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Introduction: Cisplatin (CIS) is widely recognized as a potent antineoplastic
agent, especially effective for treating various solid tumors. Nevertheless, the
pathological response it induces, alongside oxidative stress and inflammation
from upstream reactions, causes varying degrees of damage tomultiple organs in
the human body. The primary adverse effects of CIS include nephrotoxicity,
neurotoxicity, ototoxicity, and gastrointestinal toxicity. CIS-induced
cardiotoxicity is rare, and its prevalence remains unknown. Avenanthramide-C
(AVN-C), an antioxidant compound found solely in oats (Avena sativa L.), is
recognized for its significant ability to neutralize free radicals; however, the
mechanism by which it exerts other protective influences remains unclear.
Research indicates that AVN-C significantly reduces the expression of gene
transcripts responsible for encoding pro-inflammatory cytokines when
exposed to H2O2 or tumor necrosis factor-α (TNF-α). This study investigated
the potential protective role of the antioxidant and anti-inflammatory properties
of AVN-C in mitigating CIS-induced cardiotoxicity in rat cardiac tissue.
Methods: Forty male Wistar rats were randomly assigned to 4 groups, each
comprising an equal number of animals (10 animals per group), as follows: control
(5%DMSO/Saline), CIS (CIS, 10 mg/kg), AVN-C (20 mg/kg), and CIS + AVN-C
groups. Blood plasma was collected from the retro-orbital plexus for the
evaluation of biochemical parameters, including lactate dehydrogenase (LDH),
creatine kinase (CK-MB), and troponin I. Cardiac tissues were extracted to
evaluate oxidative stress markers, including reactive oxygen species (ROS),
malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally,
inflammatory markers such as TNF-α, interleukin (IL)-1β, IL-6, and nuclear
factor kappa B (NF-κB) were assessed. The heart tissues were also examined
for the protein andmRNA expressions for p62, Kelch-like ECH-associated protein
1 (Keap1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
Results: The CIS group exhibited significantly increased LDH, CK-MB, troponin I,
MDA, ROS, TNF-α, IL-6, IL-1β, NF-κB, and Keap1 levels. However, AVN-C
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administration led to a significant reduction in these marker levels. Additionally,
CIS + AVN-C treatment resulted in significantly increased p62, Nrf2, and SOD levels
compared to the CIS group.
Conclusion: AVN-C may protect against CIS-induced cardiotoxicity by reducing
oxidative stress and inflammation, possibly activating the p62-Keap1-Nrf2 pathway.
Histopathologically, heart tissues treated with CIS + AVN-C were less damaged
than tissues treated with the CIS group. These findings suggest AVN-C as a
promising therapeutic agent against CIS-induced cardiotoxicity. Nonetheless,
the absence of echocardiographic assessments remains a key limitation, and
future studies incorporating these evaluations are warranted to strengthen
translational relevance.

KEYWORDS

avenanthramide-C, cisplatin, oxidative stress biomarkers, inflammatory biomarkers,
cardiotoxicity

1 Introduction

Cisplatin (CIS) is a widely used chemotherapeutic agent for the
treatment of tumors (Alhowail, 2025; Alotayk et al., 2023). Despite
its efficacy, the therapeutic application of CIS is constrained by
significant adverse effects, notably its tendency to damage normal
tissues, resulting in hepatotoxicity, nephrotoxicity, and
cardiotoxicity (Alhowail, 2025; Alotayk et al., 2023).

Cardiotoxicity serves as a dose-limiting factor that profoundly
impacts the clinical outcomes of chemotherapy (Bhutani et al.,

2025). There is a growing body of evidence suggesting that the
primary mechanisms underlying chemotherapy-induced
cardiotoxicity are oxidative stress and inflammation as well as
mitochondrial damage and calcium flux alteration (Abudalo
et al., 2024). The cardiotoxicity linked to CIS, along with its
other adverse side effects, presents a significant challenge in
cancer treatment, often necessitating the premature
discontinuation of its use by many patients (Rachma et al.,
2024). This interruption frequently prevents patients from fully
benefiting from cancer treatment, underscoring the urgent need
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for therapeutic approaches that ensure both safety and
cardioprotection. While the mechanisms underlying the
antitumor activity of CIS are moderately well elucidated, the
molecular pathways responsible for its cardiotoxicity remain
inadequately understood (Rachma et al., 2024; Xia et al., 2022).

