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Phytochemicals are plant-derived bioactive compoundswith promising anticancer
properties, but their clinical use is limited by poor solubility, instability, rapid
metabolism, and restricted tumor penetration. Nanoencapsulation strategies
address these barriers by enhancing bioavailability, stability, and tissue-specific
delivery, thereby improving therapeutic efficacy and reducing systemic toxicity.
This mini-review summarizes recent progress in nanoscale phytochemical delivery
systems engineered for gene modulation and tumor microenvironment targeting,
including lipid-based, polymeric, hybrid, and biogenic nanocarriers that improve
biodistribution and enhance cellular uptake. Notably, the functional performance
of nanoscale delivery systems depends on precisely controlled physicochemical
characteristics. Consequently, microfluidics has emerged as a powerful tool to
fine-tune and fabricate phytochemical-based nanocarriers in a reproducible
manner. Beyond fabrication, microfluidic lab-on-a-chip platforms recreate
physiological and tumor-specific microenvironments, providing dynamic, real-
time assessment of drug transport, metabolism, and tumor–vascular
interactions in biomimetic conditions that surpass conventional static models.
These innovations expandmechanistic understanding and supportmore predictive
preclinical evaluations. Remaining challenges include variability of natural sources,
limited pharmacokinetic and toxicological data, and hurdles in scale-up and
standardization. By integrating nanoscale engineering with microfluidic
innovation, phytochemical-based nanomedicine is positioned to advance
toward more effective, safer, and clinically translatable cancer therapies.
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1 Introduction

Phytochemicals, a diverse group of bioactive compounds found in plants, are the subject
of renewed interest in biomedical research for their chemopreventive and chemotherapeutic
properties (George et al., 2021; Subramaniam et al., 2019). Despite the widespread use of
synthetic pharmaceuticals (Campos et al., 2019; Tamatam and Mohammed, 2024), these
natural bioactives have long been valued in traditional medicine and are increasingly
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recognized for their multi-targeted biological mechanisms and
generally favorable safety profiles (Hoenders et al., 2024; Wink,
2022; Yang and Ling, 2025). Their anticancer potential has been
supported by preclinical studies and, in some cases, by clinical
evidence (Choudhari et al., 2019). However, the transition of
phytochemicals from bench to bedside remains challenging due
to factors such as low water solubility, chemical instability, limited
tissue penetration, and rapid metabolism, all of which restrict
bioavailability and therapeutic impact in vivo.

To overcome these barriers, advanced formulation strategies
have been developed to enhance solubility, protect functional
integrity, and achieve controlled, site-specific delivery (Chen
et al., 2024) to support clinical translation (Aljabali et al., 2025).
Among these, encapsulation strategies for phytochemicals
encompass both micro- and nanoscale systems.
Microencapsulation techniques, such as spray-drying and freeze-
drying, are commonly employed to protect bioactive molecules from
environmental degradation and to improve handling, shelf stability,
and palatability (Ijod et al., 2024; Bińkowska et al., 2024; Ingale et al.,
2025). Some are engineered to respond to physiological cues, such as
pH or enzymatic activity, which allow for site-specific release of
bioactive compounds or secondary delivery systems that mediate
therapeutic effects (Ang et al., 2019; Ma Y. et al., 2021). However,
their role in targeted gene or microenvironmental modulation
remains limited. In contrast, nanoscale delivery systems,
including liposomes, polymeric nanoparticles, and exosome-based
carriers, are specifically designed to interact with biological systems,
providing control over biodistribution, cellular uptake, and
enhanced therapeutic performance (Das et al., 2020). Their
functional performance depends on precisely controlled
physicochemical characteristics, requiring reproducible, scalable
fabrication (Ly et al., 2024; Hui et al., 2025).

Traditional batch-based synthesis often suffers from limitations
such as batch-to-batch variability and reduced control over particle
uniformity and surface characteristics (Mülhopt et al., 2018). In
contrast, microfluidic technologies enable precise, reproducible
fabrication of phytochemical nanocarriers by controlling formulation
parameters such as flow rate, concentration, andmixing dynamics. This
approach produces uniform nanoparticles with defined surface and
compositional properties, supporting scalable and translational
nanomedicine development (Bezelya et al., 2023; Sebastian, 2022).
Beyond synthesis, microfluidic technologies support functional
evaluation through biomimetic platforms replicating tissue-specific
microenvironments with greater fidelity than conventional 2D or
static 3D cultures. These systems offer dynamic control over
nutrient delivery, waste removal, and oxygen gradients under flow
(Kim et al., 2021; Ayuso et al., 2022). In cancer research, they allow
reconstruction of complex tumor architectures, incorporating
vasculature, stromal barriers, hypoxic zones, and even microbiota
(Ayuso et al., 2022; Farooqi et al., 2023; Zhai et al., 2024). Their
efficiency with minimal cell input makes them ideal for patient-
derived material, while precise flow control supports real-time
assessment of metastasis, drug response, and tumor–vascular niche
interactions (Farooqi et al., 2023; Ngo et al., 2023; Zhai et al., 2024).

