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Polypharmacology has long been an aspect of drug design for small molecules,
and the multi-target pursuit has frequently behaved more akin to divine chance
rather than controllable science. Targets unknown or once thought undesirable
can often be revealed to be key points of intervention for the positive effects of a
drug later in the development of a program or even after its approval. In this
review, we look at historical examples of molecular pleiotropism and evaluate
how new insights from computational systems biology and small molecule
design can aid the rational design of Selective Targeters of Multiple Proteins
(STaMPs).
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1 Introduction

Medicinal chemistry arose out of the German dye industry at the turn of the 20th
century, and the tuning of these chromophores into pharmacophores was guided at that
time by phenotypic evaluation in animal models of disease (Manavi et al.,, 2024). The
concept of DNA as the genetic code would be decades away (let alone the notion of proteins
as targets) when the first synthetic drugs were discovered (Prescott, 2000). Paracetamol, still
one of the most successful contemporary analgesics discovered in that early era, highlights
how this early phenotypic process was able to produce extraordinary clinical utility without
mechanistic insight into the mode of action (Graham and Scott, 2005). However, these early
multi-target small molecules frequently had undesirable effects, and a movement emerged
seeking to reduce the interactions of a ligand to a defined set of targets. The last two decades
of the 20th century saw the emergence of “one-target-one disease” as the dominant
philosophy of drug design with notable exceptions like antidepressant or antipsychotic
drug design (Wermuth, 2004; Casas et al., 2019; Bartolomeis et al, 2022). A new
appreciation of deliberate design of multi-target system modulation through a single
molecule has appeared over the last 20 years of medicinal chemistry, though this multi-
target approach is still not in the mainstream of drug design strategies (Proschak et al.,
2019). The goals of this review are to define the properties of the modern, intentionally-
designed pleiotropic drug, to highlight the potential therapeutic improvements of systems
biology disruption, as well as highlight the new computational and data science tools like
artificial intelligence/machine learning platforms which will make the design of such
pleiotropic drugs facile.
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2 Modern multi-target drugs

The shift from animal-based phenotypic screening to the “one-
target, one-disease” approach to drug design has produced many
effective drugs in the modern Pharmacopeia (examples of clinically
transformative modalities include the BCR-Abl, Hepatitis C
polymerase and TNFa inhibitors) (Martinelli et al., 2005; Sofia,
20165 Brekke and Sandlie, 2003). However, the focus on the design of
highly specific agents which did not have the cross-reactivity of older
medicines may have resulted in experimental therapeutics which
were safe and yet not effective in clinical trials. As the single-target,
hyperselective drugs designed in 80s, 90s and 00s moved into the
clinic, the development success likelihood declined significantly
(Smieta et al., 2016). Interestingly, there were far fewer failures in
Phases I and II due to toxicological findings and far more Phase II
failures due to lack of efficacy compared to earlier periods of
development (Fogel, 2018). While there are some recent positive
improvements in clinical trial success rates for Phase II and Phase
II1, it is still the case that experimental drugs have only a 10% success
rate on average when entering clinical development which is much
lower than 4-5 decades ago (Dowden and Munro, 2019). Economic
factors related to the 2007 financial crisis could play a role in the
decline in clinical success, although the sustained low success rate
across therapeutic indications into the 2020s suggests that there are
other factors causing the decline in translation success. One of these
factors is that the deliberate design away from pleiotropism has
reduced the ability of experimental drugs to meaningfully engage
disease (Hopkins, 2007; Reddy and Zhang, 2013). As the clinical
pharmacology and drug design communities bear down on diseases
of unhealthy aging, neurodegeneration and inflammation, there has
been renewed interest in biology and
pharmacology. Designing agents which can engage multiple

systems systems
aspects of systems pathology in a deliberate and selective manner
may offer a way to increase efficacy while not introducing limiting
toxicological effects.

