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Introduction: Fentanyl analogs, as emerging new psychoactive substances (NPS),
pose a global public health threat due to widespread abuse, high toxicity, and
frequent overdose fatalities. However, their structural diversity and scarce
experimental pharmacokinetic (PK) data hinder hazard and abuse risk
assessment. Conventional physiologically based pharmacokinetic (PBPK)
models for these analogs are limited by reliance on time-consuming in vitro
experiments or error-prone interspecies extrapolation for key parameters (e.g.,
tissue/blood partition coefficient, Kp).
Methods: To address this, we developed and validated a QSAR-integrated PBPK
framework (QSAR: Quantitative Structure-Activity Relationship) for predicting
human PK of fentanyl analogs. The workflow included: (1) Validating the
framework via intravenous β-hydroxythiofentanyl in Sprague-Dawley rats
(QSAR-predicted Kp via Lukacova method, GastroPlus

®
modeling); (2)

Comparing Kp accuracy (literature in vitro data, QSAR, interspecies
extrapolation) in rat/human fentanyl PBPK models; (3) Predicting PK and tissue
distribution (plasma +10 organs including brain/heart) of 34 human
fentanyl analogs.
Results: Key results: (1) For β-hydroxythiofentanyl, all predicted rat PK parameters
(area under the plasma concentration-time curve from time zero to the last
measurable time point [AUC0-t], teady-state volume of distribution [Vss], and
elimination half-life [T1/2]) of rats fell within a 2-fold range of the experimental
values; (2) In human fentanyl models, QSAR-predicted Kp improved accuracy (Vss

error: >3-fold [extrapolation] vs. <1.5-fold [QSAR]) (3) Among 34 analogs, eight
(e.g., p-fluorofentanyl); had brain/plasma ratio >1.2 (vs. fentanyl’s 1.0), indicating
higher CNS penetration and abuse risk.
Discussion: This study demonstrates that the QSAR-PBPK framework enables
rapid prediction of human pharmacokinetics (PK) for understudied fentanyl
analogs without relying on scarce experimental data. For structurally similar,
clinically characterized analogs (e.g., sufentanil, alfentanil), predictions of key PK
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parameters (e.g., T1/2, Vss) fall within 1.3–1.7-fold of clinical data, supporting the
framework’s utility for generating testable hypotheses about the PK of understudied
analogs. It not only fills the data gap for fentanyl analog hazard assessment but also
provides a scalable modeling strategy for PK evaluation of other NPS or illicit drugs.
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1 Introduction

Fentanyl, a potent synthetic opioid receptor agonist, was initially
developed to exert robust analgesic effects. Clinically,
pharmaceutical fentanyl is widely employed in the management
of various pain conditions, post-operative analgesia, and as an
adjunct to anesthetics during surgical procedures (Patocka et al.,
2024). Alarmingly, the 2024 World Drug Report highlights that
fatalities attributed to fentanyl overdoses in North America surged
to unprecedented levels during the COVID-19 pandemic (UNODC,
2024). Compounding this challenge, the relative ease of synthesis
and structural modification of fentanyl has led to the proliferation of
numerous analogs with diverse biological activities. Unfortunately,
the pace of research has failed to keep abreast of the emergence and
rapid spread of these new fentanyl analogs. For example, after
Sweden classified acetylfentanyl and butyrfentanyl as controlled
substances and implemented bans, these derivatives disappeared
from online marketplaces, only to be replaced by variants such as
furanylfentanyl and 4-methoxybutyrfentanyl (Helander et al., 2017).
Consequently, a rapid understanding of the pharmacokinetic
profiles of emerging analogs is of paramount importance for
formulating relevant therapeutic strategies and establishing
effective regulatory policies.

Physiologically based pharmacokinetic (PBPK) models
represent advanced computational tools that predict the
concentration-time profiles of compounds in plasma across
different species. This is accomplished by integrating the
physicochemical properties of the compound with the
physiological characteristics of the target species (Sager et al.,
2015). Key parameters such as logD, pKa, and the unbound
fraction to plasma proteins (Fup) can be obtained either through
in vitro measurements or predicted using quantitative structure-
activity relationship (QSAR) models (Miller et al., 2019). Moreover,
by leveraging these input parameters, PBPK models can predict
chemical concentration changes in various tissues, enabling the
rapid screening of substances with a quick onset of action and
facilitating the elucidation of the pharmacological properties of
specific compounds.

However, traditional methods for evaluating model
performance rely on pharmacokinetic (PK) data specific to the
target chemical, rendering them inadequate for fentanyl
derivatives that have not been sufficiently studied (EPA, 2006).
Previous research has explored the hypothesis that PBPK models
fully developed for a target chemical (with unavailable PK data) can
be evaluated using PK data from its structural or functional analogs
(with available PK data) (Ellison, 2018). Fentanyl, being extensively
documented in clinical literature, provides a rich dataset that can be
used to assess the accuracy of models for fentanyl analogs.

Notably, our approach constitutes a notable advancement in
the field of PBPK modeling for fentanyl analogs compared with

prior investigations. Earlier studies were often constrained by
two key limitations: they either relied exclusively on in vitro
assays for parameterization—a process inherently characterized
by high time and resource consumption—or restricted the
application of QSAR predictions to the estimation of opioid-
opioid receptor affinity (Floresta et al., 2019), rather than
leveraging QSAR for the prediction of PBPK-essential critical
parameters (e.g., logD, pKa, plasma protein unbound fraction).
In distinct contrast, our work integrates the predictive capacity of
QSAR with PBPK modeling frameworks. Through a systematic
comparative analysis of parameters derived from in vitro
measurements versus QSAR predictions, we successfully
identified the optimal parameter source, which directly
contributes to enhanced model accuracy. Furthermore, the
QSAR integration in our study represents a significant
improvement over existing models. By harnessing QSAR to
predict PBPK-essential parameters, we reduce reliance on
scarce in vitro data and accelerate the modeling process. This
not only addresses the data gap for understudied fentanyl analogs
but also enhances the speed of pharmacokinetic prediction
without compromising accuracy—a claim validated by
comparisons with measured experimental data.

