(01)06576-x

Luo, Y., Yang, H, and Tao, G. (2024). Systematic review on fingerprinting
development to determine adulteration of Chinese herbal medicines. Phytomedicine
129, 155667. doi:10.1016/j.phymed.2024.155667

Maione, C., Barbosa, F., and Barbosa, R. M. (2019). Predicting the botanical and
geographical origin of honey with multivariate data analysis and machine learning
techniques: a review. Comput. Electron. Agric. 157, 436-446. doi:10.1016/j.compag.
2019.01.020

Malik, O. A, Ismail, N., Hussein, B. R., and Yahya, U. (2022). Automated real-time
identification of medicinal plants species in natural environment using deep learning
models-a case study from borneo region. Plants (Basel) 11, 1952. doi:10.3390/
plants11151952

Messeri, L., and Crockett, M. J. (2024). Artificial intelligence and illusions of
understanding in scientific research. Nature 627, 49-58. doi:10.1038/s41586-024-
07146-0

Miao, J., Huang, Y., Wang, Z., Wu, Z, and Ly, J. (2023). Image recognition of
traditional Chinese medicine based on deep learning. Front. Bioeng. Biotechnol. 11,
1199803. doi:10.3389/fbioe.2023.1199803

frontiersin.org


https://doi.org/10.1016/j.heliyon.2024.e37650
https://doi.org/10.3389/fpls.2022.945291
https://doi.org/10.3389/fpls.2022.945291
https://doi.org/10.1016/j.fitote.2025.106400
https://doi.org/10.1016/j.prmcm.2024.100566
https://doi.org/10.1016/j.prmcm.2024.100566
https://doi.org/10.2217/bmm-2020-0400
https://doi.org/10.2217/bmm-2020-0400
https://doi.org/10.3390/molecules2786042
https://doi.org/10.3390/molecules27186042
https://doi.org/10.1016/j.saa.2015.07.098
https://doi.org/10.1016/j.compbiomed.2023.106848
https://doi.org/10.1016/j.heliyon.2024.e40014
https://doi.org/10.3390/ijms242316742
https://doi.org/10.1002/widm.1132
https://doi.org/10.1016/j.tifs.2021.02.061
https://doi.org/10.1016/j.knosys.2024.112093
https://doi.org/10.1016/s0731-7085(02)00637-4
https://doi.org/10.1016/s0731-7085(02)00637-4
https://doi.org/10.1016/S1875-5364(13)60037-0
https://doi.org/10.1016/S1875-5364(13)60037-0
https://doi.org/10.1016/j.jpba.2013.07.034
https://doi.org/10.1016/j.jpba.2013.07.034
https://doi.org/10.1021/acs.jafc.6b02954
https://doi.org/10.1016/j.jpba.2020.113215
https://doi.org/10.1016/j.foodchem.2020.127843
https://doi.org/10.1016/j.foodchem.2020.127843
https://doi.org/10.1016/j.ejphar.2022.175260
https://doi.org/10.1016/j.foodchem.2022.132519
https://doi.org/10.1016/j.talanta.2021.122873
https://doi.org/10.1016/j.talanta.2021.122873
https://doi.org/10.1016/j.microc.2022.107437
https://doi.org/10.1016/j.microc.2022.107437
https://doi.org/10.3389/fnut.2022.934176
https://doi.org/10.1016/j.fochx.2023.101022
https://doi.org/10.1016/j.foodchem.2023.138210
https://doi.org/10.1016/j.jpba.2023.115843
https://doi.org/10.1016/j.jpba.2023.115843
https://doi.org/10.1016/j.foodchem.2024.138531
https://doi.org/10.1016/j.foodchem.2024.138531
https://doi.org/10.1002/jssc.202300134
https://doi.org/10.1002/jssc.202300134
https://doi.org/10.1016/j.chmed.2020.01.001
https://doi.org/10.1016/j.jfca.2023.105258
https://doi.org/10.1016/j.jfca.2023.105258
https://doi.org/10.1080/10408347.2024.2305267
https://doi.org/10.1016/j.jep.2024.118467
https://doi.org/10.1016/j.foodchem.2024.141999
https://doi.org/10.1016/j.foodchem.2024.141999
https://doi.org/10.1016/j.jep.2024.118996
https://doi.org/10.1016/j.jep.2024.118996
https://doi.org/10.1016/j.microc.2025.113605
https://doi.org/10.1016/j.microc.2025.113605
https://doi.org/10.1016/s0140-6736(01)06576-x
https://doi.org/10.1016/j.phymed.2024.155667
https://doi.org/10.1016/j.compag.2019.01.020
https://doi.org/10.1016/j.compag.2019.01.020
https://doi.org/10.3390/plants11151952
https://doi.org/10.3390/plants11151952
https://doi.org/10.1038/s41586-024-07146-0
https://doi.org/10.1038/s41586-024-07146-0
https://doi.org/10.3389/fbioe.2023.1199803
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

Li et al.