The pioneering work of Morphy and Rankovic published in
2004 first outlined the three approaches to polypharmacology
(Morphy et al., 2004; Morphy and Rankovic, 2005). In this work,
multitarget engagement could be achieved by (1) administering a
drug cocktail, (2) a single drug comprised of multiple active
pharmaceutical ingredients (e.g., Atrip1a®) or (3) a multiple
ligand-a single small molecule drug that can modulate multiple
targets concurrently. Since their original formulation, the idea of a
multiple ligand has expanded beyond their original conception with
emergence of targeting chimeras (TACs, e.g., PROTACs and
AUTOTACs) and molecular glues: agents that indeed are
multiple ligands but interact with their targets to generate
synthetic biological complexes with the ability to induce
PROTAC) or
macromolecular complexes (tacrolimus, a molecular glue) (Békés
et al,, 2022; Schreiber, 2024). Molecular glues and PROTACs are
distinct from multitarget modulators in that multitarget modulators

degradation  (vepdegestrant, a stabilize

tend to be non-naturally occurring small molecules of a molecular
weight <600 Da in a dissimilar chemical space from PROTACs and
molecular glues (S et al., 2024; Apprato et al., 2024). Therefore, we
wish to standardize a subtype of multiple ligand distinct from the
PROTAC or molecular glue classes: the Selective Targeter of
Multiple Proteins, or STaMP. The reason for this standardization
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is that molecular glues and PROTACs have distinct design criteria
from STaMPs from both a chemistry perspective and a
pharmacology  perspective. Beyond the chemical space
dissimilarities between PROTACs, molecular glues and STaMPs,
a PROTAC or molecular glue may functionally target only a single
point of intervention in a way that does not engage multiple points
of a pathological system. This distinction in mechanism will impact
the computational methods considered for STaMP design versus
PROTAC or molecular glue design.

In order to highlight new techniques for the design of STaMPs,
this manuscript defines a STaMP according to the framework
outlined in Table 1. The goal of the range of Targets and Off-
Targets is to include the atypical antipsychotics within the STaMP
definition; (University of North Carolina at Chapel Hill and the
United States National Institute of Mental Health) although, the
number of targets modulated by the atypicals may be an outlier as
this review anticipates that modern antidegeneration STaMPs will
have between 2 and 7 low nanomolar target/off-target interactions in
total. The proposed profile in Table 1 is for a compound with typical
chemical properties for small molecule medicinal chemistry with
respect to molecular weight, lipophilicity and other chemical
constraints (Di and Kerns, 2016). Additionally, the number of
targets/off-targets that are maximally permissible for a STaMP
drug discovery campaign will depend on the targets’ physiology
and any associated synergistic toxicology (Kabir and Muth, 2022;
Rao et al,, 2019). While there will likely be opportunities for STaMP
design against single cellular types (e.g., survival pathway disruption
in oncology) (Lazarte et al., 2025), this review proposes that a
STaMP will find maximum therapeutic impact by disrupting
pathological systems across cell lineages involved in disease (e.g.,
neuroinflammation, glial dysfunction and neural pathology in some
types of neurodegeneration) (Castro-Gomez and Heneka, 2024;
Stevenson et al., 2020).

3 Target combination identification
for STaMPs

With this definition of a STaMP established, we turn our
attention to highlighting key challenges in design as well as
providing a survey of computational techniques which can aid in
the rational design of these selective, multi-target ligands.
Multifactor processes involved in the pathogenesis of metabolic
diseases, neurodegeneration and inflammatory disorders are
increasingly being understood in terms of systems biology and
the interplay between several molecular partners (Proschak et al.,
2019; Lillich et al., 2021; Artasensi et al., 2020; Ramsay et al.; Ma
et al.,, 2020; Cavalli et al., 2008; Jana et al., 2022; Diaz-Beltran et al.,
2013). The first key aspect to the development of a STaMP is the
identification of biological target combinations which offer
synergistic disease antagonism when those targets are modulated
in the correct combination. This synergistic modulation may occur
in a variety of cellular types in a tissue or an organ, and key
considerations here will be considered in the review of
technologies which can aid the design of STaMPs. The focus of
this section will be on the developments for target selection that have
been achieved across the systems biology, multi-omics and machine
learning spaces, and how these new techniques offer promise for the
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TABLE 1 The proposed profile of a selective targeter of multiple proteins (STaMP).