This minireview focuses on nanoscale phytochemical delivery
systems, highlighting microfluidic-based synthesis and functional
evaluation (Figure 1), with emphasis on gene modulation and tumor
microenvironment targeting.

2 Phytochemical-based nanosystems
for gene and tumor
microenvironment targeting

2.1 Formulation challenges and delivery
strategies

While plant-derived drugs such as vincristine, paclitaxel, and
docetaxel are established in oncology, they represent only a small
fraction of phytochemicals with demonstrated preclinical anticancer
activity that have yet to translate into routine clinical use (Figure 1)
(Asma et al., 2022; Mazumder et al., 2022; Kim et al., 2024). The
majority of plant-derived agents exhibit poor solubility and
bioavailability, requiring higher doses that increase toxicity risk.
Assumption of inherent safety is common (Jităreanu et al., 2022;
Mugale et al., 2024), yet many plant-based compounds, especially
alkaloids, saponins, and anthraquinones, can cause organ-specific
toxicity and genotoxicity, may alter drug metabolism, and
exacerbate adverse effects (Quan et al., 2020; Rao et al., 2022;
Brewer and Chen, 2017). Consequently, establishing no-observed-
adverse-effect levels (NOAEL) (Dorato and Engelhardt, 2005)
through standardized toxicokinetic studies is essential for clinical
advancement (Al-Naqeb et al., 2024). These challenges have driven
the development of nanoscale delivery strategies that enhance
pharmacokinetics and formulation versatility by solubilizing
poorly water-soluble compounds, protecting them from
enzymatic degradation, extending circulation time, and ultimately
improving bioavailability while reducing toxicity (Dhupal and
Chowdhury, 2020; Bilia et al., 2019).

Liposomes remain a cornerstone in phytochemical
nanoformulation due to their biocompatibility and amphiphilic
nature. Liposomal formulations of resveratrol and
epigallocatechin gallate improved bioavailability and reduced
systemic toxicity in colorectal and liver cancer models (Wilson
et al., 2023). Other lipid-based systems (Jacob et al., 2025), such
as solid lipid nanoparticles and nanostructured lipid carriers,
enhance absorption and plasma retention of betulinic acid and
andrographolide in various tumor models (Wang et al., 2024; Li
H. et al., 2022). Phytosomes (Talebi et al., 2025), formed by
complexing phytochemicals with phospholipids, improve
membrane permeability and metabolic stability, particularly
benefiting poorly absorbed polyphenols, silymarin, and catechin
(Babazadeh et al., 2018). In contrast to phytosomes, polymeric and
hybrid nanocarriers offer versatility for structurally diverse
phytochemicals. Systems based in poly(lactic-co-glycolic acid)
(PLGA) and hybrid carriers like lecithin–chitosan, often
combined with polyethylene glycol (PEG)-modified surfactants,
further enhance solubility, systemic retention, and cellular uptake
of compounds such as epicatechin, quercetin, ursolic acid,
thymoquinone, naringenin, and berberine in various cancer
models (Perez-Ruiz et al., 2018; Wang et al., 2021; Shivani et al.,
2023; Hsu et al., 2024; Selmi et al., 2023; Bhia et al., 2021). Beyond
improving solubility, nanosystems can also overcome structural
barriers to reach tumors more effectively. In melanoma models,
transferosomes, ultradeformable liposomes that can squeeze
through narrow intercellular gaps (Mohaddish et al., 2025),
enabled increased skin penetration and boosted antitumor
activity of flavonoid-rich extracts (Motawea et al., 2024).
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Additionally, incorporating matrix-modulating agents such as
hyaluronidase further enhances intratumoral penetration of
quercetin and resveratrol (Sun et al., 2025; Yu et al., 2024).

