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Hepatocellular carcinoma (HCC) remains a leading cause of cancer death, and
recovery after therapy is shaped by heterogeneous etiologies, genomes and
microenvironments. Targeted and immunotherapy combinations have
broadened first-line options; yet durable benefit is uneven, and serum/
imaging anchors (AFP, AFP-L3%, PIVKA-II, LI-RADS/mRECIST) incompletely
resolve residual disease or functional restoration. In this review we summarise
AI-enabled radiology, digital pathology and multi-omic/liquid-biopsy analytics
that test and refine traditional biomarkers and drug-target readouts, and appraise
translational opportunities in composite surveillance and recovery forecasting.
We also discuss enduring challenges—including assay standardisation, spectrum
bias, data leakage, domain shift and limited prospective external validation—that
temper implementation. By integrating established anchors (AFP/AFP-L3%,
PIVKA-II, ALBI, contrast-enhanced hallmarks) with AI-derived signals
(radiomics/pathomics, cfDNA methylation) and pathway contexts
(VEGF–VEGFR, WNT/β-catenin), emerging strategies align predictions with
clinical endpoints, individualise therapy and chart hepatic function. Our
synthesis provides an appraisal of AI–traditional integration in liver cancer
recovery and outlines pragmatic standards—analytical robustness, transparent
reporting and prospective, guideline-conformant evaluation—required for
clinical adoption. We hope these insights will aid researchers and clinicians as
they implement more effective, individualised monitoring and treatment
pathways.

KEYWORDS

hepatocellular carcinoma, artificial intelligence, recovery, AFP, PIVKA-II, radiomics

1 Introduction

Primary liver cancer—dominated by hepatocellular carcinoma (HCC)—remains a
leading cause of cancer mortality worldwide and displays marked etiologic, genomic,
and microenvironmental heterogeneity that complicates prognostication and therapeutic
decision-making (Balogh et al., 2016; Llovet et al., 2022a; Rumgay et al., 2022; Llovet et al.,
2022b). Clinically used serum markers such as alpha-fetoprotein (AFP) and des-γ-carboxy
prothrombin/protein induced by vitamin K absence or antagonist-II (DCP/PIVKA-II),
alongside contrast-enhanced imaging hallmarks, form the backbone of surveillance and
post-treatment monitoring (European Association for the Study of the Liver, 2024; Singal
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et al., 2023; Aslam et al., 2024). Yet their performance varies with
stage, etiology, and assay choice, and their kinetics differ—AFP/
AFP-L3% and PIVKA-II show lead–lag behavior relative to imaging,
distinct biological half-lives, and inter-assay variability—so no single
marker reliably captures minimal/measurable residual disease, early
relapse, or post-therapy functional recovery. Contemporary
guidance emphasizes risk-stratified surveillance and careful
interpretation of AFP with imaging, reflecting both the utility
and limitations of traditional markers. Recent studies suggest
PIVKA-II may complement or outperform AFP in selected
contexts (for example, in recurrence detection or post-transplant
follow-up), but results remain heterogeneous across cohorts
(Piratvisuth et al., 2023; Parikh et al., 2023; Beudeker et al., 2023;
Marsh et al., 2025), reinforcing the need for rigorous, generalizable
validation before routine adoption.

Concurrently, the therapeutic landscape has broadened from
multikinase inhibition to anti-angiogenic and immune-checkpoint
combinations, with benefits that are clinically meaningful but
uneven across molecular subtypes and immune phenotypes (Zhu
et al., 2024; Jost-Brinkmann et al., 2023; Kudo, 2022). VEGF-
pathway blockade and tyrosine-kinase inhibitors (e.g., lenvatinib
and sorafenib) remain foundational drug classes, and guideline
updates now incorporate first-line immunotherapy-based options;
however, response heterogeneity and primary
resistance—frequently linked to oncogenic signaling such as
WNT/β-catenin and to immune-excluded tumor
ecosystems—underscore the gap between target biology and
patient-level benefit (Testa, 2024; Chen et al., 2022; George and
Levine, 2021). This variability motivates biomarker strategies that
move beyond single-analyte thresholds toward integrated readouts
capable of forecasting individual benefit, relapse risk, and
trajectories of hepatic functional recovery after locoregional or
systemic therapy.