Monakhova, Y. B., Holzgrabe, U., and Diehl, B. W. K. (2018). Current role and future
perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of
pharmaceutical products. J. Pharm. Biomed. Analysis 147, 580-589. doi:10.1016/j.jpba.
2017.05.034

Moreno-Torres, M., Lopez-Pascual, E., Rapisarda, A., Quintds, G., Drees, A,
Steffensen, L.-L., et al. (2024). Novel clinical phenotypes, drug categorization, and
outcome prediction in drug-induced cholestasis: analysis of a database of 432 patients
developed by literature review and machine learning support. Biomed. Pharmacother.
174, 116530. doi:10.1016/j.biopha.2024.116530

Nagarajan, S., Krishnaswamy, S., Pemiah, B., Rajan, K. S., Krishnan, U., and
Sethuraman, S. (2014a). Scientific insights in the preparation and characterisation of
a lead-based naga bhasma. Indian J. Pharm. Sci. 76, 38-45. Available online at: https://
pm.yuntsg.com/details.html?pmid=24799737 (Accessed April 7, 2025).

Nagarajan, S., Sivaji, K., Krishnaswamy, S., Pemiah, B., Rajan, K. S., Krishnan, U. M.,
et al. (2014b). Safety and toxicity issues associated with lead-based traditional herbo-
metallic preparations. J. Ethnopharmacol. 151, 1-11. doi:10.1016/j.jep.2013.10.037

Ni, J., Ding, C., Zhang, Y., and Song, Z. (2020). Impact of different pretreatment
methods on drying characteristics and microstructure of goji berry under
electrohydrodynamic (EHD) drying process. Innovative Food Sci. and Emerg.
Technol. 61, 102318. doi:10.1016/j.ifset.2020.102318

Nile, S. H,, Su, J., Wu, D., Wang, L., Hu, ], Sieniawska, E., et al. (2021). Fritillaria
thunbergii miq. (zhe beimu): a review on its traditional uses, phytochemical profile and
pharmacological properties. Food Chem. Toxicol. 153, 112289. doi:10.1016/j.fct.2021.
112289

Ou, G.-L,, He, Y.-L., Fournier-Viger, P., and Huang, J. Z. (2025). A novel multi-source
weighted naive bayes classifier. Inf. Sci. 721, 122568. doi:10.1016/.ins.2025.122568

Ouyang, X.-J,, Li, J.-Q., Zhong, Y.-Q., Tang, M., Meng, J., Ge, Y.-W,, et al. (2023).
Identifying the active ingredients of carbonized typhae pollen by spectrum-effect
relationship combined with MBPLS, PLS, and SVM algorithms. J. Pharm. Biomed.
Analysis 235, 115619. doi:10.1016/j.,jpba.2023.115619

Pan, H., Ahmad, W., Jiao, T., Zhu, A., Ouyang, Q., and Chen, Q. (2022). Label-free au
NRs-based SERS coupled with chemometrics for rapid quantitative detection of
thiabendazole residues in citrus. Food Chem. 375, 131681. doi:10.1016/j.foodchem.
2021.131681

Paolanti, M., and Frontoni, E. (2020). Multidisciplinary pattern recognition
applications: a review. Comput. Sci. Rev. 37, 100276. doi:10.1016/j.cosrev.2020.100276

Ren, Y., Gao, F,, Li, B, Yuan, A., Zheng, L., and Zhang, Y. (2022). A precise efficacy
determination strategy of traditional Chinese herbs based on Q-markers: anticancer
efficacy of astragali radix as a case. Phytomedicine 102, 154155. doi:10.1016/j.phymed.
2022.154155

Ren, A., Wu, T., Wang, Y., Fan, Q,, Yang, Z., Zhang, S., et al. (2023). Integrating
animal experiments, mass spectrometry and network-based approach to reveal the
sleep-improving effects of ziziphi spinosae semen and y-aminobutyric acid mixture.
Chin. Med. 18, 99. doi:10.1186/s13020-023-00814-9

Russell, S. J., and Norvig, P. (2022). Artificial intelligence: a modern approach. Fourth
edition, global edition. Boston: Pearson.