Controlled-release strategies exploit tumor-specific cues to
trigger release, maintaining therapeutic levels while reducing
systemic toxicity and dosing (Park et al., 2021). Chemical-
responsive systems use acid-labile or disulfide linkages to
destabilize in the acidic, glutathione-rich tumor milieu. Examples
include quercetin in pH-responsive graphene-oxide/polymer
nanocarriers, epigallocatechin-3-gallate in pH-sensitive
nanoparticles, and ursolic acid delivered either in chitosan-
modified liposomes (pH-responsive) or as a redox-responsive
polymeric prodrug, all showing enhanced intracellular release
under tumor-mimicking conditions (Matiyani et al., 2022;
Bhattacharya et al., 2024; Wang et al., 2017; Fu et al., 2021).
Enzyme-responsive carriers, such as matrix metalloproteinases
(MMP)-cleavable block copolymers, exploit selective cleavage by
tumor-overexpressed proteases (Vizovisek et al., 2021), achieving
faster release than non-cleavable controls (Padmavathy et al., 2018).
Similarly, dendrimers and hydrogels can be engineered for the
progressive degradation of their structural networks via
proteolysis to sustain polyphenol release and improve
dispersibility (Ben-Zichri et al., 2022), and localized delivery of
silibinin while minimizing burst-related toxicity (Yin et al., 2023).

Targeted nanodelivery augments passive accumulation by
decorating carriers with ligands for tumor-overexpressed
receptors or organ-specific uptake, thereby boosting in-tumor
exposure of phytochemicals while sparing normal tissues (Kalia
and Kaur, 2020). Collectively, strategies such as folate, RGD (Arg-
Gly-Asp) peptide, apolipoprotein E (ApoE), galactose, and epithelial
cell adhesion molecule (EpCAM) have been applied to resveratrol,
quercetin, epigallocatechin-3-gallate, curcumin, betulinic acid,
paclitaxel, and others across diverse tumor types, in some cases
also eliciting anti-tumorigenic immune responses (Barbarisi et al.,
2018; Kazi et al., 2020; Dutta et al., 2024; Chen et al., 2022; Hu et al.,
2021). These have enabled delivery to hard-to-reach tumors such as
gliomas (via transferrin, lactoferrin, or sialic acid-mediated
blood–brain barrier (BBB) transport) and to cancer stem cell
niches through CD44-targeted systems (Guo et al., 2013; Yang
et al., 2017; Kuo et al., 2019; Mittal et al., 2023). These ligand-
mediated approaches expand the range of tumors accessible to
phytochemical-based nanotherapy, including those protected by
physiological barriers or with low passive accumulation.

Among these strategies, curcumin, a benchmark compound, has
been incorporated into nearly all major nanocarrier platforms,
exemplifying design principles that can be applied to other
phytochemicals (Zandieh et al., 2023). Similarly, while whole
plant extracts remain under exploration, batch variability

FIGURE 1
Phytochemicals used in oncology, their sources, and their delivery and evaluation systems.
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complicates standardization and regulation compared to isolated
compounds (Ukwubile et al., 2025; Alabrahim et al., 2024; Guillén-
Meléndez et al., 2024). In addition, plant-derived exosome-like
nanoparticles have emerged as biogenic delivery platforms that
naturally encapsulate and transport phytochemicals across
biological barriers, offering high biocompatibility, therapeutic
potential, targeting capability, and efficient cellular uptake (Kim
et al., 2022; Sha et al., 2024).

2.2 Mechanistic insights and clinical
translation

Phytochemicals delivered through nanocarriers produce
antiproliferative and pro-apoptotic effects by modulating core
oncogenic cascades as well as oxidative-stress sensing via Kelch-like
ECH-associated protein 1–nuclear factor erythroid 2–related factor 2
(Keap1–Nrf2) (Parvin et al., 2025; Aljabali et al., 2025; Situmorang et al.,
2024). Certain subclasses display mechanistic preferences: polyphenols
like resveratrol and curcumin frequently downregulate nuclear factor
kappa B (NF-κB) and signal transducer and activator of transcription 3
(STAT3), impairing inflammatory and survival cascades (Dhupal and
Chowdhury, 2020); flavonoids including quercetin and epigallocatechin
gallate modulate phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of rapamycin (mTOR) and mitogen-activated
protein kinase/extracellular signal-regulated kinase (MAPK/ERK)
signaling, restricting proliferation and metabolic adaptation (Melim
et al., 2022); terpenoids such as ursolic acid and oridonin directly
interfere with STAT3, heat shock protein 70 (HSP70), and other protein
effectors (Yao et al., 2023); and alkaloids like berberine predominantly
target AMP-activated protein kinase (AMPK)-dependent metabolic
reprogramming, indirectly suppressing mTOR-driven growth
(Hashim et al., 2024; Cheng and Ji, 2020). In parallel,
phytochemicals also alter glycolysis, glutamine dependence, and lipid
biosynthesis, reducing tumor metabolic plasticity (Dey et al., 2021;
Hashim et al., 2024; Shuvalov et al., 2023; Wu et al., 2021).
Epigenetically, phytochemicals, notably polyphenols and terpenoids,
can alter histone acetylation and DNAmethylation, as well as modulate
miRNA expression, restoring silenced tumor suppressor genes and
reducing oncogene expression, yielding antiproliferative, pro-apoptotic,
and resensitizing effects (Aljabali et al., 2025; Dandawate et al., 2016;
Roy and Datta, 2019). These molecular-level interventions converge to
restrict both bulk tumor populations and therapy-persistent subclones,
including cancer stem-like cells (Dandawate et al., 2016; Melim et al.,
2022; Naujokat and McKee, 2021).