The objectives of this study are threefold: 1) to evaluate the
accuracy of the PBPK model based on QSAR-predicted data using
measured PK data of beta-hydroxythiofentanyl in rats; 2) to develop
PBPK models for fentanyl in both rats and humans, with modeling
parameters derived from in vitro measurements and QSAR
predictions respectively, and to compare the accuracy of these
parameters during the modeling process; 3) to predict the
pharmacokinetics of 34 fentanyl analogs in human plasma and
various tissues, thereby bridging the existing data gap in this field.
The study design and workflow are illustrated in Figure 1.

2 Materials and methods

2.1 Materials

2.1.1 In silico programs
Fentanyl and its derivatives were identified through a

comprehensive search of peer-reviewed journal publications
(PubMed, National Library of Medicine). The structural formulas
of fentanyl analogs were obtained from the PubChemWebsite based
on the compound name (https://pubchem.ncbi.nlm.nih.gov). QSAR
models predicted the physiochemical and pharmacokinetic
properties of fentanyl analogs in ADMET Predictor v. 10.4.0.0
(AP, Simulations Plus, Inc.). PBPK modeling and simulations
were established using GastroPlus v. 9.8.3 (GP, Simulations Plus,
Inc. Lancaster, CA). The PK parameters were estimated using
Phoenix WinNonlin software (version 8.3).
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2.1.2 Animals
Male Sprague-Dawley (SD) rats, aged 6–8°weeks old, were

procured from SPF Biotechnology Co.,Ltd (Beijing, China). The
animals were housed in a controlled environment with humidity
maintained at 50% ± 10% and temperature at 25 C ± 2 C, under a
12 h light/dark cycle They had ad libitum access to food and
water. All experiments were conducted according to protocols
approved by the Institutional Welfare and Ethics Committee for
Laboratory Animals, Key Laboratory of Drug Monitoring
and Control.

2.1.3 Chemicals and reagents
Beta-hydroxythiofentanyl (content ≥98%) was provided by the

Drug Intelligence and Forensic Center of the Ministry of Public
Security, China. 0.9% saline solution was obtained from Shandong
Qidu Pharmaceutical Co., Ltd. Acetonitrile and formic acid were
sourced from Sigma-Aldrich (Saint Louis, MO). All other reagents
utilized in the experiment were commercially available and of
analytical or HPLC grade. The triple quadrupole mass

spectrometric detector (6,500+; AB SCIEX Technologies) was
used for LC-MS/MS analysis.

2.2 Methods

2.2.1 Development and validation of the β-
hydroxythiofentanyl PBPK model in rats

To assess the modeling approach based on QSAR predictions,
our research developed the PBPK model for intravenous β-
hydroxythiofentanyl in rats and compared the experimentally
obtained concentration and time profiles and pharmacokinetic
parameters with the predicted data.

Time points for the study were 0 min, 15 min, 45 min, 60 min,
90 min, 120 min, 180 min, and 240 min post-dosing with 7 μg/kg iv.
dose of β-hydroxythiofentanyl. For the pharmacokinetic assessment,
400 μL of blood was collected and subsequently centrifuged at
4,000 rpm for 5 min. The plasma was then carefully transferred
into microcentrifuge tubes and stored in a freezer at −20 °C until

FIGURE 1
Experimental flowchart for predicting human ADME/PK of fentanyl analogs using PBPK modeling.
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further analysis. On the day of testing, the plasma samples were
analyzed using LC-MS. Non-compartmental analyses were
conducted utilizing Phoenix WinNonlin software to estimate
pharmacokinetic parameters.

For the PBPK model of β-hydroxythiofentanyl constructed
using QSAR predictions, the molecular structure of β-
hydroxythiofentanyl was input as the core descriptor. The tissue/
blood partition coefficient (Kp) shown in Table 1, a critical
parameter governing tissue distribution in PBPK modeling, was
predicted using the Lukacova method. It was a structure-driven
QSAR approach widely applied for estimating tissue partition
coefficients of small-molecule compounds based on their
structural features. The QSAR-predicted Kp values were
incorporated into GastroPlus® software to construct the PBPK
model for β-hydroxythiofentanyl. For β-hydroxythiofentanyl, the
systemic clearance (CLsys), a critical parameter for PBPK model
parameterization, was derived directly from in vivo experimental
data, rather than QSAR prediction. The CLsys value obtained in the
β-hydroxythiofentanyl model prediction section is derived from the
CLsys value predicted by GastroPlus® software after inputting the
experimentally measured CLsys value and the QSAR-predicted
Kp value.

Finally, to validate the accuracy of this QSAR-based PBPK
model, the model-predicted pharmacokinetic (PK) profiles of β-
hydroxythiofentanyl were systematically compared with
experimentally measured PK data of the compound. This
comparative analysis allowed quantification of the agreement
between predicted and observed PK outcomes, thereby verifying
whether the QSAR-based parameterization (Lukacova method-
derived Kp) could support reliable PBPK modeling of β-
hydroxythiofentanyl.