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 160. doi:10.1007/s42979-021-00592-x

Soltani, S., khodaie, L., and Surana, V. (2025). Artificial intelligence perspectives in
advancing persian herbal medicine: a systematic review. Adv. Integr. Med. 12, 100471.
doi:10.1016/j.aimed.2025.03.001

Song, C., An, Y., Zhao, W., Huang, Y., Zhang, L., Li, L., et al. (2025). A chemometric
and machine learning scheme for classification of 37 kinds of aerial parts of medicinal
herbs based on ATR-FTIR. Microchem. ]. 209, 112671. doi:10.1016/j.microc.2025.
112671

Soon, W. W, Hariharan, M., and Snyder, M. P. (2013). High-throughput sequencing
for biology and medicine. Mol. Syst. Biol. 9, 640. doi:10.1038/msb.2012.61

Su, S., Luo, J., Wang, F,, Li, S., Gao, Y., and Yan, L. (2025). The potential mechanism of
antifluorescent lung cancer by Chinese medicine huang qin: based on bioinformatics
molecular, network pharmacology and imaging histology analysis. J. Radiat. Res. Appl.
Sci. 18, 101381. doi:10.1016/j.jrras.2025.101381

Sun, Y., Shi, S., Li, Y., and Wang, Q. (2019). Development of quantitative
structure-activity relationship models to predict potential nephrotoxic
ingredients in traditional Chinese medicines. Food Chem. Toxicol. 128,
163-170. doi:10.1016/.fct.2019.03.056

Sun, S., Wang, M., Yuan, Y., Wang, S,, Ding, H., Liang, C,, et al. (2022a). A new
strategy for the rapid identification and validation of direct toxicity targets of psoralen-
induced hepatotoxicity. Toxicol. Lett. 363, 11-26. doi:10.1016/j.toxlet.2022.05.002

Sun, X, Qian, H., Xiong, Y., Zhu, Y., Huang, Z., and Yang, F. (2022b). Deep learning-
enabled mobile application for efficient and robust herb image recognition. Sci. Rep. 12,
6579. doi:10.1038/s4598-022-10449-9

Sun, X., Qian, H,, Xiong, Y., Zhu, Y., Huang, Z., and Yang, F. (2022c). Deep learning-
enabled mobile application for efficient and robust herb image recognition. Sci. Rep. 12,
6579. doi:10.1038/541598-022-10449-9

Frontiers in Pharmacology

10.3389/fphar.2025.1687681

Sundberg, L., and Holmstrém, J. (2023). Democratizing artificial intelligence: how no-
code AI can leverage machine learning operations. Bus. Horizons 66, 777-788. doi:10.
1016/j.bushor.2023.04.003

Suriyaamporn, P., Pamornpathomkul, B., Patrojanasophon, P., Ngawhirunpat, T.,
Rojanarata, T., and Opanasopit, P. (2024). The artificial intelligence-powered new era in
pharmaceutical research and development: a review. AAPS PharmSciTech 25, 188.
doi:10.1208/512249-024-02901-y

Tan, C.,, Wu, C,, Huang, Y., Wu, C,, and Hu, C. (2024). Identification of different
species of Zanthoxyli Pericarpium based on convolution neural network. PLOS ONE 15,
€0230287. doi:10.1371/journal.pone.0230287

Thapa, S., Maurya, S. N., Manjunath, K., Mahmood, A. A., Devi, K., Varghese, S. A.,
et al. (2025). LC-MS profiling and multi-target mechanistic insights of hibiscus rosa-
sinensis in diabetes: network pharmacology, molecular docking, MD simulation, PCA,
and in-vitro a-amylase inhibition. Pharmacol. Res. - Mod. Chin. Med. 16,100636. doi:10.
1016/j.prmcm.2025.100636

Tian, D., Chen, W., Xu, D., Xu, L., Xu, G., Guo, Y., et al. (2024). A review of traditional
Chinese medicine diagnosis using machine learning: inspection, auscultation-olfaction,
inquiry, and palpation. Comput. Biol. Med. 170, 108074. doi:10.1016/j.compbiomed.
2024.108074

Wang, Z., and Li, S. (2022). Network pharmacology in quality control of traditional
Chinese medicines. Chin. Herb. Med. 14, 477-478. d0i:10.1016/j.chmed.2022.09.001

Wang, Y., Huang, H.-Y., Zuo, Z.-T., and Wang, Y.-Z. (2018). Comprehensive quality
assessment of Dendrubium officinale using ATR-FTIR spectroscopy combined with
random forest and support vector machine regression. Spectrochimica Acta Part A Mol.
Biomol. Spectrosc. 205, 637-648. doi:10.1016/j.saa.2018.07.086