Alkylating agents, including CIS, were reported to have observed
cardiotoxicity in 6%–30% of patients (Shil et al., 2025). Cardiac
damage may be associated with CIS through its potential to elevate
the levels of biomarkers such as creatine kinase (CK-MB), lactate
dehydrogenase (LDH), and troponin I (Abudalo et al., 2024). CIS-
induced cardiotoxicity is a well-established phenomenon, marked by
notable changes in electrocardiographic readings and the emergence
of various arrhythmias (Kapoor et al., 2023). These include atrial
fibrillation, supraventricular tachycardia, ventricular arrhythmias,
and occasional sinus bradycardia (Kapoor et al., 2023; Raja et al.,
2021). Cardiotoxic effects have the potential to lead to the
development of congestive heart failure and may result in sudden
cardiac death (Shil et al., 2025).

Oxidative stress, characterized by an imbalance between the
formation of reactive oxygen species (ROS) and the body’s
antioxidant mechanisms, is a key contributor to CIS-induced
cardiac damage (Yildirim et al., 2022). This oxidative imbalance
disrupts multiple cellular pathways, particularly those involved in
inflammation and necrobiosis (Huang et al., 2021). Elevated ROS
levels can stimulate nuclear transcription factors, which
subsequently enhance the release of pro-inflammatory cytokines,
thereby amplifying inflammatory responses (Ju et al., 2024; Soliman
et al., 2018). Nuclear factor erythroid 2-related factor 2 (Nrf2) plays
a critical role in protecting cells from oxidative stress and damage
(Tan et al., 2021). The stabilization and activation of Nrf2, facilitated
by the sequestration of Kelch-like ECH-associated protein 1 (Keap1)
through p62, a primary regulator responsible for Nrf2 degradation,
are essential for enhancing cellular defenses against oxidative stress
(Tan et al., 2021). Furthermore, oxidative stress is directly associated
with elevated malondialdehyde (MDA) levels and heart failure
progression (Abudalo et al., 2024). A previous study investigating
the isolated hearts of rats treated with CIS revealed reduced coronary
flow and increased cardiac enzyme leakage, which were correlated
with elevated ROS levels and lipid peroxidation (Xia et al., 2022).

An inflammatory response is an inevitable consequence, often
occurring as a secondary event following cellular or tissue damage
due to toxic exposure (Bender et al., 2025). Emerging research
indicates that CIS triggers the production of a range of
inflammatory cytokines and chemokines, and enhances the
movement of the redox-sensitive transcription factor nuclear
factor kappa B (NF-κB) from the cytosol into the nucleus (Zaaba
et al., 2025). This translocation triggers the synthesis of tumor
necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine that
is crucially involved in the inflammation induced by CIS in kidney
tubular cells and cardiomyocytes (Yildirim et al., 2022; Zaaba et al.,
2025). CIS has been reported to markedly increase the production of
myocardial TNF-α and elevate myocardial myeloperoxidase activity
in both rats and mice (Yildirim et al., 2022). Although there is
limited documentation on CIS-induced cardiac inflammation, it is
conceivable that the myocardial inflammation observed following
CIS treatment may result from molecular mechanisms similar to
those identified in the kidney (Dugbartey et al., 2016). In summary,
CIS triggers oxidative stress and activates pro-inflammatory

mediators, which in turn enhance oxidation and inflammation,
ultimately leading to cellular damage associated with cardiac
toxicity. Current clinical interventions to counteract CIS-induced
cardiotoxicity have shown limited efficacy (Hesari et al., 2024).
Accordingly, formulating effective therapeutic interventions is
urgently required to mitigate CIS-related cardiotoxic effects.

Recently, oat grain (Avena sativa L.) has become a focal point of
academic research due to its recognized health benefits (Alemayehu
et al., 2023). Originating from oat grain, avenanthramides (AVNs)
are nitrogen-containing phenolic compounds commonly present in
human food that are characterized by their low molecular weight
and recognized for their substantial antioxidant and anti-
inflammatory properties (Pretorius and Dubery, 2023). AVNs
have been associated with a lower risk of colon cancer by
influencing apoptosis, a mechanism that inhibits cellular
proliferation (Fu et al., 2019). Furthermore, AVNs can mitigate
CIS-induced nephrotoxic alterations and are considered
renoprotective agents during CIS administration (Amir et al., 2019).

Oats contain AVNs in various forms, among which AVN-C is
the most dominant and possesses the most potent antioxidant effect
(Xie et al., 2024). AVN-C plays a significant role in mitigating H2O2-
induced oxidative stress by lowering intracellular free radical levels
and reducing the expression of antioxidant gene transcripts (Wang
and Eskiw, 2019; Xie et al., 2024). Additionally, it contributes to a
decline in the expression of gene transcripts for pro-inflammatory
cytokines following exposure to H2O2 or TNF-α (Wang and Eskiw,
2019). Furthermore, cellular AVN-C administration suppresses
TNF-α (Amir et al., 2019). The application of oat extract
effectively suppresses the secretion of pro-inflammatory cytokines
(interleukin [IL]-6) and chemokines (IL-8) in endothelial cells when
stimulated by IL-1β (de Bruijn et al., 2019). Previous studies have
established the potential of AVN-C to alleviate inflammation and
oxidative stress in human skin fibroblasts (Wang and Eskiw, 2019),
as well as its protective effect on critical organs, including the liver,
lungs, and kidneys, from various types of damage (Alwaili et al.,
2024; Amir et al., 2019). Thus, AVN-C offers a promising approach
for mitigating the detrimental effects of CIS on cardiac health
(Alwaili et al., 2024; Amir et al., 2019). However, the role of
AVN-C in modulating the cardiotoxicity induced by CIS has not
been systematically evaluated.