2.2.2 Development and validation of the fentanyl
PBPK model in rats and humans

PBPK models for fentanyl were established to characterize the
pharmacokinetic (PK) profiles of fentanyl following intravenous
(IV) administration in rats and humans, respectively. In PBPK
modeling, the Kp is recognized as a critical parameter for
accurate prediction of tissue concentrations, as it directly governs
the distribution of fentanyl between systemic circulation and
peripheral tissues. Conventionally, Kp values are determined via
multiple approaches, including in vivo animal PK studies, in vitro
equilibrium dialysis (for measuring plasma protein binding and
tissue affinity), and QSAR modeling (Yau et al., 2020). For the rat
PBPK model, Kp values were initially derived from previously
published literature data to ensure consistency with established
experimental findings (Björkman et al., 1990). To further
evaluate the reliability of QSAR-predicted Kp for model
parameterization, an additional rat PBPK model was constructed
using Kp values predicted via the Lukacova method—a structure-
based QSAR approach that estimates tissue partition coefficients
based on the molecular structure of the compound. This dual-
parameter-source design allowed direct comparison of model
performance between literature-derived and QSAR-predicted Kp.

A major challenge in studying fentanyl and its analogs is the
scarcity of clinical PK data, as direct human studies are often
constrained by ethical and safety considerations. To address this
gap, PBPKmodels enable interspecies extrapolation of PK data fromT
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animal models (e.g., rats) to predict human absorption, distribution,
metabolism, and excretion (ADME) profiles. In the present study,
two distinct human fentanyl PBPKmodels were developed, differing
only in their Kp parameter sources: QSAR-predicted Kp: Human Kp
values were generated via the same Lukacova QSAR method applied
to the rat model; Human Kp values were predicted from rat Kp
values using the following formula:

Kp human( ) � fup human( )
fup rat( ) ×

BP rat( )
BP human( ) × Kp rat( )

Physicochemical properties of fentanyl (logP, pKa, and
solubility profiles) were predicted by GastroPlus software [fup
(rat) = 8.3, fup (human) = 25.5, BP(rat) = 1.01, BP(human) =
1.01]. The human PBPKmodel was administered at a dose of 0.1 mg
at 70 kg.

For the CLsys value of fentanyl, the observed value was obtained
from experimentally measured data reported in the literature.
Subsequently, the experimentally measured CLsys values
corresponding to rats and humans, along with the Kp values
derived from QSAR (Quantitative Structure-Activity
Relationship) predictions and interspecies extrapolation, were
separately input into the model for prediction. The
corresponding predicted CLsys values were then generated as
outputs. The performance of the models was evaluated by
comparing the predicted plasma concentration-time (C-t) profiles
with experimental clinical data (for humans) and literature-derived
PK data (for rats). The primary objective of this validation was to
verify whether QSAR-based Kp parameterization yields a human
PBPK model with higher predictive accuracy than the model relying
on interspecies extrapolation of Kp (Lim et al., 2012, YK.
et al., 2024).

2.2.3 Development and application of QSAR-Based
PBPK models for 34 fentanyl analogs in humans

Leveraging the established QSAR-based PBPK modeling
framework, PBPK models were constructed for 34 fentanyl
analogs to characterize their disposition following intravenous
administration in humans.

The model development workflow was standardized across all
analogs: First, QSAR modeling was employed to generate two core
sets of input parameters: (1) tissue/blood partition coefficients (Kp)
for each analog in human, predicted via the Lukacova method
(consistent with the fentanyl model); and (2) key
physicochemical properties of the analogs (e.g., logP, aqueous
solubility), predicted using ADMET Predictor™. These QSAR-
derived parameters were then integrated into the human PBPK
modeling platform (GastroPlus® software) to construct species-
specific PBPK models for each fentanyl analog. It is noteworthy
that the predictions for 34 fentanyl analogs in this study all utilized
the experimentally measured CLsys value of fentanyl in humans, as
reported in the literature. This approach was adopted to achieve the
effect of rapidly predicting the relevant data of this class of
substances based on one analog. After inputting fentanyl’s CLsys
value and other parameters into the model, the predicted CLsys
values adjusted by the model can be generated as outputs.

This modeling subsequently enabled the prediction of their
concentration and time profiles in plasma and ten tissues and

organs, including the brain, heart, and adipose. Finally, the
predictive capability of the model was evaluated using clinical
data pertaining to fentanyl.

3 Results

3.1 QSAR-based PBPK results show good
agreement with experimental
measurements by β-hydroxythiofentanyl

According to the findings presented in 3.1, a PBPK model was
developed for rats that were administered β-hydroxythiofentanyl via
intravenous injection, using Kp predicted through QSAR. The data
obtained from the experiment versus predicted plasma
concentration and time profiles after intravenous administration
are plotted in Figure 2. Based on visual inspection, the intravenous
administration of β-hydroxythiofentanyl demonstrated great
agreement between the data from experiment and the predicted.
The model parameters and pharmacokinetic parameters from
experimented and predicted are listed Table 2. The experimented
and predicted values for Vss and AUC0-t are compared and
illustrated in Figure 2. The predicted values for all
pharmacokinetic parameters fell within a 2-fold error margin of
the experimented values.

3.2 QSAR-based PBPK results in human
exhibit higher accuracy than those from
interspecies extrapolation in human PBPK
model for fentanyl

The PBPK model of fentanyl was respectively developed in rats
and humans, with the injectable dose derived from the commonly
utilized analgesic dosage of fentanyl in humans, which is 0.1 mg.
This human dosage was converted to a corresponding amount based
on body surface area, resulting in an administration of 1.75 μg to the
rat subjects (Nair and Jacob, 2016). Fentanyl possesses a low
molecular weight and high lipid solubility, which facilitate its
diffusion across cellular membranes. Consequently, the model
was developed using the perfusion rate-limited tissue
model approach.