Wang, T, Liu, J, Luo, X,, Hu, L, and Lu, H. (2021). Functional metabolomics
innovates therapeutic discovery of traditional Chinese medicine derived functional
compounds. Pharmacol. and Ther. 224, 107824. doi:10.1016/j.pharmthera.2021.107824

Wang, K., Yue, Z., Fang, X, Lin, H., Wang, L., Cao, L., et al. (2023). SERS detection of
thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Sci. Total
Environ. 856, 159108. doi:10.1016/j.scit0tenv.2022.159108

Wang, X,, Jiang, S., Liu, Z.,, Sun, X,, Zhang, Z., Quan, X,, et al. (2024). Integrated
surface-enhanced raman spectroscopy and convolutional neural network for
quantitative and qualitative analysis of pesticide residues on pericarp. Food Chem.
440, 138214. doi:10.1016/j.foodchem.2023.138214

Wang, X, Sun, X, Huang, H., Huang, Y., Zhao, Y. Liu, Z, et al. (2025).
Multifunctional surface-enhanced raman scattering imaging for detection and
visualization of pesticide residues in crops. J. Hazard. Mater. 491, 138020. doi:10.
1016/j.jhazmat.2025.138020

Wei, J., Wang, Y., Tang, X,, Du, Y., Bai, Y., Deng, Y., et al. (2024). Correlation analysis
between active components of cornus officinalis and inorganic elements in rhizosphere
soil and rapid analysis of origin quality by near-infrared spectroscopy combined with
machine learning. Industrial Crops Prod. 210, 118101. doi:10.1016/j.indcrop.2024.
118101

Wu, X, Wang, S., Lu, J,, Jing, Y., Li, M., Cao, J., et al. (2018). Seeing the unseen of
Chinese herbal medicine processing (paozhi): advances in new perspectives. Chin. Med.
13, 4. doi:10.1186/s13020-018-0163-3

Wu, Q., Cai, C, Guo, P, Chen, M., Wu, X., Zhou, J., et al. (2019). In silico
identification and mechanism exploration of hepatotoxic ingredients in traditional
Chinese medicine. Front. Pharmacol. 10, 458. doi:10.3389/fphar.2019.00458

Wu, Z., Ye, X,, Bian, F,, Yu, G., Gao, G., Ou, J., et al. (2022). Determination of the
geographical origin of Tetrastigma hemsleyanum Diels and Gilg using an electronic
nose technique with multiple algorithms. Heliyon 8, €10801. doi:10.1016/j.heliyon.2022.
€10801

Wu, ], Deng, S., Yu, X,, Wu, Y., Hua, X,, Zhang, Z., et al. (2024). Identify production
area, growth mode, species, and grade of astragali Radix using metabolomics “big data”
and machine learning. Phytomedicine 123, 155201. doi:10.1016/j.phymed.2023.155201

Xia, H., Chen, W.,, Hu, D., Miao, A., Qiao, X,, Qiu, G., et al. (2024). Rapid
discrimination of quality grade of black tea based on near-infrared spectroscopy
(NIRS), electronic nose (E-nose) and data fusion. Food Chem. 440, 138242. doi:10.
1016/j.foodchem.2023.138242

Xie, H., Tian, X, He, L., Li, J., Cui, L., Cong, X., et al. (2023). Spatial metallomics
reveals preferable accumulation of methylated selenium in a single seed of the
hyperaccumulator cardamine violifolia. J. Agric. Food Chem. 71, 2658-2665. doi:10.
1021/acs.jafc.2c08112

Xiong, Y., Xiao, X, Yang, X,, Yan, D., Zhang, C., Zou, H., et al. (2014). Quality control
of Lonicera japonica stored for different months by electronic nose. J. Pharm. Biomed.
Analysis 91, 68-72. doi:10.1016/j.jpba.2013.12.016

Xiong, Z., Lin, M., Lin, H., and Huang, M. (2018). Facile synthesis of cellulose
nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.
Carbohydr. Polym. 189, 79-86. doi:10.1016/j.carbpol.2018.02.014