Cisplatin’s nephrotoxic and neurotoxic effects have been the
subject of extensive research, yet its cardiotoxic effects have not been
as thoroughly examined (Hu et al., 2018; Rachma et al., 2025). As a
result, protective measures have predominantly targeted the kidneys
and nervous system, leaving the heart as a relatively neglected area of
study (Rachma et al., 2025). Simultaneously, AVN-C, a compound
recognized for its antioxidant and anti-inflammatory capabilities
(Alwaili et al., 2024), has been extensively explored in terms of
neuroprotection (Jin et al., 2020) and vascular health (Park et al.,
2021), but its potential role in mitigating chemotherapy-induced
cardiac injury has not been investigated. This disconnect between
the study of cisplatin’s cardiotoxicity and the potential therapeutic
benefits of AVN-C reveals a significant research gap: the
cardioprotective potential of AVN-C against cisplatin-induced
cardiac damage remains uninvestigated.

This study aimed to evaluate the cardioprotective properties of
AVN-C against CIS-induced toxicity in male rats, focusing on
alterations in myocardial biomarker activities, including oxidative
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stress, pro-inflammatory cytokines, and regulating of activation of
the p62–Keap1–Nrf2 signaling pathway, which are associated with
the increasing incidence of cardiotoxicity among patients with
cancer undergoing CIS-based chemotherapy. At present, no
known therapeutic drug ameliorates CIS-induced cardiac damage.
The results of this study may help identify a novel natural treatment
to alleviate the adverse effects of CIS-induced cardiotoxicity.

2 Materials and methods

2.1 Drugs

CIS at 1 mg/mL was sourced from EBEWE Pharma Ges. mbH,
Nfg. KG (Unterach am Attersee, Austria). AVN-C methyl ester
(CAS number 955382-52-2; catalog number CAY10011336-1) was
obtained from Cayman Chemical (Ann Arbor, MI, United States).
AVN-C was subsequently pre-dissolved in dimethyl sulfoxide (5%
DMSO/Saline).

2.2 Animals

Forty male rats, each weighing 200–250 g, were sourced from the
College of Pharmacy at Qassim University, Saudi Arabia. The rats
were housed in cages with an ambient temperature of 25 °C ± 2 °C.
The experimental protocols outlined in this study were
approved by the Animal Care and Use Committee at the
Deanship for Scientific Research, Qassim University
(reference number 23-67-07). All procedures were conducted
in strict compliance with the ethical standards established by
Qassim University.

2.3 Survival rate and body weight

The daily assessment of survival rates offered vital insights into
the study’s progression. Animals that had died were swiftly removed
from the study environment. Frequent evaluation of body weight
provides crucial insights into overarching health patterns.
Systematic assessments conducted every 3 days enable the
detection of subtle variations and contribute to the early
identification of potential health concerns.

2.4 Experimental design and drug
administration

In this study, animals were randomly assigned to 4 separate
groups, each comprising 10 animals per group (n = 10). The negative
control group was orally administered 5% DMSO/saline for 10 days.
On day 2, the CIS group was intraperitoneally injected with a single
dose of CIS at 10 mg/kg (Eisa et al., 2021). From days 1–10, the
AVN-C group was administered AVN-C at 20 mg/kg via daily oral
gavage (Amir et al., 2019; Li Ji et al., 2003; Xie et al., 2024). The CIS +
AVN-C groups received a single intraperitoneal injection of
10 mg/kg CIS (day 2), in conjunction with daily oral
administration of 20 mg/kg AVN-C over 10 days.

2.5 Plasma separation and enzyme-linked
immunosorbent assays

Seven blood samples from each of the seven animals in each
group were collected via retro-orbital puncture and placed into tubes
containing heparin. Plasma was isolated by centrifuging the samples
at 4,000 rpm for 10 min, after which it was transferred to new tubes.
The plasma was subsequently used to indicate the cardiac injury by
quantifying plasma cardiac enzymes, including CK-MB (Cat. no.
RK03570; Abclonal, Woburn, MA, United States), lactate, LDH
(Cat. no. A7625; ABclonal), and troponin I (Cat. no. RK04071;
ABclonal), using a commercially available rat ELISA kit (ABclonal)
following the manufacturer’s protocols. Absorbance measurements
for each well were performed at 450 nm utilizing a Microplate
Reader (BioTek Instruments, Winooski, VT, United States) (Rana
and Soni, 2008).