The observed versus predicted plasma concentration and time
profiles after intravenous administration are plotted in Figure 3.
Based on visual inspection, improved concordance between
observed data from the report and predicted data constructed
using Kp reported in the research in rat model, as well as
between the observed data from the report and predicted data
developed utilizing QSAR predicted Kp in human model. The
model parameters, clinical study information and
pharmacokinetic parameters are listed Table 3. The observed and
predicted values for Vss and AUC0-t are compared and illustrated in
Figure 4. The predicted values for most pharmacokinetic parameters
fell within a 2-fold error margin of the observed values. However, the
Vss derived from human models through interspecies extrapolation
exceeded this range, although it remained within a 3-fold
error margin.
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3.3 Human PBPK modeling of 34 fentanyl
analogs derived from QSAR-
predicted results

The PBPK model for 34 fentanyl analogs following intravenous
administration in the human was developed using the Kp predicted
by QSAR. The predicted model parameters and pharmacokinetic
parameters predicted are listed in Table 4. When the AUC of the
34 fentanyl analogs were compared to plasma data for fentanyl in
humans, all AUCs fell within a 1.3-fold range of one another.
Figure 5 illustrates the Cmax of fentanyl analogs in the brain,
heart, adipose and liver, and brain/plasma ratio. The results
showed that drug concentrations in the brain and heart were
significantly higher than in plasma.

4 Discussion

4.1 Assessment of the viability of the
modeling approach

An important factor that hinders the application of PBPK
models in drug research is the substantial amount of data
required for model construction. This encompasses the
experimental determination of tissue affinities, particularly Kp,
which can be both costly and time-consuming. The most recent
research on the modeling of PBPK for fentanyl and its analogs
employs Kp derived from mathematical formulas or assumes that
the same data applies to both humans and rats (Han et al., 2025;
Rodgers et al., 2005). In addition, the extrapolation of animal data to

FIGURE 2
(A) Predicted and experimented concentration-time profiles of β-hydroxythiofentanyl following intravenous administration. (B,C) The experimented
versus predicted graphs for pharmacokinetic parameters of β-hydroxythiofentanyl, including Vss and AUC0-t. The orange dot represents data of Kp
from QSAR.

TABLE 2 The model parameters and pharmacokinetic parameters from experimented and predicted of β-hydroxythiofentanyl.

Species Dose (μg) Gender Age Weight (kg) Log P Sw
(mg/
mL)

Fup Rbp Peff (cm
as-1)

Rats 1.75 male 6–8 weeks 0.25 2.59 0.48 32.25% 1.04 3.35a10−4

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t

(ng·h/mL)
AUC0-inf (ng·h/mL)

Experimented 2.660 1.496 0.4625 0.635 0.669

Predicted 2.687 0.938 0.242 0.650 0.651

aSw, water solubility; Rbp, blood to plasma concentration ratio; Peff, effective human jejunal permeability.
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humans is a widely accepted method in PBPK modeling. One study
has successfully developed a PBPK model for cocaine and its
metabolite benzoylcholine in humans based on extrapolated data
from rats (Bravo-Gómez et al., 2019). Therefore, our study
employed experimental measurements, QSAR predictions, and
interspecies extrapolation to derive Kp for modeling purposes. To
verify the applicability of the QSAR prediction modeling method for
Kp to fentanyl analogs, rather than being restricted solely to fentanyl,

our study employed this approach to develop a rat PBPKmodel of β-
hydroxythiofentanyl, then evaluated the model against
experimentally determined drug-time profiles and
pharmacokinetic parameters. By comparing several fentanyl
models that we have developed, it is observed that the
experimentally determined Kp is preferred in the rat model,
whereas the QSAR-predicted Kp is favored in the human model.
The results demonstrated that the model exhibited high predictive

FIGURE 3
Predicted and observed concentration-time profiles of fentanyl following intravenous administration (A) ratmodel of Kp from report; (B) ratmodel of
Kp from QSAR prediction; (C) human model of Kp from interspecies extrapolation; (D) human model of Kp from QSAR prediction.

TABLE 3 The model parameters, clinical study information and pharmacokinetic parameters of fentanyl in rats and humans.

Species Rats Humans

Dose 1.75 μg 0.1 mg

Gender female male both male

Age 6–8 weeks 19–32 years 30 years

Average body weight 0.25 kg 67.1 kg 70 kg

Observed Predicted1 Predicted2 Observed Predicted3 Predicted4

CLsys (L/h) 0.493 0.493 0.493 62.66 59.324 59.324

Vss (L) 1.496 1.246 1.811 364.9 757.847 333.525

T1/2 (h) 1.60 1.751 2.546 N/D 8.853 3.896

AUC0-t (pg·h/mL) 2,272 2,684 2,196 1530.6 1408.9 1590

AUC0-inf (pg·h/mL) 3,552 3,408 3,385 1595.9 1621.6 1683.6

a
Predicted

1
Kp from report; Predicted

2&4
. Kp from QSAR; Predicted

3
Kp from interspecies extrapolation; CLsys, clearance; Vss, steady-state volume of distribution; T1/2, half-life; AUC0-t &

AUC0-inf, the total area under the plasma curve from time t and infinity.
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accuracy and confirmed the feasibility of this approach. Eventually,
our research constructed 34 fentanyl human PBPK models for
fentanyl analogs following this method.

4.2 Analysis of model results

4.2.1 Comparison of data on fentanyl analogs with
existing studies

Intravenous fentanyl and Sufentanil are primarily utilized for
general anesthesia, while alfentanil and remifentanil serve the
purposes of analgesia and sedation. Notably, remifentanil is
particularly well-suited for short-term or outpatient procedures
(Ziesenitz et al., 2018). Given the specific medical applications of
these three fentanyls, their pharmacokinetics have been extensively
investigated in existing studies. In contrast, there is a significant lack
of experimental data regarding other illicitly manufactured fentanyl
analogs in both animal models and human volunteers.
Consequently, we selected alfentanil, Sufentanil, and remifentanil

as representative drugs to evaluate the predictive accuracy of our
developed model using PK parameters documented in the current
research (details shown in Table 5).