Xu, L, Li, J., Lin, W., Zhang, Y., Zhang, Y., and Yan, Y. (2016). Pairwise comparison
and rank learning for image quality assessment. Displays 44, 21-26. doi:10.1016/j.displa.
2016.06.002

frontiersin.org


https://doi.org/10.1016/j.jpba.2017.05.034
https://doi.org/10.1016/j.jpba.2017.05.034
https://doi.org/10.1016/j.biopha.2024.116530
https://pm.yuntsg.com/details.html?pmid=24799737
https://pm.yuntsg.com/details.html?pmid=24799737
https://doi.org/10.1016/j.jep.2013.10.037
https://doi.org/10.1016/j.ifset.2020.102318
https://doi.org/10.1016/j.fct.2021.112289
https://doi.org/10.1016/j.fct.2021.112289
https://doi.org/10.1016/j.ins.2025.122568
https://doi.org/10.1016/j.jpba.2023.115619
https://doi.org/10.1016/j.foodchem.2021.131681
https://doi.org/10.1016/j.foodchem.2021.131681
https://doi.org/10.1016/j.cosrev.2020.100276
https://doi.org/10.1016/j.phymed.2022.154155
https://doi.org/10.1016/j.phymed.2022.154155
https://doi.org/10.1186/s13020-023-00814-9
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1016/j.aimed.2025.03.001
https://doi.org/10.1016/j.microc.2025.112671
https://doi.org/10.1016/j.microc.2025.112671
https://doi.org/10.1038/msb.2012.61
https://doi.org/10.1016/j.jrras.2025.101381
https://doi.org/10.1016/j.fct.2019.03.056
https://doi.org/10.1016/j.toxlet.2022.05.002
https://doi.org/10.1038/s4598-022-10449-9
https://doi.org/10.1038/s41598-022-10449-9
https://doi.org/10.1016/j.bushor.2023.04.003
https://doi.org/10.1016/j.bushor.2023.04.003
https://doi.org/10.1208/s12249-024-02901-y
https://doi.org/10.1371/journal.pone.0230287
https://doi.org/10.1016/j.prmcm.2025.100636
https://doi.org/10.1016/j.prmcm.2025.100636
https://doi.org/10.1016/j.compbiomed.2024.108074
https://doi.org/10.1016/j.compbiomed.2024.108074
https://doi.org/10.1016/j.chmed.2022.09.001
https://doi.org/10.1016/j.saa.2018.07.086
https://doi.org/10.1016/j.pharmthera.2021.107824
https://doi.org/10.1016/j.scitotenv.2022.159108
https://doi.org/10.1016/j.foodchem.2023.138214
https://doi.org/10.1016/j.jhazmat.2025.138020
https://doi.org/10.1016/j.jhazmat.2025.138020
https://doi.org/10.1016/j.indcrop.2024.118101
https://doi.org/10.1016/j.indcrop.2024.118101
https://doi.org/10.1186/s13020-018-0163-3
https://doi.org/10.3389/fphar.2019.00458
https://doi.org/10.1016/j.heliyon.2022.e10801
https://doi.org/10.1016/j.heliyon.2022.e10801
https://doi.org/10.1016/j.phymed.2023.155201
https://doi.org/10.1016/j.foodchem.2023.138242
https://doi.org/10.1016/j.foodchem.2023.138242
https://doi.org/10.1021/acs.jafc.2c08112
https://doi.org/10.1021/acs.jafc.2c08112
https://doi.org/10.1016/j.jpba.2013.12.016
https://doi.org/10.1016/j.carbpol.2018.02.014
https://doi.org/10.1016/j.displa.2016.06.002
https://doi.org/10.1016/j.displa.2016.06.002
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

Li et al.

Xu, Y., Wen, G, Hu, Y., Luo, M., Dai, D., Zhuang, Y., et al. (2021). Multiple
attentional pyramid networks for Chinese herbal recognition. Pattern Recognit. 110,
107558. doi:10.1016/j.patcog.2020.107558

Xu, Z., Hu, H., Wang, T., Zhao, Y., Zhou, C., Xu, H,, et al. (2023). Identification of
growth years of kudzu root by hyperspectral imaging combined with spectral-spatial
feature tokenization transformer. Comput. Electron. Agric. 214, 108332. doi:10.1016/j.
compag.2023.108332

Xu, J., Tu, Z., Wang, H,, Hu, Y., Wen, P., Huang, X,, et al. (2024). Discrimination and
characterization of different ultrafine grinding times on the flavor characteristic of fish
gelatin using E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Chem. 433, 137299.
doi:10.1016/j.foodchem.2023.137299

Xue, S., Wang, C,, Li, T., Liu, S., and Shi, Y. (2020). Therapeutic efficacy observation
on moxibustion with moxa of different storage years for moderate-to-severe primary
knee osteoarthritis. J. Acupunct. Tuina. Sci. 18, 345-351. doi:10.1007/s11726-020-
1200-1