2.6 Preparation of heart tissue homogenates
and enzyme-linked immunosorbent assays

On day 10, the animals were evaluated for seven animals per
group to ensure all the groups were equal. After the animal rats died,
they were removed, and the rats were placed in a glass chamber and
anesthetized with CO2 (Alsikhan et al., 2023), before being
euthanized through decapitation. Then, applied through the
excision of rat hearts, a 10% tissue sample was homogenized in
0.1 M potassium phosphate buffer (pH 7.4). The homogenate was
then subjected to centrifugation at 1,000 × g for 15 min at 4 °C. The
resulting supernatant was analyzed for oxidative stress biomarkers,
including MDA (Cat no. RK15281; ABclonal), ROS (Cat no.
RK15283; ZellBio GmbH, Lonsee, Germany), and superoxide
dismutase (SOD) (Cat no. RK07054; ABclonal), as well as
inflammatory biomarkers such as IL-1β (Cat no. RK00009;
ABclonal), IL-6 (Cat no. RK00020; ABclonal), TNF-α (Cat no.
RK00029; ABclonal), and NF-κB (Cat no. RK03838; ABclonal).
Moreover, proteins involved in the signal pathway, including p62
(Cat no. MBS3809397; MyBioSource, San Diego, CA, United States),
Keap1 (Cat no. RD-KEAP1-Ra; Reddot Biotech, Katy, TX,
United States), and Nrf2 (Cat no. A78517; Antibodies.com,
Cambridge, United Kingdom), were measured using
commercially available rat ELISA kits following the
manufacturer’s protocols. Absorbance for each well was
measured at 450 nm using a Microplate Reader (BioTek
Instruments) (Alsikhan et al., 2023).

2.7 Reverse transcription–quantitative PCR
(RT-qPCR)

RT-qPCR is a highly sensitive and quantitative method
employed to measure mRNA expression levels. In this research,
the mRNA expression of Nrf2, p62, and Keap1 was analyzed. The
extraction of total RNA from tissue samples was performed
according to the manufacturer’s protocol, using the GET Total
RNA kit (cat. no. 787-123, Biosciences, San Diego, CA,
United States). The specific primers were procured from
Integrated DNA Technologies (Coralville, IA, United States)
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(Table 1), diluted to a concentration of 10 μM/μL using double-distilled
water, and subsequently stored at −20 °C. The purity of RNA in each
sample was assessed using a NanoDrop ND-2000c spectrophotometer
(Thermo Fisher Scientific, Labtech, United Kingdom). Reverse
transcription and PCR quantification were performed utilizing the
ABScript II One-Step SYBR Green RT-qPCR Kit (cat. no. RK20404,
ABclonal Technology). Each sample, containing 400 ng of RNA, was
reverse-transcribed into complementary DNA. Subsequently, the PCR
was performed using the AriaMx Real-Time PCR System (Agilent
Technologies, Santa Clara, CA, United States) according to the
manufacturer’s instructions. The reaction mixture included SYBR
Green RT-qPCR buffer, ABScript II enzyme mix, 10 μM of both
forward and reverse primers, ROX II reference dye (50×), and total
RNA. It was adjusted to a final volume of 20 µL with RNase-free water.
The thermocycling conditions were as follows: reverse transcription
consisted of one cycle for 5 min at 42 °C, and pre-denaturation
consisted of one cycle for 1 min at 95 °C, followed by 40 cycles for
5 s at 95 °C and 32–34 s at 60 °C.

To ensure the accuracy of the findings, each sample was
analyzed in duplicate across three independent experiments. The
data were processed automatically using AiraMx software, following
the plate configuration for a comparative quantitation experiment.
Gene expression levels were normalized against the housekeeping
gene Gapdh. To assess changes in mRNA expression, the abundance
of each gene’s transcript was calculated relative to the abundance of
the Gapdh transcript.

2.8 Histopathological evaluation of
cardiac tissue

Hearts tissues were excised, rinsed in ice-cold saline to remove
blood, and fixed in 10% neutral buffered formalin. Then, cardiac
tissue blocks were sectioned at a thickness of 4–5 µm using a rotary
microtome. The sections were mounted on glass slides and stained
with hematoxylin and eosin following standard protocols (Bukhari
et al., 2022). Stained sections were then examined under a light
microscope (Olympus) under ×100 magnification.

TABLE 1 Primer sequences for quantitative real-time PCR.