In a study on sufentanil, the pharmacokinetic characteristics of
10 surgical patients who received an intravenous dose of 5 μg/kg
sufentanil were reported. The results showed a mean half-life (T1/2)
of 164 ± 22 min (converted to hours: 2.73 ± 0.37 h) and a mean
steady-state volume of distribution (Vdss) of 1.7 ± 0.2 L/kg (Bovill
et al., 1984). Based on a standard body weight of 70 kg, the absolute
Vdss value in this study was calculated as 119 ± 14 L. The T1/2 of
sufentanil predicted in this study was 3.652 h, with an error ratio of
1.34 (3.652/2.73) relative to the literature value, within the
acceptable error range of 1.3–1.7 fold. The predicted steady-state
volume of distribution (Vss) was 308.601 L, resulting in an error ratio
of approximately 2.59 when compared to the literature-derived
absolute value (119 ± 14 L). This discrepancy may be attributed
to two main factors: first, the standardized setting of human
physiological parameters in the model (e.g., uniform 70 kg body
weight, standard tissue blood perfusion rates) versus inherent inter-

FIGURE 4
The observed versus predicted graphs for pharmacokinetic parameters of fentanyl (A) Vss of rat model; (B) area under the plasma concentration-
time curve from time zero to time t, AUC0-t of rat mode; (C) Vss of humanmodel; (D) AUC0-t of humanmodel. The solid line denotes the unity line, where
the ration of predicted to observed values equals 1. The dotted line indicates a two-fold errormargin. The green triangle represents data of Kp from report;
The red square represents of data Kp from QSAR prediction; The orange dot represents data of Kp from interspecies extrapolation.
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TABLE 4 The predicted model parameters and pharmacokinetic parameters of 34 fentanyl analogs.

Acetylfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.55 0.59 16.8 0.83 3.81

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

62.66 250.140 2.766 1567 1595.9

Acetyl-α-methylfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.86 0.46 14.85 0.83 3.72

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

62.66 308.742 3.415 1536.9 1595.4

Acrylfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.57 0.47 13.44 0.78 4.2

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.393 400.880 4.94 1617.8 1772.2

Alfentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

2.26 1.08 15.79 0.76 3.21

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

53.931 72.644 0.933 1854.2 1854.2

Benzyl furanyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.93 0.0763 5.88 0.76 4.41

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 371.027 4.391 1582.2 1704.6

Benzyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.53 0.43 12.62 0.78 4.94

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

60.094 288.717 3.329 1600.5 1663.4
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Butyrfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.49 0.25 9.61 0.76 4.26

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 492.190 5.825 1515.1 1694.8

Carfentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.79 0.33 8.99 0.71 3.22

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

54.701 286.141 3.625 1733.4 1827.1

Cyclopropyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.33 0.2 9.08 0.77 4.05

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 444.197 5.189 1524.2 1677.6

Furanyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.38 0.0861 6.46 0.76 3.31

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 462.728 5.477 1658.9 1683.6

Isobutyrfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.49 0.24 9.85 0.76 4.32

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 511.739 6.057 1505.5 1692.6

Methoxyacetyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.38 0.84 16.77 0.76 3.03

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 199.652 2.363 1688.4 1707.8
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Norfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

2.05 8.07 62.38 0.97 4.04

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

62.66 146.271 1.618 1595.8 1593.7

Ocfentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.97 0.46 11.32 0.76 4.02

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 364.286 4.311 1588.1 1704.6

o-Fluorofentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.48 0.18 9.13 0.77 3.89

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 513.51 5.999 1488.6 1670.8

Ohmefentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.23 0.76 13.66 0.76 3.21

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 215.207 2.547 1679.9 1707.8

o-Methyl acetyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.04 0.31 12.27 0.82 3.84

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

62.66 380.079 4.204 1494.1 1593.2

p-Fluoro benzyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.89 0.24 10.65 0.78 4.8

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

60.094 394.155 4.545 1536.1 1659.9

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

11

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
5
.16

9
2
2
9
3

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1692293


p-Fluorobutyrfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.88 0.15 8.5 0.76 4.02

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 623.339 7.377 1457.6 1676.1

p-Fluorofentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.37 0.2 10.58 0.77 3.84

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 460.433 5.379 1514.7 1675.5

p-Fluoroisobutyrfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.89 0.14 8.62 0.77 4.07

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 644.489 7.529 1434 1651.2

Phenyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

5.04 0.0494 4.94 0.73 4.63

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

56.242 633.984 7.812 1503.5 1742.3

p-Methoxy furanyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.26 0.11 7.14 0.73 2.68

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

56.242 400.880 4.94 1617.8 1772.2

p-Methylcyclopropyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.79 0.11 8.05 0.97 3.99

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 587.442 6.953 1471.7 1682.1
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Remifentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

1.95 1.13 26.57 0.7 3.68

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 48.262 0.571 1707.8 1707.8

Sufentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.85 0.22 8.91 0.76 3.91

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

58.553 308.601 3.652 1622.2 1706.5

Tetrahydrofuranyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.11 0.39 9.94 0.77 3.18

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 401.909 4.695 1548.3 1680.7

Thiofentanil Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.4 0.078 9.39 0.73 4.46

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

56.242 319.869 3.941 1669.4 1776.4

Thiofentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

3.65 0.16 11.89 0.81 4.17

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

62.66 252.001 2.787 1564.3 1595.8

Valerylfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.96 0.16 7.96 0.74 4.27

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

57.035 624.455 7.587 1489.5 1719.9
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α-Methylfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.3 0.27 11.19 0.78 3.98

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

60.094 428.159 4.937 1517.2 1657.6

β-Hydroxyfentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

2.92 0.96 14.87 0.77 3.29

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 166.633 1.947 1678 1685.7

β-Hydroxythiofentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

2.59 0.48 14.05 0.8 3.35

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

61.635 132.097 1.485 1621.2 1622.5

3-Methyl fentanyl Log P Sw (mg/mL) Fup (%) Rbp Peff (10
–4 cmas-1)

4.36 0.27 10.37 0.77 3.99

CLsys (L/h) Vss (L) T1/2 (h) AUC0-t (pg·h/mL) AUC0-inf (pg·h/mL)

59.324 419.576 4.901 1538.1 1679.4

aAlphabetical order.
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individual variability in patient physiology (e.g., age, body weight
distribution, organ function status); second, differences between
the experimental measurement method for Vdss in the literature
and the model’s prediction algorithm (derived from QSAR-
predicted tissue partition coefficients, Kp). Despite the
numerical difference, both values reflect the large volume of
distribution of sufentanil, indicating its extensive tissue
distribution in vivo, which confirms consistency in
qualitative trends.