Xue, Q., Miao, P., Miao, K., Yu, Y., and Li, Z. (2023). An online automatic sorting
system for defective Ginseng Radix et Rhizoma Rubra using deep learning. Chin. Herb.
Med. 15, 447-456. doi:10.1016/j.chmed.2023.01.001

Yang, X,, Tian, X, Zhou, Y., Liu, Y., Li, X, Lu, T., et al. (2018). Evidence-based study
to compare daodi traditional Chinese medicinal material and non-daodi traditional
chinese medicinal material. Evid. Based Complement. Altern. Med. 2018, 6763130.
doi:10.1155/2018/6763130

Yang, S., Shen, Y., Lu, W,, Yang, Y., Wang, H,, Li, L,, et al. (2019). Evaluation and
identification of the neuroprotective compounds of xiaoxuming decoction by machine
learning: a novel mode to explore the combination rules in traditional Chinese medicine
prescription. Biomed. Res. Int. 2019, 6847685. doi:10.1155/2019/6847685

Yang, L., Yan, Y., Zhao, B,, Xu, H,, Su, X,, and Dong, C. (2022). Study on the
regulation of exogenous hormones on the absorption of elements and the accumulation
of secondary metabolites in the medicinal plant artemisia argyi leaves. Metabolites 12,
984. doi:10.3390/metabo12100984

Yang, M., Wang, H., Zhang, Y. L., Zhang, F., Li, X,, Kim, S.-D,, et al. (2023). The
herbal medicine suanzaoren (Ziziphi spinosae Semen) for sleep quality improvements: a
systematic review and meta-analysis. Integr. Cancer Ther. 22, 15347354231162080.
doi:10.1177/15347354231162080

Ye, T, Jin, C,, Zhou, J., Li, X., Wang, H., Deng, P., et al. (2011). Can odors of TCM be
captured by electronic nose? The novel quality control method for musk by electronic
nose coupled with chemometrics. J. Pharm. Biomed. Anal. 55,1239-1244. doi:10.1016/j.
jpba.2011.03.018

Yi, L-J. (2019). Optimization of water extraction technology of yiqi huoxue
prescription based on orthogonal test design and BP neural network. Zhongcaoyao,
4305-4312. doi:10.7501/j.issn.0253-2670.2019.18.008

Zeng, X., Cao, R, Xi, Y., Li, X, Yu, M., Zhao, ], et al. (2023a). Food flavor analysis 4.0:
a cross-domain application of machine learning. Trends Food Sci. and Technol. 138,
116-125. doi:10.1016/j.tifs.203.06.011

Zeng, X., Cao, R, Xi, Y., Li, X,, Yu, M., Zhao, J., et al. (2023b). Food flavor analysis 4.0:
a cross-domain application of machine learning. Trends Food Sci. and Technol. 138,
116-125. doi:10.1016/j.tifs.2023.06.011

Zhai, B,, Zhang, N, Han, X,, Li, Q,, Zhang, M., Chen, X, et al. (2019). Molecular
targets of P-elemene, a herbal extract used in traditional Chinese medicine, and its
potential role in cancer therapy: a review. Biomed. and Pharmacother. 114, 108812.
doi:10.1016/j.biopha.2019.108812

Zhan, W., Yang, X,, Lu, G, Deng, Y., and Yang, L. (2022). A rapid quality grade
discrimination method for Gastrodia elata powderusing ATR-FTIR and chemometrics.
Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 264, 120189. doi:10.1016/j.saa.2021.
120189

Zhang, Y., and Wang, Y. (2023). Recent trends of machine learning applied to multi-
source data of medicinal plants. J. Pharm. Analysis 13, 1388-1407. doi:10.1016/j.jpha.
2023.07.012

Zhang, H., Wu, T., Zhang, L., and Zhang, P. (2016). Development of a portable field
imaging spectrometer: application for the identification of sun-dried and sulfur-
fumigated ~ Chinese herbals. Appl.  Spectrosc. 70, 879-887. doi:10.1177/
0003702816638293

Frontiers in Pharmacology

21

10.3389/fphar.2025.1687681

Zhang, C., Wu, W, Zhou, L., Cheng, H., Ye, X,, and He, Y. (2020). Developing deep
learning based regression approaches for determination of chemical compositions in
dry black goji berries (lycium ruthenicum murr.) using near-infrared hyperspectral
imaging. Food Chem. 319, 126536. doi:10.1016/j.foodchem.2020.126536

Zhang, L., Zhang, C., Li, W,, Li, L, Zhang, P., Zhu, C,, et al. (2023a). Rapid
indentification of auramine O dyeing adulteration in Dendrobium officinale, saffron
and curcuma by SERS raman spectroscopy combined with SSA-BP neural networks
model. Foods 12, 4124. doi:10.3390/foods12224124