Beyond intrinsic signaling, nanocarrier-delivered phytochemicals
modulate the tumor microenvironment (TME) by regulating fibroblast
activation, extracellular matrix remodeling, angiogenesis, and immune
cell function (Melim et al., 2022; Aljabali et al., 2025). Polyphenols blunt
epithelial-to-mesenchymal transition (EMT)–metastasis programs and
hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF-
1α/VEGF)-driven angiogenesis, flavonoids modulate stemness
pathways such as Wingless/Integrated (Wnt)/β-catenin, Hedgehog,
and Notch, and terpenoids engage apoptosis and p53-centered
DNA-damage checkpoints (Situmorang et al., 2024; Aljabali et al.,
2025; Liu et al., 2023; Ci et al., 2016; Kim et al., 2024; Pan et al., 2025;
Shuvalov et al., 2023). Importantly, phytochemicals enhance antigen
presentation and cytotoxic T-cell infiltration and modulate

immunosuppressive mediators such as programmed death-ligand 1
(PD-L1) and transforming growth factor-β (TGF-β) in a compound-
and context-dependent manner (Parvin et al., 2025; Dhupal and
Chowdhury, 2020). They also promote macrophage polarization
from an M2-like to an M1-like phenotype and suppress the
accumulation of myeloid-derived suppressor cells, thereby restoring
antitumor immune surveillance (Yao et al., 2023; Aljabali et al., 2025).
Resveratrol, curcumin, and catechins synergize with checkpoint
inhibitors by reprogramming the immunosuppressive
microenvironment, while ursolic acid and quercetin modulate
inflammatory factors to shift TME balance toward tumor rejection
(Chen et al., 2020; Guven et al., 2022; Li et al., 2023b). Combination
nanoformulations, widely explored for curcumin, resveratrol, quercetin,
and other phytochemicals, have enabled the co-delivery of
chemotherapeutics or radiotherapy to achieve synergistic antitumor
effects (Kang et al., 2018; Cheng and Ji, 2020; Lv et al., 2016;
Wongrakpanich et al., 2024; Afereydoon et al., 2022; AbouAitah
et al., 2022; Afshari et al., 2023; Corte-Real et al., 2024),
counteracting multidrug resistance by downregulating efflux
transporters and disrupting pro-survival metabolic adaptations
(Parvin et al., 2025; Melim et al., 2022; Li et al., 2019). More
recently, nanocarriers have been engineered to co-deliver therapeutic
genes, such as p53, regulatory RNAs (siRNA andmiRNA targeting PD-
L1, survivin, VEGF, B-cell lymphoma 2 (Bcl-2), and others), and
naturally occurring cytolytic peptides, thereby enhancing therapeutic
efficacy through gene silencing, apoptosis induction, and immune
modulation (Ashrafizadeh et al., 2020; Bhagavatheeswaran and
Balakrishnan, 2023; Li X. et al., 2022; Eksi et al., 2025; Wang et al.,
2025; Xu et al., 2018; Sun et al., 2023). Collectively, these combination
approaches leverage multiple signaling and metabolic pathways,
reprogram the tumor microenvironment, and mitigate therapeutic
resistance.

Several phytochemical nanoformulations, such as paclitaxel
(Abraxane®), irinotecan (Onivyde®), vinorelbine (NanoVNB®),
vincristine (Marqibo®), and docetaxel (DoceAqualip®), are already
FDA-approved for cancer therapy (Dhupal and Chowdhury, 2020),
while multiple curcumin-, camptothecin-, ursolic acid-, mangiferin-,
and quercetin-based platforms are undergoing clinical evaluation in
liposomal, polymeric, micellar, and plant-derived nanocarriers (Devan
et al., 2023; Lekhak and Bhattarai, 2024; Kumar et al., 2024). Patent
activity highlights curcumin-, resveratrol-, and quercetin-based
nanosystems, such as liposomes, polymeric nanoparticles, and plant-
derived vesicles, designed for improved solubility, stability, and tumor
targeting (Table 1). Translation remains limited by pharmacokinetic,
scale-up, and regulatory hurdles; standardized characterization and
robust preclinical models and clinical design will be critical for
bringing these promising nanosystems from bench to bedside.