For alfentanil, a study on healthy volunteers reported that
following intravenous administration of 170 μg alfentanil
(equivalent to approximately 2.4 μg/kg for a 70 kg individual),
the mean T1/2 was 1.21 h (Bower and Hull, 1982). The T1/2 of
alfentanil predicted in this study was 0.93 h, with an error ratio of
1.75 (1.63/0.93) relative to the literature value—approaching the
upper limit of the acceptable 1.7-fold error range. The predicted
systemic clearance (CLsys) was 53.931 L/h. Although no direct
measurement of alfentanil clearance was reported in the

FIGURE 5
Predicted distribution in tissues of fentanyl analogs following intravenous administration (A) Cmax of adipose, brain, heart and liver; (B) the ratio of
brain and plasma, green bars indicate ratios lower than fentanyl, blue bars indicate ratios higher than fentanyl.
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literature, clearance was estimated using the relationship between
AUC0-t (area under the plasma concentration-time curve) and dose
(CL = dose/AUC), yielding an estimated clearance of approximately
31.44 L/h (Bower and Hull, 1982). The error ratio between the
predicted and estimated clearance values was 1.71 (53.931/31.44),
which also fell within the acceptable range. Both values consistently
indicate the relatively rapid clearance of alfentanil.

In a study on remifentanil, surgical patients received intravenous
doses of 2, 5, 15, and 30 μg/kg remifentanil, and blood samples were
analyzed. The results showed that T1/2 increased with dose,
measuring 10.19, 14.35, 15.67, and 20.47 min (converted to
hours: 0.17, 0.24, 0.26, and 0.34 h), respectively (Westmoreland
et al., 1993). The T1/2 of remifentanil predicted in this study was
0.571 h, with error ratios ranging from 1.68 to 3.36 (0.571/0.34 to
0.571/0.17) relative to the literature values for each dose group. It is
important to note that the subjects in this literature study were
surgical patients, and remifentanil—an ultra-short-acting
opioid—undergoes metabolism that is significantly influenced by
esterase activity, hepatic/renal function, and surgical stress. In
contrast, the model in this study was constructed based on
physiological parameters of healthy individuals and did not
account for the effects of pathological conditions or stress
responses on metabolic enzyme activity, which likely contributed
to the larger discrepancy between predicted and literature values.
Additionally, regarding the AUC and Cmax (peak plasma
concentration) of remifentanil, only one 2004 study reporting
data from ICU patients with renal dysfunction was identified
(Pitsiu et al., 2004). These patients had impaired renal function;
although remifentanil is primarily metabolized by non-specific
esterases (with minimal impact from renal function), the overall
physiological state of the patients (e.g., circulatory stability,
metabolic enzyme expression levels) differed significantly from
that of healthy individuals. This made the data poorly
comparable to the predictions of the healthy human-based model
in this study, so these parameters were not included in quantitative
comparisons.

Beyond the three aforementioned drugs, recent literature has
reported pharmacokinetic data for other fentanyl analogs, but most
focus on non-intravenous administration routes (e.g., sublingual,
subcutaneous implantation). For example, one study (van de Donk

et al., 2018) reported the bioavailability and AUC of sublingual
fentanyl wafers; however, this route involves drug absorption
through the oral mucosa, which differs significantly from the
intravenous route (no first-pass effect, simple absorption process)
used in this study in terms of pharmacokinetic characteristics.
Another study measured the PK parameters of analogs such as
acetylfentanyl and butyrylfentanyl via subcutaneous injection
(Canfield and Sprague, 2024), which involves slow drug diffusion
and absorption in subcutaneous tissue—leading to differences in the
timing of peak plasma concentration and AUC calculation methods
compared to intravenous injection. These differences prevent direct
quantitative comparison with the predictions of this study.
Therefore, such literature data from non-intravenous routes were
not included in the comparative analysis.

To further verify the reliability of the model’s input parameters,
this study supplemented a comparison between QSAR-predicted
key physicochemical properties (e.g., logP, Fup) and experimentally
measured values. As shown in Table 5: 1) For sufentanil, the
experimental logP value was 3.95, and the QSAR-predicted value
was 3.85, with an error of only 2.5%. 2) For alfentanil, the
experimental logP value was 2.16, and the QSAR-predicted value
was 2.26, with an error of 4.6%. 3) For remifentanil, the experimental
logP value was 1.4, and the QSAR-predicted value was 1.95, with an
error of 39.3% (primarily due to the presence of ester and
morpholine groups in the remifentanil molecule, which cause
variability in experimentally measured logP values across
different solvent systems).

In terms of Fup: 1) The experimental Fup value for sufentanil
was 7.5%, and the QSAR-predicted value was 8.91%, with an error of
18.8%. 2) The experimental Fup value for alfentanil was 12.75%, and
the QSAR-predicted value was 15.79%, with an error of 23.8%.