Zhang, X., Li, F, Ji, C., and Wu, H. (2023b). Toxicological mechanism of
cadmium in the clam Ruditapes philippinarum using combined ionomic,
metabolomic and transcriptomic analyses. Environ. Pollut. 323, 121286. doi:10.
1016/j.envpol.2023.121286

Zhang, J., Ding, C., Lu, J., Wang, H., Bao, Y., Han, B,, et al. (2024a). Effects of
electrohydrodynamics on drying characteristics and volatile profiles of goji berry
(lycium barbarum L.). LWT 200, 116149. doi:10.1016/j.1wt.2024.116149

Zhang, X., Wang, L., Li, R, Wang, L., Fu, Z,, He, F., et al. (2024b). Identification
strategy of fructus gardeniae and its adulterant based on UHPLC/Q-orbitrap-MS and
UHPLC-QTRAP-MS/MS combined with PLS regression model. Talanta 267, 125136.
doi:10.1016/j.talanta.2023.125136

Zhang, Z.,Ying, Z., He, M., Zhang, Y., Nie, W., Tang, Z., et al. (2024c). UPLC-Q-TOF-
MS/MS combined with machine learning methods for screening quality indicators of
Hypericum perforatum L. J. Pharm. Biomed. Analysis 248, 116313. doi:10.1016/j.jpba.
2024.116313

Zhang, Z.-T., Li, Y., Bai, L., Chen, P,, Jiang, Y., Qi, Y., et al. (2024d). Machine
learning combined with multi-source data fusion for rapid quality assessment of
yellow rice wine with different aging years. Microchem. J. 199, 110126. d0i:10.1016/
j.microc.2024.110126

Zhang, H., Duan, Q., Sun, L, Lee, ], Wu, W., Zhou, C,, et al. (2025a). A multi-
component heavy metal detection method using UV-vis superimposed spectrum and
deep learning. J. Hazard. Mater. 496, 139187. doi:10.1016/j.jhazmat.2025.139187

Zhang, W., Bai, X,, and Zhao, D. (2025b). A study on the predictive model for
ginsenoside content in wild ginseng based on decision tree and ensemble learning
algorithms. Microchem. J. 212, 113318. doi:10.1016/j.microc.2025.113318

Zhao, Z., Guo, P., and Brand, E. (2012). The formation of daodi medicinal materials.
J. Ethnopharmacol. 140, 476-481. doi:10.1016/j.jep.2012.01.048

Zhao, J., Ma, S., and Li, S. (2018a). Advanced strategies for quality control of
Chinese medicines. J. Pharm. Biomed. Analysis 147, 473-478. doi:10.1016/j.jpba.
2017.06.048

Zhao, Y., Dou, D., Guo, Y., Qi, Y., Li, J., and Jia, D. (2018b). Comparison of the trace
elements and active components of lonicera japonica flos and lonicera flos using ICP-
MS and HPLC-PDA. Biol. Trace Elem. Res. 183, 379-388. do0i:10.1007/s12011-017-
1138-4

Zhao, Q., Miao, P., Liu, C, Yu, Y., and Li, Z. (2024). Accurate and non-destructive
identification of origins for lily using near-infrared hyperspectral imaging combined
with machine learning. J. Food Compos. Analysis 129, 106080. doi:10.1016/j.jfca.2024.
106080

Zhou, Y., Jiang, H., Huang, X, Rao, K., Wang, D., Wu, Q,, et al. (2023). Indistinct
assessment of the quality of traditional Chinese medicine in precision medicine
exampling as safflower. J. Pharm. Biomed. Analysis 227, 115277. doi:10.1016/j.jpba.
2023.115277

Zhou, G.-L,, Su, S.-L,, Yu, L, Shang, E.-X,, Hua, Y.-Q,, Yu, H,, et al. (2025). Exploring
the liver toxicity mechanism of Tripterygium wilfordii extract based on metabolomics,
network pharmacological analysis and experimental validation. J. Ethnopharmacol. 337,
118888. doi:10.1016/j.jep.2024.118888

Zhu, J., Sharma, A. S, Xu, J., Xu, Y., Jiao, T., Ouyang, Q., et al. (2021). Rapid on-site
identification of pesticide residues in tea by one-dimensional convolutional neural
network coupled with surface-enhanced raman scattering. Spectrochimica Acta Part A
Mol. Biomol. Spectrosc. 246, 118994. doi:10.1016/j.saa.2020.118994