3 Microfluidic technologies driving
innovation in design and evaluation

3.1 Microfluidic synthesis of phytochemical
nanocarriers: precision and scalability

One of the unique properties of microfluidics is laminar flow, an
ordered parallel flow devoid of any fluid layer disruption, which
confers constant continuous mixing through the process
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(Jaradat et al., 2022). In this profile, diffusion plays a key role in
evening out concentration differences at a molecular level (Cullen
and Misra, 2015). Microfluidics creates steep spatial and temporal

solubility gradients, critical for uniform, well-defined nanoparticles
(Nunziata et al., 2025). These properties confer a superior mixing
quality, assure the same production quality over time with minimal

TABLE 1 Advances in phytochemical-based nanosystems for cancer therapy: patent trends and microfluidic production approaches.

Part A. Patent activity in phytochemical-based nanosystems for cancer therapy (2010–2022)

Active ID Phytochemical(s) Nanoplatform Purpose Indications(s) Year

WO2010013224A2
(Pending)

Curcumin Liposomal formulation Enhance bioavailability and targeted
delivery

Cancer (general) 2010

US20200188311A1
(Active)

Curcumin (with STAT3 inhibitor and a
chemotherapeutic agent)

Plant/derived
microvesicle

Cancer targeting moiety Brain, breast, lung, and
colon cancer

2017

WO2017137957A1
(Active)

Resveratrol Colloidally stable
nanoparticles

Improve bioavailability and half-life Cancer, cardiovascular
disorders

2017

US20170224636A1
(Inactive)

Curcumin-sophorolipid complex Nanoemulsion Improve solubility, stability, and oral
bioavailability

Breast cancer 2017

EP3144006 (Active) Curcumin Liposomes Combined with chemotherapeutics,
eliminates QT prolongation

Glioblastoma 2017

US10182997B2
(Active)

Curcumin Polymeric nanoparticles Enhance solubility and therapeutic
effect

Cancer (general) 2018

WO2018098247A1
(Active)

Broccoli extract Plant-derived
nanoparticles

Improve anticancer potential Colon cancer 2018

IN202141046188
(Active)

Quercetin TPGS nanosuspension Improve dissolution and oral
bioavailability

Breast cancer 2021

IN202241000705
(Pending)

Astragalus (with cisplatin and
vinorelbine)

Nanoformulation Enhance anticancer potential Lung cancer 2022

US12268785B2
(Active)

Curcumin Nano/micro particles Enhanced stability and
bioavailability

Cancer, inflammation 2022

Part B. Summary of recent studies on the production of nanocarriers for phytochemical encapsulation usingmicrofluidic
devices

Nanocarrier Microfluidic
technique

Size (nm) PDI EE (%) LC (%) Composition Embedded
phytochemical

Ref

Polymeric
nanoparticles

flow-focus
microfluidic chip

76.5 ± 0.8 <0.3 97.2 ± 0.6 11.1 ± 0.1 zein-SH nanoparticle
suspension

Curcumin Guo et al.
(2023)

Hybrid
nanoparticles

(HNPs)

multi-stage
microfluidic TrH

chip

131.4 ± 1.32
143.2 ± 2.25

<0.3 ≈100 14.97 ± 1.19
16.58 ± 0.69

(PTX)-simvastatin/
HNPs, PTX-lenvatinib//

HNPs

Paclitaxel Li et al.
(2025)

Liposomes SHM ~120 <0.2 N.A. 17 DMPC/curcumin Curcumin Hamano
et al.
(2019)

Liposomes 5-input chip mixing
junction, Dolomite

227 ± 1 0.20 ± 0.01 38.0 ± 6.0 11.0 ± 2.0 DSPC:Chol
PEG2000-PE

1:2 doxorubicin:
umbelliprenin

Umbelliprenin Gkionis
et al.
(2020)

Liposomes MHF 147 ± 19 0.124 88 6.5 DMPC/Chol/PTX Paclitaxel Jaradat
et al.
(2022)

Liposomes MHF 168 ± 4.5 0.183 91 6.8 DPPC/Cholesterol/PTX Paclitaxel Jaradat
et al.
(2022)

Liposomes NanoAssemblr®
Benchtop

herringbone

79.3 ± 7.3 0.125 ± 0.057 83 ± 5 N.A. oleous phase: Chol, PC,
Mal-PEG- docetaxel

aqueous phase: dextrose,
salt buffer (MgSO4 or

KH2PO4)

Docetaxel Dacos
et al.
(2024)
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intra-batch, reduced batch-to-batch, and operator variability during
scale-up (Cai et al., 2022).