Property Range Commentary
Molecular weight <600 This range will be highly conditional on target organ compartment and chemical space
Number of targets 2-10 Potency for each should be at least <50 nM
Number of off-targets <5 Off-Target is defined as a target with an ICs, or ECso <500 nM
Number of cellular types which are being targeted (excepting >1 Multiple cell types involved in a disease process should be addressed with a single
oncology) compound

design of STaMPs. Additionally, there are informatics approaches
which can make use of clinical pharmacology databases or screen
approved drug combinations in a high throughput format, however
these methods have been extensively reviewed elsewhere (Proschak
et al.,, 2019).

One of the emerging areas for the identification of targets for
pleiotropic agents is the development of integrative -omics
techniques (Noor et al., 2023). Transcriptomics, proteomics and
metabolomics evaluate large scale biological experiments for
changes in transcription, protein interaction and metabolism
(Hasin et al., 2017). Although, the ability to identify key nodes of
disease in patient samples and decipher the complexities of
pathology in biological systems across biological layers (proteins,
mRNA, etc.) remains a fundamental challenge for the -omics
approach. That being said, significant progress in the integration
of -omics data sets to provide novel biological insight to disease
processes has been accomplished through the use of network
analysis and machine learning (Borrego-Yaniz et al, 2024;
Sanches et al., 2024). There are several excellent reviews for
designing multi-omic studies, and these reviews offer mitigating
strategies for dealing with potential pitfalls due to data
heterogeneity, noise versus biological variation and poorly
formulated questions for a given experimental technique
(Borrego-Yaniz et al, 2024; Paananen and Fortino, 2019).
Examples of correlation-based approaches for biological network
analysis include Cytoscape (gene-metabolite method) (Cline et al.,
2007) and Similarity Network Fusion methods (various -omics data
networks created independently and then iteratively merged across
biological layers) (Wang et al., 2014; Mu Yang et al., 2023). The work
of Felsky and colleagues has demonstrated multi-omic integration
by Similarity Network Fusion as a capable technique for analyzing
human frontal cortex samples for -omics molecular subtypes
associated with cognitive decline and neuropathology (Mu Yang
et al, 2023). Additionally, Martin et al. explored the utility
integrative-omics methods when applied to immune-mediated
inflammatory diseases and reported that these approaches offer a
comprehensive platform for understanding how multiple biological
targets are involved in complex, multifactor disease processes across
changes in lipids, proteins, transcription events and epigenetics
(Borrego-Yaniz et al., 2024).

While network analysis methods can serve as an isolated method
for multi-omics, the advent of machine learning applications in
bioinformatics can aid in causal linkage discovery and/or integration
between-omics and clinical parameters like demographics,
presentation and outcome (Casas et al., 2019; Stafford et al,
2020; Jiang et al, 2017). This was the case with systemic

autoimmune disease (SAD) patients where an unsupervised
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blood
transcriptome and methylome data of SAD patients for seven
types of systemic inflammatory disease (e.g., people with systemic
lupus, rheumatoid arthritis, Sjégrens’s and systemic sclerosis) and

clustering method was used to integrate whole

healthy volunteers (Barturen et al, 2021). This revealed three
distinct molecular clusters termed inflammatory, lymphoid and
interferon which were stable across the seven clinical diagnoses.
Not only were there discrete target sets enriched in each distinct
cluster, but the three clusters were stable over time suggesting these
clusters to be related to the fundamental disease biology for systemic
inflammation. This categorization into potential multi-target
phenotypes is therefore not only important for drug design from
a preclinical perspective for STaMP design, but it is also important
from a patient recruitment perspective for eventual clinical trials.
These unsupervised clustering methods that can be used on both
patient and animal samples can ensure that the STaMP target
pleiotropic profile is linked with a disease model that shares the
same molecular fingerprint as the eventual patient population
cluster, given patient cluster subtypes will respond to therapies at
differing rates (Khamashta et al., 2016).