Zuo, M.-T,, Liu, Y.-C,, Sun, Z.-L,, Lin, L., Tang, Q., Cheng, P., et al. (2021). An
integrated strategy toward comprehensive characterization and quantification of
multiple components from herbal medicine: an application study in gelsemium
elegans. Chin. Herb. Med. 13, 17-32. doi:10.1016/j.chmed.2020.06.002

frontiersin.org


https://doi.org/10.1016/j.patcog.2020.107558
https://doi.org/10.1016/j.compag.2023.108332
https://doi.org/10.1016/j.compag.2023.108332
https://doi.org/10.1016/j.foodchem.2023.137299
https://doi.org/10.1007/s11726-020-1200-1
https://doi.org/10.1007/s11726-020-1200-1
https://doi.org/10.1016/j.chmed.2023.01.001
https://doi.org/10.1155/2018/6763130
https://doi.org/10.1155/2019/6847685
https://doi.org/10.3390/metabo12100984
https://doi.org/10.1177/15347354231162080
https://doi.org/10.1016/j.jpba.2011.03.018
https://doi.org/10.1016/j.jpba.2011.03.018
https://doi.org/10.7501/j.issn.0253-2670.2019.18.008
https://doi.org/10.1016/j.tifs.203.06.011
https://doi.org/10.1016/j.tifs.2023.06.011
https://doi.org/10.1016/j.biopha.2019.108812
https://doi.org/10.1016/j.saa.2021.120189
https://doi.org/10.1016/j.saa.2021.120189
https://doi.org/10.1016/j.jpha.2023.07.012
https://doi.org/10.1016/j.jpha.2023.07.012
https://doi.org/10.1177/0003702816638293
https://doi.org/10.1177/0003702816638293
https://doi.org/10.1016/j.foodchem.2020.126536
https://doi.org/10.3390/foods12224124
https://doi.org/10.1016/j.envpol.2023.121286
https://doi.org/10.1016/j.envpol.2023.121286
https://doi.org/10.1016/j.lwt.2024.116149
https://doi.org/10.1016/j.talanta.2023.125136
https://doi.org/10.1016/j.jpba.2024.116313
https://doi.org/10.1016/j.jpba.2024.116313
https://doi.org/10.1016/j.microc.2024.110126
https://doi.org/10.1016/j.microc.2024.110126
https://doi.org/10.1016/j.jhazmat.2025.139187
https://doi.org/10.1016/j.microc.2025.113318
https://doi.org/10.1016/j.jep.2012.01.048
https://doi.org/10.1016/j.jpba.2017.06.048
https://doi.org/10.1016/j.jpba.2017.06.048
https://doi.org/10.1007/s12011-017-1138-4
https://doi.org/10.1007/s12011-017-1138-4
https://doi.org/10.1016/j.jfca.2024.106080
https://doi.org/10.1016/j.jfca.2024.106080
https://doi.org/10.1016/j.jpba.2023.115277
https://doi.org/10.1016/j.jpba.2023.115277
https://doi.org/10.1016/j.jep.2024.118888
https://doi.org/10.1016/j.saa.2020.118994
https://doi.org/10.1016/j.chmed.2020.06.002
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1687681

	Application and research progress on artificial intelligence in the quality of Traditional Chinese Medicine
	1 Introduction
	2 Artificial intelligence technologies
	2.1 Machine learning techniques
	2.1.1 Supervised learning
	2.1.2 Unsupervised learning

	2.2 Deep learning techniques

	3 Mechanism-oriented transformation of TCM quality control: from sensing to mechanistic evaluation
	3.1 AI-enabled sensing for the quality assessment of botanical drugs
	3.1.1 Image recognition
	3.1.2 Odor identification
	3.1.3 TCM authentication
	3.1.4 Classification of TCM varieties
	3.1.5 Identification of origin
	3.1.6 Grade evaluation
	3.1.7 Identification of storage age
	3.1.8 Analysis of TCM metabolites
	3.1.9 Process optimization

	3.2 AI-driven mechanistic evaluation using bioinformatics
	3.2.1 Efficacy-oriented evaluation based on pharmacological mechanisms
	3.2.1.1 Identification of Q-markers
	3.2.1.2 Elucidation of pharmacodynamic mechanisms
	3.2.2 Safety assessment driven by toxicological mechanisms
	3.2.2.1 Mechanistic prediction of endogenous toxic metabolites
	3.2.2.2 Mechanistic studies of exogenous toxic metabolites


	4 Advantages and challenges
	4.1 Advantages
	4.2 Challenges

	5 Conclusion and prospect
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