Gene Sequence (5’_3′) Length (bp) References

Nrf2 FWD CCCATTGAGGGCTGTGATCT 60 Zhao et al. (2021)

Nrf2 REV GCCTTCAGTGTGCTTCTGGTT

Keap1 FWD GGCTGGGATGCCTTGTAAAG 57 Zhao et al. (2021)

Keap1 REV GGGCCCATGGATTTCAGTT

P62 FWD GGAACTGATGGAGTCGGATAAC 80 Luo et al. (2019)

P62 REV GTGGATGGGTCCACTTCTTT

GAPDH FWD ACTCCCATTCTTCCACCTTTG 104 Alsikhan et al. (2023)

GAPDH REV CCCTGTTGCTGTAGCCATATT

FIGURE 1
Illustrative effect of CIS and AVN-C treatments on survival rats
that showed a reduction in the survival rate of rats in the CIS alone and
CIS + AVN-C groups relative to the control group (n = 10).

FIGURE 2
The effects of CIS and AVN-C on the body weight of rats were
systematically recorded for all the groups. The data are reported as
mean ± SEM (n = 7). Statistical analysis was conducted using one-way
ANOVA, followed by the Tukey–Kramer post hoc test.
Significance was assessed at levels of CIS groups ***p < 0.001, relative
to the control and CIS + AVN-C.

Frontiers in Pharmacology frontiersin.org05

Aldubayan 10.3389/fphar.2025.1694060

mailto:Image of FPHAR_fphar-2025-1694060_wc_f1|tif
mailto:Image of FPHAR_fphar-2025-1694060_wc_f2|tif
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1694060


2.9 Statistical analysis

Data analysis was performed using GraphPad Prism 9 software
(GraphPad Software, La Jolla, CA, United States). To evaluate
oxidative stress and inflammatory biomarkers alongside cardiac
functions, a one-way ANOVA was conducted, followed by the
Tukey–Kramer test to facilitate multiple comparisons. A
p-value <0.05 was deemed to indicate statistical significance.

3 Results

3.1 Effect of CIS on survival

By the 10th day, CIS treatment resulted in a 30% mortality rate
among the rats. However, co-administration with AVN-C resulted

in a 10% mortality rate. The control and AVN-C groups survived
throughout the study duration (Figure 1).

3.2 Effect of CIS on bodyweight

The CIS-treated rats exhibited a significant reduction in body
weight on days 6 and 9 compared to the control and the CIS +
AVN-C groups (Figure 2).

3.3 Effects of AVN-C in conjunction with CIS
on cardiac parameters

The CIS group exhibited remarkably elevated CK-MB,
troponin I, and LDH levels compared with the control

FIGURE 3
Effect of AVN-C in combinationwith CIS on cardiac biomarkers. (A) Influence of AVN-Cwith CIS on creatine kinase (CK-MB) activity. (B) Influence of
AVN-Cwith CIS on troponin I activity. (C) Influence of AVN-Cwith CIS on lactate dehydrogenase (LDH) activity. The data are reported asmean ± SEM (n =
7). Statistical analysis was conducted using one-way ANOVA, followed by the Tukey–Kramer post hoc test. Significance was assessed at levels of *p <
0.05, **p < 0.01, and ****p < 0.0001, relative to the control and CIS-treated groups.
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group (Figures 3A–C). Conversely, the CIS + AVN-C
group demonstrated a significant decrease in CK-MB,
troponin I, and LDH activities compared with the CIS-
treated group.

3.4 Impact of AVN-C in conjunction with CIS
on oxidative stress markers in rat heart tissue

MDA and ROS levels significantly increased in the CIS-
treated rats compared with those in the control and ANV-C +
CIS-treated groups (Figures 4A,B). Conversely, SOD
activity was significantly decreased in the CIS-treated group
compared with the control and ANV-C + CIS-treated
groups (Figure 4C).

3.5 Impact of AVN-C in conjunction with CIS
on inflammatorymarkers in rat cardiac tissues

IL-1β, IL-6, TNF-α, and NF-κB levels significantly increased in
the CIS-treated group compared with those in the control
group. However, treatment with CIS + AVN-C resulted in a
significant decrease in inflammatory markers associated with
CIS-treated rats (Figures 5A–D).

3.6 Effect of AVN-C in conjunction with CIS
on signaling pathway proteins in rat
cardiac tissues

In CIS-treated rats, a significant reduction in Nrf2 and p62 levels
was observed. In contrast, Keap1 expression levels were significantly

FIGURE 4
Effect of AVN-C in combination with CIS onMDA and ROS levels. (A) Influence of AVN-Cwith CIS onMDA levels. (B) Influence of AVN-Cwith CIS on
ROS levels. (C) Influence of AVN-C with CIS on SOD activity. The data are reported as mean ± SEM (n = 7). Statistical analysis was conducted using one-
way ANOVA, followed by the Tukey–Kramer post hoc test. Significance was assessed at levels of *p < 0.05, **p < 0.01, and ***p < 0.001, relative to the
control and CIS-treated groups.
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elevated in the CIS group compared with those in the control
group. Conversely, in the AVN-C + CIS group, Nrf2 and
P62 expression increased, whereas Keap1 levels decreased
compared with those in the CIS group. Furthermore, no
significant differences in the expression of each protein were
detected between the AVN-C and control groups (Figures 6A–C).