Nanoparticle synthesis comprises three stages: nucleation,
growth, and particle separation (Siavashy et al., 2021). Batch
nanoparticle synthesis methods lack control in particle growth,
mixing, and separation to prevent agglomeration, ultimately
causing fluctuations in size distribution and a diverse particle
assortment with varying chemical and physical traits, which
restricts the synthesis of core–shell nanoparticles and diminishes
encapsulation efficiencies (EE). On the other hand, microfluidics
enables precise flow rate control (Cai et al., 2022). Then, it can
overcome some of the large-scale reactor intricate hurdles as it
tackles variability and scalability issues, which are major
conventional batch technique concerns (Nunziata et al., 2025). In
the nanocarrier synthesis realm, these advantages have been
exploited to control attributes such as size, size distribution, and
drug loading (Table 1).

Regarding polymeric nanoparticles, chitosan is an FDA-
recognized biopolymer cleared for use in wound-healing devices
and with limited Generally Recognized As Safe (GRAS) status in
specific food applications, also widely investigated for drug delivery
systems (Shah et al., 2025; Naghib et al., 2024). Beyond its prior use
in nanomedicine, it has more recently been integrated into
microfluidic platforms for the controlled synthesis of
nanoparticles, underscoring its translational relevance (Siavashy
et al., 2021). More broadly, microfluidic approaches have enabled
the synthesis of other polymeric nanoparticles as well. For example,
using the innovative multi-stage microfluidic TrH chip, hybrid
nanoparticles co-encapsulating paclitaxel-simvastatin and
paclitaxel-lenvatinib were successfully produced, demonstrating
the versatility of microfluidic platforms for multi-drug-loaded
nanomedicines (Li et al., 2025).

Regarding liposome preparation, microhydrodynamic focusing
(MHF) (Weaver et al., 2022) and herringbone micromixer (Pisani
et al., 2022) have been utilized. MHF presents promising results in
producing liposomal formulations with low polydispersity index
(PDI) by a one-step procedure (Bochicchio et al., 2020). In MHF,
two fluid streams are introduced into a microchannel, where one
stream flows at the center and is enveloped by another. This mixture
relies on the diffusion mechanism to blend two reagents, wrestling in
a lower throughput of around a hundred μL/min. In contrast,
herringbone micromixers boast a higher throughput of
approximately a few mL/min. Most studies utilizing this
configuration rely on a commercialized chip that requires
specialized equipment, the NanoAssemblr™ bench-top
instrument (Precision Nano Systems Inc., Vancouver, Canada).
This device is designed for nanocarrier production and is
commercially accessible for research endeavors. In fact, the
characteristics of eleven liposomal docetaxel formulations
prepared using the NanoAssemblr™ bench-top instrument were
assessed by (Dacos et al., 2024). Indeed, the liposomal delivery
system for curcumin (Lipo-Cur) was developed utilizing automated
microfluidics. When administered alongside cisplatin to mice with
tumors, Lipo-Cur strengthened the cisplatin antitumor effectiveness
across various mouse tumor models while mitigating nephrotoxicity
(Hamano et al., 2019). In this connection, umbelliprenin was co-
encapsulated with doxorubicin in liposomes, and this combination,
prepared with microfluidics, induced higher toxicity than liposomes

prepared with the thin-film method, with an IC50 (half-maximal
inhibitory concentration) at least 2-fold lower. This feature was
attributed to different release kinetics. Furthermore, they discovered
that umbelliprenin affected the viscoelastic behaviour and the lipid
biomembrane fluidity (Gkionis et al., 2020).

In this regard, (Jaradat et al., 2022), prepared liposomes to
encapsulate paclitaxel and determined the best lipid candidates
for nanocarrier synthesis. They found that microfluidics has a
significant effect in improving the EE of paclitaxel compared to
other conventional methods, such as film hydration and extrusion
(EE% <50%). Furthermore, they observed that MHF enhanced 1,2-
Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-
Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) EE%. In
addition, these lipids provided a smaller particle size due to their
short acyl length. Besides, paclitaxel loading in both DMPC and
DPPC liposomes exhibits higher packing with DPPC and shows a
sustained release profile. Importantly, the delayed release (after 24 h)
can be an advantage in limiting the collateral toxicity to normal
tissue due to the reduced premature release.