Artificial intelligence (AI) offers a principled route to strengthen
biomarker and target validation for liver cancer recovery by
integrating multi-scale evidence—radiology (radiomics),
pathology (pathomics), multi-omics, and liquid biopsy—into
calibrated, testable predictions. In imaging, handcrafted radiomics
and deep learning models have associated pre-treatment and peri-
treatment features with microvascular invasion, immunotherapy or
TACE response, and postsurgical recurrence; in digital pathology,
convolutional and transformer-based systems learned prognostic
signatures from routine slides; and in spectroscopy-enhanced
workflows, label-free optical fingerprints coupled to neural
networks achieved rapid tissue classification (Zhong et al., 2022;
Su et al., 2023; Yamashita et al., 2021; Saillard et al., 2020). At the
same time, field-level evaluations highlight methodological pitfalls
that can inflate performance estimates and hinder translation (e.g.,
spectrum bias, data leakage, inadequate external validation, and
domain shift). To address these risks, consensus frameworks and
reporting standards—together with radiomics quality
criteria—promote analytical validity, transparent reporting, and
prospective, multi-site evaluations that are essential precursors to
claims of clinical validity and utility. For this review, we define ‘liver
cancer recovery’ on three axes—(a) oncologic remission/relapse risk,
(b) viable tumor burden adjudicated by mRECIST/LI-RADS
Treatment Response, and (c) hepatic functional restoration (e.g.,
ALBI trajectory and tolerance for procedures)—evaluated across

0–3, 3–12, and >12-month windows that respectively inform early
retreatment/confirmation, surveillance intensity and therapy
switching, and late-relapse detection with long-term liver-
reserve planning.

2 Traditional biomarkers and drug
targets in liver cancer recovery

Traditional biomarkers used to assess liver cancer recovery span
serum proteins, imaging hallmarks, and pathology-based factors
that together inform residual disease risk, treatment response, and
trajectories of hepatic function after therapy (Chen et al., 2023;
Huang et al., 2023; Xia et al., 2024). Alpha-fetoprotein (AFP)
remains the most widely used blood marker, but its standalone
sensitivity for surveillance and early recurrence detection is limited;
combining AFP with isoform measures (AFP-L3%) and des-γ-
carboxy prothrombin/protein induced by vitamin K absence-II
(DCP/PIVKA-II) improves discriminative performance and is
increasingly embedded in composite algorithms such as GALAD
(age, sex, AFP, AFP-L3, DCP) (Table 1). Contemporary guidance
emphasizes ultrasound and contrast-enhanced imaging as anchors
for monitoring, with arterial-phase hyperenhancement and venous/
late-phase washout constituting radiologic hallmarks that support
diagnosis and post-treatment assessment (Cannella et al., 2024; Li
et al., 2023; Spadarella et al., 2023). In clinical practice, dynamic
changes in these markers and imaging features, rather than single
thresholds, are interpreted in risk-stratified follow-up pathways.

Evidence indicates that DCP/PIVKA-II may complement or, in
selected settings, outperform AFP for surveillance and recurrence
monitoring, including post-resection and post-transplant contexts
(Keller et al., 2022; Da-Ano et al., 2020; Jia et al., 2025). Prospective
and translational studies show that adding DCP and AFP-L3 to AFP
enhances early detection, while several cohorts suggest PIVKA-II
tracks recurrence earlier than AFP in a subset of patients; however,
effect sizes vary across etiologies and assays, underscoring the need
for calibrated cut-points and external validation before universal
adoption (Nardone et al., 2024; Zhang et al., 2023; Poetter-Lang
et al., 2020; Xu et al., 2023). The GALAD framework has entered
late-phase validation, underscoring multivariable models; however,
GALAD-type scores should be interpreted alongside imaging trends
and marker kinetics (AFP/AFP-L3%/PIVKA-II) rather than as
standalone triggers.

Therapeutic targets historically leveraged in hepatocellular
carcinoma include the VEGF–VEGFR axis and multi-kinase
signaling nodes. Lenvatinib demonstrated non-inferiority to
sorafenib in first-line therapy, consolidating VEGFR/FGFR-
directed inhibition as a backbone, and the combination of
atezolizumab plus bevacizumab improved overall survival versus
sorafenib, establishing an anti-angiogenic–immunotherapy
standard that is now widely adopted (Abou-Alfa et al., 2022;
Cheng et al., 2022; Yuan et al., 2023; Qi et al., 2024).
Nevertheless, response heterogeneity remains substantial and is
partly explained by tumor-intrinsic programs such as WNT/β-
catenin (CTNNB1) activation that associate with immune
exclusion phenotypes and attenuated benefit from immune
checkpoint blockade. These observations justify biomarker
strategies that pair traditional serum and imaging readouts with
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oncogenic-pathway and immune-context indicators when
estimating recovery endpoints.