3.7 Effects of CIS and AVN-C onNrf2-Keap1-
p62 pathway mRNA expression

CIS significantly decreased the mRNA expression of Nrf2 and
p62. However, treatment with AVN-C reversed the changes caused
by CIS in rats. In contrast, Keap1 gene expression was significantly
elevated in the CIS group compared with that in the control
group. In contrast, in the AVN-C + CIS group, Keap1 gene
expression decreased compared to that in the CIS group
(Figures 7A–C).

3.8 Histological staining

Upon examination through light microscopy, heart sections
from both the Control and AVN-C-treated groups
demonstrated normal myofibrillar morphology. The
myofibrils appeared intact, systematically organized, and
aligned parallel to adjacent structures, with no evidence of
necrosis, inflammation, or damage (Figures 8A,B). On the
other hand, heart tissue samples from the CIS group rats
revealed moderate to severe changes in myofibrillar structure,
marked by significant myofiber disruption, edema, and the
presence of inflammatory cell infiltration (yellow arrows).
Necrosis and cellular breakdown are observable (Figure 8C).
Heart sections from CIS treated with AVN-C showed mild tissue
damage, including some infiltration of inflammatory cells
(marked by arrows), disrupted fibers, and early stages of
necrosis (marked by arrowheads) when viewed under light
microscopy (Figure 8D).

FIGURE 5
Effect of AVN-C on CIS-induced alterations in inflammatorymarkers. (A) Interleukin (IL)-1β, (B) IL-6, (C) tumor necrosis factor-alpha (TNF-α), and (D)
nuclear factor kappa beta (NF-κB) in the cardiac tissue of rats. The data are reported as mean ± SEM (n = 7). Statistical analysis was conducted using one-
way ANOVA, followed by the Tukey–Kramer post hoc test. Significance was assessed at levels of *p < 0.05, ***p < 0.001, and ****p < 0.0001, relative to
the control and CIS-treated groups.
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4 Discussion

In this study, we evaluated the efficacy of AVN-C treatment in
alleviating CIS-induced cardiotoxicity in rats through in vivo
studies, including hematologic and biochemical investigations.
Furthermore, we investigated the mechanisms of action of AVN-
C against CIS-induced cardiotoxicity bymodulating antioxidant and
anti-inflammatory pathways, as well as regulating the
p62–Keap1–Nrf2 signaling pathway in rats.

In this study, rats subjected to CIS treatment exhibited a
significant reduction in final body weight compared to the
control groups. This observation is consistent with prior
research, which indicates that although rats resumed gaining
weight after discontinuation of CIS treatment, their overall
growth rate remained inferior to that of the control rats
(Mokhtar et al., 2021). Cisplatin administration is often linked

to weight loss, primarily due to its emetogenic effects, which lead to
reduced appetite, gastrointestinal toxicity, and diarrhea (He et al.,
2023). AVN-C administration resulted in a significant increase in
body weight, which may be attributed to its anti-inflammatory and
antioxidant properties.

Biochemical markers, such as cardiac troponin I, CK-MB, and
LDH, play a crucial role in diagnosing cardiac injury (Aldubayan
et al., 2020). CIS is recognized for its ability to compromise the
integrity of cardiac cell membranes, thereby facilitating the release of
intracellular proteins such as cardiac troponin I, CK-MB, and LDH
(Aldubayan, 2023; Alhowail and Aldubayan, 2023; Bertinchant et al.,
2003). Previous study have shown a marked increase in the
concentrations of LDH, CK-MB, and troponin I relative to those
in control groups following CIS administration (El-Awady et al.,
2011). Our study showed that the levels of these markers increased
following CIS treatment, indicating cardiac damage. However,

FIGURE 6
Effect of AVN-C onCIS-induced alterations toNrf2, P62, and Keap1 levels. (A)Nrf2, (B) P62, and (C) Keap1 in the cardiac tissues of rats. The results are
expressed asmean± SEM (n= 10). The data are reported asmean ± SEM (n = 7). Statistical analysis was conducted using one-way ANOVA, followed by the
Tukey–Kramer post hoc test. Significance was assessed at the level of *p < 0.05, relative to the control and CIS-treated groups.
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treatment with AVN-C markedly decreased these marker levels,
signifying a protective effect against the cardiac toxicity induced by
CIS. Therefore, our research proposes that AVN-C holds potential
as a therapeutic agent for mitigating cardiotoxicity associated with
CIS. Oxidative stress is pivotal in CIS-induced cardiac damage
(Afzal et al., 2023); it exacerbates ROS accumulation, triggering a
lipid peroxidation cascade that compromises membrane integrity
(An et al., 2024). MDA, a lipid peroxidation product, serves as an
indicator of the extent of injury to biological tissues (Aldubayan
et al., 2024; Cordiano et al., 2023). Elevated MDA levels can severely
impair cell membranes, thereby causing cumulative oxidative stress
(Cordiano et al., 2023). The present study demonstrated that CIS
treatment exacerbates oxidative stress by significantly increasing