In fact, continuous flow achieved throughmicrofluidics provides
better heat mass transport, and it enables multiple unit operations
(Guo et al., 2023). These properties were applied to successfully load
curcumin, a hydrophobic polyphenol extracted from the rhizomes
of Curcuma longa, into zein-SH nanoparticles by establishing a
robust and controllable solvent-antisolvent laminar diffusion,
achieving a millisecond short mixing time and a homogeneous
particle size distribution. They improved EE and loading capacity
(LC) (Table 1, Part B) by applying microfluidics when compared to
bulk mixing prepared nanoparticles (EE% = 7.7 ± 0.5, LC% = 0.4 ±
0.5). They found that at a high flow ratio, the nucleated
nanoparticles are rapidly diluted in the antisolvent and kinetically
locked, preventing further size growth. When prepared by bulk
mixing, they observed spherical nanoparticles connected by
dendritic structures that form due to turbulent mixing in some
areas (Guo et al., 2023).

Furthermore, microfluidics offers outstanding opportunities for
the nanodrug delivery systems production processes as it enhances
controllability and uniformity (Zhang et al., 2023). In spite of the
remarkable progress made in the creation and assessment of these
systems through microfluidics, the shift of this innovative
technology into actual industrial applications remains a hurdle.
Achieving a kilogram production output or beyond each day is
essential for both clinical investigations and large-scale
manufacturing (Liu et al., 2018). However, the daily microfluidic-
assisted-nanoparticle-production rate is usually in the milligram
range (Kim et al., 2012). In order to address this issue, a nanoparticle
production rate up to 3 kg/day was achieved by developing a coaxial
turbulent jet mixer, which is suitable for industrial-scale production
of nanodrug delivery systems (Lim et al., 2014). Other explored
approaches are incrementing the channel dimensions (Gomez et al.,
2014), and microfluidic channel parallelization (Shepherd et al.,
2021). In this context, using an immobilized liquid lubricant
perfluorodecalin layer was proposed by (Hwang et al., 2025) to
prevent RNA-loaded lipid nanoparticles fouling. This technology
was applied to a staggered herringbone microfluidic (SHM) mixing
chip and reached more than 3 h of stable operation. Furthermore,
they demonstrated this strategy’s compatibility with a parallelized
microfluidic platform that gathers 256 SHM mixers, which assures
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stable production at L/h production rates suitable for commercial-
scale applications.

3.2 Lab-on-chip tools for modeling tumor
complexity and response

Microfluidic devices have emerged as an efficient tool for
modeling tumor and normal tissue microenvironments (Nasiri
et al., 2025b). Their ability to replicate tissue physiology and
integrate biomechanical factors such as extracellular matrix and
fluid dynamics parameters as flow rate, pressure, viscosity, surface
tension, shear stress, and wettability (Liu et al., 2021; Sunildutt et al.,
2023), has allowed them to create platforms to mimic the
heterogeneity and complex cell organization and study cancer
cell treatments, tumor evolution, chemosensibility, metastasis,
and cell migration (Dsouza et al., 2022; Nejati et al., 2025; Ding
et al., 2025). This performance is further enhanced by
nanomaterials, which mainly improve detection sensitivity and
biocompatibility (Tian et al., 2025).

Building on these advances, organ-on-a-chip (Ooc) represents a
next-generation approach, capable of recreating controlled micro-
and nanoenvironments in real time (Dsouza et al., 2022). These
advanced biomimetic systems combine two or more cell types,
including those derived from patients (Liu et al., 2025; Nejati
et al., 2025), with microfluidics to replicate tumor heterogeneity,
vascular networks, and three-dimensional architecture, facilitating
the evaluation of drugs (Ma C. et al., 2021; Tian et al., 2025; Ayuso
et al., 2022). In recent years, Ooc platforms have been used to assess
the anticancer activity and phytochemical toxicity, for instance,
Spatholobi Caulis tannin in cervical cancer (Wang et al., 2018),
cis-stilbene glycoside and emodin-8-O-β-D-glucoside from
Polygonum multiflorum in liver cancer (Deng et al., 2025), and
panaxatriol from Panax ginseng C.A. Mayer in lung
adenocarcinoma (Nasiri et al., 2025a). Additionally, this
technology enables the study of complementary TME such as cell
morphology, inflammatory process, migration process, protein
expression, enzymatic activity, and oxygen and nutrient supply
(Farooqi, 2022; Feng et al., 2025; Boul et al., 2021).