Complementary to the multi-omics approaches reviewed above,
there is also a large body of work evaluating protein-protein
interactions (PPIs) as a key area to identify new targets involved
in the systems biology of disease. The work of target identification
through genome-wide association studies is important and
impactful for finding drugs (Trajanoska et al., 2023; Nelson et al.,
2015; Floris et al., 2018; Namba et al., 2022); however, work has
demonstrated that PPI networks can reveal potentially druggable
protein targets that, while not directly genetically associated
themselves, are key points of interaction for targets which are
genetically associated and yet less easily druggable (Fang et al,
2019). Fang et al. demonstrated that integration of functional
genomic data and PPI networks led to a discovery of a set of
targets that were key points of interaction with genetically linked
proteins in a GWAS, and these identified nodes could be successfully
modulated in cellular models of inflammatory disease (e.g.,
ICAMI and its interaction with RhoA in ankylosing spondylitis,
systemic lupus erythematosus and juvenile idiopathic arthritis,
among others) (Fang et al, 2019). Interesting informatics
methods for validating targets identified through genome-wide
association studies and/or protein-protein interaction networks
are being developed alongside the target identification methods
discussed. A high throughput method for combining genetic
evidence for potential targets and CRISPER/Cas9 modulation of
these targets was developed by Yu et al. which allowed for the
evaluation of candidate target according to their biologically
importance for hepatic stellate cell activation in the presence of
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TGF-p stimulation (Yu et al., 2022). This work along with additional
systems biology work could serve as an excellent starting point for
exploring synergistic targets of interest for STaMP design to disrupt
the multifactor fibrosis cascade driving liver fibrosis in advanced
liver disease (Bashir et al., 2022).

As important as it is to select the targets one ought to modulate,
the targets that a compound should avoid interacting with at
physiologically relevant concentrations can be a difficult and yet
equally important design consideration to address. While clear off-
targets have emerged like hERG, it is often the case that desirable
targets related to the pathogenesis of a disease of interest have dose-
limiting on-target toxicological effects which preclude clinical
development against that target (Lin et al, 2019; Bendels et al.,
2019). Machine learning approaches are being tailored for
predicting the toxicology of a target of interest, and Gao et al.
have explored a deep learning approach using Genetic Profile-
Activity Relationships (GPAR) to predict toxic phenotypes given
some input chemical structure with reported examples of serotonin
transporter inhibition, Na*/K* ATPase inhibition and NF-kB
inhibition being evaluated as use cases (Gao et al., 2021). While
the method of Gao et al. requires correlating the changes in gene
expression data when a cellular is exposed to a compound’s
structure, there are emerging techniques employing the same
gene expression data that evaluate targets for possible toxicology
independently of chemical structure (Masarone et al., 2025). The use
of networks across multi-omics information can also be useful for
building methods like ComptoxAI which attempts to link chemical
modulation with pathways and systems that account for an observed
toxicologic effect (Romano et al., 2022). Although Comptox also
requires input structures like the method of Gao et al., this review
proposes that a candidate target of interest regularly implicated in
similar toxicology across a variety of pharmacophores by
ComptoxAl would allow the target to be deprioritized for STaMP
design. Additionally, there have been advances in employing
transcriptomics techniques which can evaluate a toxicogenomics
phenotype consisting of more than 1,300 genes and involving
250 million datapoints to construct a predictive toxicogenomic
space (PTGS) which could be employed to predict liver toxicity for
STaMPs which are being designed at the discovery stage (Kohonen
et al., 2017). While this work is an impressive initial inroad to
anticipating liver toxicity, complex, organ-specific toxic events like
drug-induced liver injury can be difficult to reduce to a single target
(Yuan and Kaplowitz, 2013; Andrade et al,, 2019). Unfortunately, a
reductionistic method that can predict synergistic target combinations
causing organ toxicity is not yet available. Several methods exist for
predicting toxicology for chemical structures across a variety of organs
without respect to the targets of said strucutres (Cavasotto and
Scardino, 2022), but teasing out potential toxic combinations of
drug targets remains a key area of interest for the development of
computational methods to aid in the design of STaMPs.