ROS and MDA levels, while also reducing SOD activity. AVN-C
interference, which substantially reduces ROS and MDA levels,
highlights the possibility of restoring this balance, thereby
protecting cardiac cells from oxidative impairment and increasing
SOD activity. In line with this finding, a prior study demonstrated
the ability of AVN-C to reduce ROS levels and protect synaptic
ribbons from methotrexate-induced oxidative damage (Shore et al.,
2022). Furthermore, our results are consistent with those of a
previous study, which reported that AVN-C significantly
improved the reversal of changes in hepatic antioxidant/oxidant
hemostasis in doxorubicin-challenged rats owing to its ability to
inhibit lipid peroxidation and prevent oxidative stress (Alwaili
et al., 2024).

FIGURE 7
Effect of AVN-C on CIS-induced alterations to Nrf2, P62, and Keap1 levels. (A)Nrf2, (B) P62, and (C) Keap1 in the cardiac tissues of rats. The data are
reported asmean ± SEM (n = 7). Statistical analysis was conducted using one-way ANOVA, followed by the Tukey–Kramer post hoc test. Significance was
assessed at levels of *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, relative to the control and CIS-treated groups.
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The interaction between oxidative stress and inflammation serves
as a principal mechanism underlying CIS-induced cardiotoxicity
(Olaniyan et al., 2023). Excessive ROS production can induce
inflammatory responses, thereby exacerbating cardiac injury (Mittal
et al., 2014). TNF-α, a pivotal inflammatory cytokine, initiates an
inflammatory cascade that contributes to myocardial apoptosis and
ventricular remodeling (Schumacher and Naga Prasad, 2018).
Conversely, IL-1β and IL-6 can be produced in cardiac depression.
Extensive research has indicated that CIS promotes the production of
TNF-α, IL-1β, and IL-6 within cardiac tissue, thereby directly
contributing to tissue damage (Katkenov et al., 2024). A prior study
demonstrated that AVN treatment of cells significantly inhibited TNF-
α and reduced IL-1β and IL-6 (Wang and Eskiw, 2019). Furthermore,
recent findings have shown that AVN-C effectively reduced TNF-α
levels in rats subjected to titanium dioxide nanoparticles (Amir et al.,
2019). This suppression of TNF-αwas associated with an improvement
in CIS-induced renal injury (Amir et al., 2019). In addition, the
expression of pro-inflammatory cytokines is regulated by NF-κB, a
key pathogenic factor in both acute and chronic inflammation (Jung
et al., 2017). These findings suggest that the ameliorative impact of
AVN-Cmay result from the reduction in TNF-α and NF-κB, which are
involved in the pathogenesis of cardiotoxicity associated with CIS. Our

results demonstrate that AVN-C significantly reduced the levels of the
inflammatory cytokines TNF-α, NF-κB, IL-1β, and IL-6. This dual
achievement of mitigating oxidative stress and inflammation highlights
the comprehensive cardioprotective mechanism of AVN-C.

Inflammatory responses can lead to increased oxidative stress (Xu
et al., 2013). The Keap1–Nrf2 pathway is recognized as a key
antioxidant defense mechanism that regulates oxidative stress
(Chen and Maltagliati, 2018). Under normal conditions, Nrf2 is
kept in an inactive state in the cytoplasm through its association
with the negative regulator Keap1 (Silva-Islas and Maldonado, 2018).
In response to stress, the Keap1–Nrf2 complex undergoes
dissociation, which mitigates the suppressive influence of Keap1 on
Nrf2. This process results in the activation of Nrf2, allowing it to
migrate into the nucleus (Silva-Islas and Maldonado, 2018). Recent
studies have identified the role of p62 in regulating oxidative stress
through the Keap1–Nrf2 pathway. The interaction between p62 and
Keap1 enhances the nuclear translocation of Nrf2, thereby initiating
its downstream signaling cascade (Bartolini et al., 2018; Silva-Islas and
Maldonado, 2018). The upregulation of Nrf2 resulted in increased
expression of antioxidant enzymes, which led to a reduction in ROS
levels (Abudalo et al., 2024). In the present study, the administration
of CIS significantly reduced p62 and Nrf2 protein and mRNA