The integration of nanotechnology further enhances the
phytochemical bioactivity, which has been evaluated in Ooc
platforms. For instance, (Sharifi et al., 2020), used a liver-chip model
to evaluate and compare anticancer activity of thymoquinone from
Nigella sativa, both in its free form and encapsulated in chitosan-based
nanoparticles. The results emphasize the potential of these systems to
improve the analysis of antimetastatic activity, proliferation, migration,
and colonization of tumor cells when encapsulated phytochemicals are
delivered in tumor microenvironments.

Specialized Ooc platforms have been developed to address
specific cancer-related processes. Vascular-on-a-chip models
mimic angiogenesis and vascular responses; (Fayazbakhsh et al.,
2023); used such a system to mimic blood vessels structure in
angiogenesis process and assess the antioxidant effects of
resveratrol-loaded gold nanoparticles on human umbilical vein
endothelial cells under hyperglycemic conditions. The system
enabled precise collagen level modulation and reactive oxygen
species (ROS) real-time monitoring, revealing their reduction.
BBB-on-a-chip system replicates central nervous system barriers

to test drug delivery to brain tumors and evaluate parameters such as
homeostasis and permeability. For instance, (Shi et al., 2023),
developed a BBB-on-a-chip model using microvascular
endothelial cells, pericytes, and mast cells to mimic the glioma
microenvironment, enabling synergistic effect evaluation from
traditional Chinese medicine phytochemicals to improve drug
delivery and efficacy (Garcia et al., 2023) created a model
combining 3 cell types: brain cells, human astrocytes-
hippocampal (Ha-h), and Human brain vascular pericytes
(HBVP), to test permeability and internalization of PLGA-
encapsulated ferulic acid. Results showed improved
internalization of this hydrophobic antioxidant, reduced ROS
levels, and suggested nanoparticle size influences BBB permeability.

In addition, tumor-on-a-chip integrates tumor and stromal cells
instead of healthy tissue cells, to mimic invasive tumor behaviour
and TME dynamics (Li et al., 2023a; Tian et al., 2022), enabling a
close evaluation of the anticancer potential of phytochemical
extracts under conditions compared to 2D cultures. (Farooqi
et al., 2022). used this model to evaluate anticancer activity of A.
cappadocicum methanolic extract as well as to study ROS real-time
monitoring, superoxide dismutase activity, and tumor biomarkers
(e.g., urea, albumin) in the liver. Similarly, (Martins et al., 2023),
designed a single-channel microfluidic devices with human
glioblastoma cells to test the efficacy of free and nanoparticle-
encapsulated docetaxel, reporting up to 50-fold lower IC50 values
compared to conventional 2D monolayers, indicating higher tumor
susceptibility under microfluidic conditions. Finally, spheroid on a
chip combines multicellular tumor spheroids with microfluidics to
assess long-term drug responses under perfusion, allowing
compression of in vivo tumorigenesis and processes such as
apoptosis and cell viability (Uzabakiriho et al., 2025; Nashimoto
et al., 2020). For instance, a model with endothelial cells revealed
that perfusion modulates paclitaxel sensitivity, underscored the role
of stromal cells in angiogenesis, and identified flow rate as a
determinant of drug efficacy and therapeutic response
(Nashimoto et al., 2020).

Altogether, Ooc platforms provide a versatile and
physiologically relevant technology for studying anticancer
phytochemicals, nanoparticle-based therapies, tumor
heterogeneity, and TME processes, bridging the gap between
conventional 2D in vitro assays and in vivo models.

4 Conclusion

Phytochemical-based nanosystems enhance tumor-targeted
therapy through multi-pathway modulation, improved
bioavailability, stability, sustained and controlled release and
efficacy. Among the different approaches, liposomes appear to be
the most promising nanosystems in phytochemical delivery due to
their properties such as: functional surface, low toxicity andminimal
impact on healthy tissues. In this context, microfluidics enables the
synthesis of precise-controlled size nanocarriers with potent activity
for both laboratory research and industry settings. Although large-
scale manufacturing remains challenging, parallelization emerged as
a key strategy to scale production from milliliters to liters per hour.
Lab-on-a-chip platforms complement microfluidic synthesis by
providing biomimetic evaluation of transport, penetration, and
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response, facilitating patient-derived assays, increasing fidelity,
lowering costs, and enhancing translational potential. Although
several phytochemical nanomedicines have achieved FDA
approval, microfluidic applications remain preclinical;
nevertheless, ongoing innovation and patent activity highlight
their promise for clinical translation.
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