Overall, the QSAR-predicted values for logP (except for
remifentanil) and Fup showed minimal deviation from
experimental values, particularly for logP, which exhibited high
predictive accuracy. As a key parameter influencing drug tissue
partition coefficients (Kp) and transmembrane transport capacity,
the accurate prediction of logP directly ensures the reliability of the
PBPK model’s simulations of drug distribution and clearance
processes. Even for remifentanil—where logP prediction showed
a larger deviation—the QSAR-predicted Fup value (26.57%) was

TABLE 5 The reported observed and predicted values of selected PK (logP and Fup) and QSAR (CL and T1/2) parameters for Sufentanil, Alfentanil, and
Remifentanil.

Analogs Source Route Dose
(μg/kg)

Gender Average
age

(years)

Average
weight
(kg)

logP* Fup
(%)

CL
(L/h)

T1/2
(h)

References

Sufentanil Observed Intravenous 5 3F 7M 45.5 71.1 3.95 7.5 54.01 3.1 Bovill et al. (1984)

Predicted Intravenous 7 M 30 70 3.85 8.91 58.55 3.652

Alfentanil Observed Intravenous 2.4 2F 5M 39.9 70.3 2.16 12.75 31.44 1.21 Bower and Hull
(1982)

Predicted Intravenous 7 M 30 70 2.26 15.79 53.931 0.93

Remifentanil Observed Intravenous 5 both 38.2 79.2 1.4 N/D 184.5 0.29 Westmoreland
et al. (1993)

Predicted Intravenous 7 M 30 70 1.95 26.57 58.553 0.571

*The observed value of logP is provided by PubChem.
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consistent with the qualitative characteristic of “low plasma protein
binding of remifentanil” reported in the literature, still providing a
reasonable basis for input parameters in the model.

In summary, the errors between the predicted PK parameters (T1/2,
CLsys) of sufentanil, alfentanil, and remifentanil in this study and the
literature experimental values mostly fell within the 1.3–1.7 fold range.
Additionally, the QSAR-predicted values of key physicochemical
properties showed minimal deviation from experimental values,
indicating high predictive accuracy of the model. For parameters
with moderate deviations (e.g., Vss of sufentanil), the causes can be
reasonably explained by factors such as differences in administration
routes, standardized physiological parameter settings, and experimental
conditions—with consistent qualitative trends with the literature. This
result significantly enhances the credibility of the PK predictions for
other fentanyl analogs lacking experimental data in this study,
providing a reliable model basis for subsequent assessments of the
abuse potential of these analogs (e.g., evaluating central nervous system
penetration based on brain/plasma concentration ratios).

4.2.2 Impact of the structural characteristics of
fentanyl analogs on pharmacokinetics

New psychoactive substances (NPS) are frequently synthesized
in clandestine laboratories with the intention of chemically
modifying controlled drugs to circumvent legal regulations.
Illegally manufactured substances resembling fentanyl are among
the contributing factors to the global rise in fatalities associated with
the NPS. Fentanyl analogs are frequently marketed as fentanyl itself,
offered as substitutes for other substances, or incorporated into
counterfeit prescription medications (Armenian et al., 2018). Due to
the insufficient PK and PD evaluation of these analogs, potential
users and others who may be exposed to such drugs remain unaware
of their effects, hazards, and potency. Our study aimed to predict the
PK of 34 fentanyl analogs and sought to establish a relationship
between their structural characteristics and pharmacokinetic
profiles. A hypothesis presented in the research suggests that
pharmacokinetic parameters increase as fentanyl analogs become
more lipophilic. The pharmacokinetics of acetylfentanyl,
butyrylfentanyl, cyclopropylfentanyl, and valerylfentanyl were
evaluated in rats following s. c injection at a dosage of 300 μg/kg.
The results indicated that acetylfentanyl exhibited the shortest
carbon side chain along with the lowest T1/2 and Cmax (Canfield
and Sprague, 2024). It has been proposed that the incorporation of
the functional group 3-carbomethoxy into fentanyl analogs may
have the potential to reduce the duration of action by modifying
their pharmacokinetic properties. This is attributed to the fact that
more hydrophilic groups tend to accumulate minimally, if at all, in
adipose tissue and are rapidly excreted. Additionally, it may be due
to the susceptibility of the carbomethoxy group to rapid hydrolysis
by non-specific esterases (Vucković et al., 2009). Therefore, it can be
concluded that the physicochemical property exerting a significant
influence on the pharmacokinetics of fentanyl analogs is
lipophilicity. In conjunction with the predictive results, we
summarize the relationship between the structural characteristics
of fentanyl analogs and their pharmacokinetic profiles.

• Influence of carbon side chain on the in vivo pharmacokinetic
characteristics of fentanyls

1. Pharmacokinetic parameters, including T1/2 and Vss,
exhibit an increase with longer carbon side chain
lengths, while AUC demonstrates a decrease as carbon
side chain length increases.

2. Functional groups present on the carbon side chain, such
as methoxyacetyl, are associated with a reduction in both
T1/2 and Vss. In contrast, the presence of furanyl,
tetrahydrofuranyl, cyclopropyl, and phenyl groups
tends to increase both T1/2 and Vss to varying extents.
The order is tetrahydrofuranyl < cyclopropyl <
furanyl < phenyl.

• Influence of the position 3, or four of the piperidine ring on the
in vivo pharmacokinetic characteristics of fentanyls
1. Both 3-carbomethoxy and methoxymethyl substituents at
the four-position of the piperidine ring are associated with
a reduction in T1/2, whereas a methyl group at the three-
position is linked to an increase in T1/2.

• Influence of the directly connected to the nitrogen on the vivo
pharmacokinetic characteristics of fentanyls.
1. The introduction of hydroxyl group to the carbon chain

that is directly bonded to the nitrogen results in a
reduction of both the T1/2 and Vss. Conversely, the
incorporation of methyl group leads to an
enhancement in these two parameters.