FIGURE 8
Photomicrographs of histological sections from cardiac tissues across different experimental groups. (A) Control group: Demonstrates normal
myofibrillar structure with apparent striations. Histopathology Score: 0 (Normal). (B) AVN-C treated group: Shows normal to very mild myofibrillar
morphology, with no signs of necrosis, inflammation, or tissue damage. Histopathology Score: 0–1 (Normal to very mild). (C) The group treated with CIS
exhibited significant myocardial damage, as indicated by the arrowheads, which is suggestive of toxic injury. The histopathology score for this group
was 3–4, denoting marked to severe damage. (D) In contrast, the AVN-C group associated with CIS displayed mild myocardial damage, also indicated by
arrowheads, but this was less severe compared to the CIS group. The histopathology score for the AVN-C group was 2, indicating moderate damage.
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expression levels while concurrently increasing Keap1 protein and
mRNA expression levels, aligning with the findings of a previous
study (Abudalo et al., 2024; Jia et al., 2022). Conversely, our results
showed that treatment with AVN-C led to an increase in p62 and
Nrf2 protein and mRNA expression levels, as well as a reduction in
Keap1 protein and mRNA expression levels.

In this study, the histopathological staining results for the group
treated solely with AVN-C revealed that the cardiac sections largely
maintained their histological integrity, comparable to the control
group. The myocardial fibers were well-aligned, exhibiting minimal
or no visible edema or inflammation, and the nuclei preserved their
normal position and morphology. The absence of structural damage or
pathological changes suggests that AVN-C does not induce
cardiotoxicity and may possess inherent cardioprotective properties.
This finding is consistent with previous reports highlighting AVN-C’s
antioxidant and anti-inflammatory roles (Alwaili et al., 2024; Park et al.,
2021; Wang and Eskiw, 2019), which could contribute to maintaining
myocardial integrity even under pharmacological exposure. In contrast,
the group treated with CIS exhibited significant histopathological
changes, including extensive disruption of myocardial fibers,
cytoplasmic vacuolization, infiltration of inflammatory cells (as
indicated by yellow arrows), and early necrotic alterations. These
features are indicative of acute myocardial injury, potentially arising
from oxidative stress, inflammatory processes, or cardiotoxic exposure.
The pronounced severity of these lesions emphasizes the susceptibility
of cardiac tissue under pathological conditions and underscores the
necessity for effective cardioprotective interventions.

Notably, the group administered AVN-C following CIS therapy
showed a moderate improvement in myocardial structure when
compared to the group that received only CIS treatment. Although
specific histological abnormalities, such as inflammatory infiltration
(indicated by an arrow) and myofibrillar disorganization (indicated
by an arrowhead), remained observable, the overall integrity of the
tissue appeared to be partially restored. This observation suggests a
potential ameliorative effect of AVN-C on myocardial damage. The
observed reduction in inflammatory markers and structural
deterioration suggests that AVN-C may mitigate cardiac injury
through mechanisms involving anti-inflammatory effects or free
radical scavenging.

This study has important strengths. A significant strength is the
consistent use of strain, age group, and sex. Moreover, while
numerous studies have demonstrated the cardioprotective effects of
AVN-C, no prior studies have evaluated oxidative stress and
inflammatory biomarkers, as well as the modulation of the
p62–Keap1–Nrf2 signaling pathways in rats treated with CIS.
Nonetheless, a limitation of this study is the absence of
echocardiography for assessing cardiac function. Therefore, future
research should incorporate echocardiography to validate and extend
our findings. The present study elucidates cardiac damage induced by
CIS, as evidenced by distinct biochemical and histological alterations.
These alterations are characterized by elevated levels of cardiac
markers, such as CK-MB, troponin I, and LDH, alongside
increased ROS and MDA levels and heightened immunoreactivity
of IL-1β, IL-6, TNF-α, and NF-κB. Furthermore, the AVN-C + CIS
treatment resulted in a notable increase in p62, Nrf2, and SOD levels
compared with those in the CIS group. A marked increase in CIS-
induced Keap1 expression was also observed relative to that in the
control and AVN-C treatment groups. This study substantiates the

cardioprotective efficacy of AVN-C in alleviating CIS-induced
cardiotoxicity. This is demonstrated by enhanced cardiac function,
decreased oxidative stress and inflammatory biomarkers, and
modulation of the p62–Keap1–Nrf2 signaling pathways through
protein and gene expression relative to those in rats treated with
CIS alone. AVN-C confers cardioprotection, both by preventing
histological damage when administered alone and by reducing the
severity of injury when administered with CIS.

These results suggest that AVN-C supplementation may offer a
protective strategy against the cardiotoxic effects associated with
CIS, but further studies including functional and clinical
investigations are required.
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