4 Techniques for the design of STaMP
ligands across biological targets

Ample chemical starting points exist for the design of a drug
be the drug profile selective or pleiotropic. This is such the case
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that the true size of the space that contains all drugs be they
natural product or synthetic is unintelligible (Lachance et al,,
2012; Reymond, 2015). Given the synthetic inefficiency that
currently limits natural product modification (despite the
utility for new medicine discovery) (Truax and Romo, 2020),
we accordingly constrain ourselves to synthetic molecules as
opportunities for fine-tuned and rational STaMP design and
will therefore limit this section to the review of methods
which can be impactful in the synthetic small molecule
chemical space.

Physics-based methods have made major improvements in
accuracy over older methods used to predict potency against a
biological target (e.g., GLIDE) (Jorgensen and Thomas, 2008;
Kirkpatrick, 2004; Abel et al., 2017). These advances in methods
(TT) energy
perturbation (FEP) have been driven by an increase in

like thermodynamic integration and free
computing power serving both the refinement in methodology
as well as improving the compound throughput markedly
(Harder et al., 2016; Damm et al., 2025; Giese and York,
2018; Lee et al., 2017). Importantly for the design of STaMPs,
these improvements allow physics-based methods to serve both a
“dial-in” approach where additional target affinities are designed
into a given scaffold and a “dial-out” approach where undesired
target affinities are removed through the use of computational
techniques. While limited examples exist of FEP being used to
rationally design STaMPs, the work of Patel et al. highlights the
utility of FEP in balancing affinity against two desired targets:
human monophosphate kinase and hepatitis C viral RNA-
dependent RNA polymerase (Patel et al., 2022). Antiviral
nucleoside  prodrugs must be converted to active
triphosphates by a host nucleoside monophosphate kinase in
order to be active against the viral polymerase, and the work of
Patel et al. demonstrated that FEP could be employed to
rationally design the multi-target constraints of a drug
design program.

Machine learning has also been applied extensively for
designing potency in concert with balancing other drug-like
properties (Kosu et al., 2020; Antontsev et al., 2021; Kaiser et al.,
2020; Han et al., 2023; Fowles et al., 2025). The ability to
navigate large datasets and extract chemically meaningful
information for the drug design problem of interest is a
strength of machine learning, as long as the experimenter is
careful with question phrasing. An example of machine learning
in designing STaMP-like compounds was conducted by
Bajorath et al. where they employed random forests to design
dual monoamine oxidase B-acetylcholinesterase inhibitors
(Feldmann et al., 2021). Here, the team focused on
determining coherent substructures shared by ligands across
both targets, and it was found that explainable ML methods
were capable of building a bridge between chemical intuition
and rational drug design. Although machine learning requires
information on which to train, recent work has explored the
utility of physics-based methods for augmenting machine
learning datasets to facilitate machine learning algorithm
construction (Burger et al., 2024; Ramaswamy et al., 2025;
Thompson et al., 2022; Lonsdale et al., 2025). Such a hybrid
approach will facilitate either “dial-in” or “dial-out” approaches
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for the design of STaMPs where there exists either a novel
desirable target, or new insights reveal a target to be undesirable.

5 Conclusion

Given the stupefying progress achieved in the just the past
decade with regard to informatics, -omics and computation, there
is a great opportunity for the rational design of modern multi-target
small molecules defined here as STaMPs. New insights in systems
biology, mulit-omics, physics-based methods and machine learning
can be employed to identify not only synergistic target combinations
but also molecular targets with potentially toxic effects. Additionally,
advances in computational methods can make it more efficient to
optimize a chemical series for an experimentally determined target
profile. While serendipity will always play a role in the discovery of
new medicines, the technologies reviewed herein point to a new kind
of medicinal chemistry: the rational design of STaMPs through
advanced computation.
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