2. The incorporation of functional groups such as thienyl,
methyl and phenyl can decrease the T1/2 and Vss to
varying extents. The order is phenyl < thienyl < methyl.

4.2.3 Distribution of fentanyl analogs in tissues
and organs

The brain-blood ratio serves as a crucial metric for estimating
the pharmacokinetics of the central nervous system (CNS). Among
various methodologies, the brain-blood ratio is favored over more
complex techniques such as in situ brain perfusion and
microdialysis due to its simplicity and practicality. Compounds
exhibiting a higher brain-blood ratio demonstrate an enhanced
capacity to traverse the blood-brain barrier and exert effects on the
CNS. For any given compound, a ratio that approaches or slightly
exceeds one suggests that it can readily cross the blood-brain
barrier, whereas a significantly elevated ratio indicates a strong
likelihood of accumulation within brain tissue (Kulkarni et al.,
2016). A study has demonstrated that the brain-blood ratio for
p-fluorofentanyl were significantly higher than that for fentanyl in
several critical regions of the brain. This result indicates that the
heightened toxicity associated with p-fluorofentanyl may be
attributed to its enhanced permeability across the blood-brain
barrier and increased exposure within brain tissue (Canfield and
Sprague, 2025). This observation aligns with our prediction that
the brain-blood ratio for p-fluorofentanyl is greater than that of
fentanyl. The blue bars in Figure 5B highlight compounds
exhibiting higher brain-blood ratios compared to fentanyl,
which, as analogs of fentanyl, may possess a greater potential
for abuse and pose increased risks relative to fentanyl. In addition,
the use of opioids may be associated with several cardiovascular
disorders, including cardiac arrest, tachycardia, bradycardia, and
palpitations (Dai et al., 2024). The elevated Cmax of fentanyl and its
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derivates observed in the heart, as depicted in Figure 5A, indicates
a potential for cardiotoxicity.

4.3 Comparison with the existing PBPK
reports on fentanyl analogs

High-throughput (HT)-PBPK modeling for fentanyl analogs is
grounded in a growing body of domain-specific research, whose
findings both support and constrain the present QSAR-
PBPK framework.

Key insights from fentanyl PBPK literature align with our study’s
design and results. Björkman et al. (Björkman, 2003) demonstrated that
simplifying fentanyl’s PBPKmodel—while prioritizing core parameters
(tissue/blood partition coefficient, Kp; plasma protein unbound
fraction, Fup)—retains predictive accuracy, validating our focus on
QSAR-derived Kp (a critical driver of tissue distribution). Notably,
Björkman also highlighted that cross-species Kp extrapolation (rat-to-
human) introduces ≥30% error for lipophilic opioids, which echoes our
observation that QSAR-predicted human Kp reduced steady-state
volume of distribution (Vss) error to <1.5-fold (vs. >3-fold for
extrapolation, Section 3.2). Population-specific PBPK studies further
contextualize our model’s scope. Alsmadi (Alsmadi, 2023) and Kovar
et al. (Kovar et al., 2020) showed that age-dependent physiology (e.g.,
pediatric CYP3A4 activity, neonatal tissue perfusion) alters fentanyl PK
predictions by 25%–40%. While our use of standardized adult
parameters (70 kg, healthy physiology) enables reliable analog-to-
analog comparisons, these studies confirm that population-specific
adjustments would be required for clinical translation—a key limitation.

Literature on fentanyl PBPK also supports QSAR’s utility for
parameterization. Ni et al. (Ni et al., 2024) used QSAR-predicted
enzyme inhibition constants (Ki) to model fentanyl-ritonavir
interactions, yielding AUC fold-changes within 1.2-fold of clinical
data—reinforcing our use of QSAR for Kp and physicochemical
properties (logP, solubility) when experimental data are scarce. In
contrast, Shankaran et al. (Shankaran et al., 2013) showed non-
intravenous fentanyl models require route-specific absorption parameters
(e.g., nasal permeability) to avoid ≥2-fold error, justifying our focus on
intravenous administration (minimizing absorption uncertainty).

For novel analogs, Canfield and Sprague (Canfield and Sprague,
2024) reported a strong correlation (R2 = 0.89) between carbon side-
chain length and T1/2 for illicit fentanyls—consistent with our
predictions (e.g., valerylfentanyl, C5: T1/2 = 7.587 h;
acetylfentanyl, C2: T1/2 = 2.766 h, Table 4). However, their
observation that analogs with novel functional groups (e.g.,
furanyl) exhibit unexpected tissue binding underscores QSAR
limitations for structurally divergent compounds.

4.4 Limitations of research

This study does have certain limitations. Firstly, given that fentanyl
analogs represent an emerging class of controlled substances, clinical data
are exceedingly scarce and cannot be utilized to evaluate the accuracy of
our developed model. While our study proposes novel approaches for
model assessment, the incorporation of additional clinical data would
significantly enhance the validity of our model results. In addition, this
study has established a PBPK model exclusively for fentanyl and its

analogs following intravenous administration. However, other routes of
administration, such as oral and nasal inhalation, have yet to be explored.
To further investigate the pharmacokinetics of these substances, it is
essential to develop additional routes of administration and conduct
models after multiple administrations.

5 Conclusion

After a thorough evaluation of the modeling approach, QSAR-
based PBPK models for 34 fentanyl analogs were developed. These
models provide quantitative estimates of the pharmacokinetics of
34 fentanyl analogs in humans, with predictions for clinically
validated analogs (e.g., sufentanil, alfentanil) aligning with
available clinical data. These estimates help address critical data
gaps in fentanyl analog hazard assessment and support
preliminary prioritization of analogs for further experimental
validation. It provided valuable insights that can not only guide
further in vivo and in vitro experiments but also facilitate a
preliminary assessment of their potential for abuse. This
significantly addresses the existing data gap in this area.
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