3 AI-enabled validation frameworks for
biomarkers and targets

AI-enabled validation in liver cancer recovery should proceed as
a structured pathway that links analytical validity, clinical validity,
and clinical utility while preserving the stated intended
use—estimating recurrence risk, anticipating treatment response,
and tracking hepatic function restoration (Zhang et al., 2025; Luo
et al., 2022; Cao et al., 2025). Prospective protocolization and
transparent reporting are essential; early-stage, live clinical
evaluations benefit from DECIDE-AI guidance, and studies
advancing to randomized or comparative designs should adhere
to SPIRIT-AI/CONSORT-AI extensions to minimize bias, clarify
integration within clinical pathways, and define decision thresholds
and change-management plans.

Analytical validity begins with feature and assay robustness
across sites, scanners, and pre-analytics. In imaging pipelines,
reproducibility and leakage-avoidant workflows require
standardized segmentation, pre-processing, and feature selection
with explicit test–retest evidence; widely used checklists (e.g., the
radiomics “how-to” and quality tools such as RQS and the newer
METRICS score) provide concrete criteria for study design,

repeatability checks, model calibration, and external validation
(Wang et al., 2021; Liu et al., 2024; Tan et al., 2020). Empirical
assessments show that average RQS remains modest across the
literature, underscoring the need for prospective registration,
phantom/test–retest analyses, and open science artifacts.
Harmonization methods are necessary to control batch effects
from acquisition or assay variability; ComBat variants and related
approaches have demonstrated effectiveness in reducing between-
scanner variability of radiomic features, and recent extensions
address multi-parameter and covariance shifts seen in multi-
centre imaging (Peng et al., 2023; Tejani et al., 2024; Xu et al.,
2024; Vasquez-Venegas et al., 2024). Beyond radiomics, similar
principles apply to liquid and tissue assays: pre-analytic
standardization, cross-platform calibration, and blinded
replication should be documented before multi-omic features are
combined with clinical variables in risk models.

Clinical validity requires demonstration that AI-derived
readouts generalize across institutions, indications, and sampling
frames relevant to routine practice. In HCC, deep learning on whole-
slide histology has been externally validated for recurrence risk
stratification after resection and can complement conventional
pathology factors; AI assistance has also improved pathologist
performance in distinguishing primary liver tumor subtypes,
highlighting how decision support can interface with expert
review rather than replace it (Wang et al., 2024; Soon and Wee,
2020; Vogel et al., 2018). Imaging-based models show that pre-

TABLE 1 Core traditional biomarkers and drug-target classes relevant to liver cancer recovery.

Entity What it measures Sample/assay Typical clinical use in
recovery context

Key notes

AFP Oncofetal glycoprotein produced by
subsets of HCC

Serum immunoassay Trend monitoring for recurrence
risk; adjunct to imaging in

surveillance and post-therapy
follow-up

Modest standalone sensitivity;
evaluate kinetics and combine

with other markers

AFP-L3% Lens culinaris agglutinin-reactive
AFP isoform

Serum lectin fractionation Complements AFP for early
tumor detection and relapse

assessment

Interpret as proportion of total
AFP; utility greatest when AFP

is measurable

DCP/PIVKA-II Abnormal prothrombin from
defective γ-carboxylation

Serum immunoassay Adjunct for surveillance and early
recurrence detection (including

post-resection/transplant)

May detect events missed by
AFP; assay platforms and cut-

points vary

Composite algorithms (e.g.,
GALAD)

Multivariable score integrating
demographics + AFP, AFP-

L3, DCP

Calculated from serum
markers

Risk stratification for presence/
relapse; candidate triage tool

alongside imaging

Requires site-specific
calibration; performance

depends on population mix

Imaging hallmarks Arterial-phase hyperenhancement
with portal/late washout on

CT/MRI

Dynamic contrast CT
or MRI

Defines viable tumor vs. post-
treatment change; informs

retreatment timing

Apply standardized acquisition/
reading; correlate with serum

trends

Pathology: microvascular
invasion (MVI)

Tumor emboli in small vessels Resection/transplant
specimen

High relapse risk; guides intensity
of post-operative monitoring

Not available after nonsurgical
therapy; surrogate imaging/risk

models used

Drug targets/classes:
VEGF–VEGFR inhibition

Angiogenesis pathway blockade
(e.g., bevacizumab; sorafenib/

lenvatinib)

Systemic therapy Foundational backbone;
influences necrosis, shrinkage,

and perfusion changes on imaging

Benefit modulated by vascular
phenotype and liver reserve

Drug targets/classes: immune
checkpoint (PD-1/PD-L1) + anti-

angiogenic

T-cell activation with vascular
normalization

Systemic combination
therapy

First-line standard in many
settings; impacts durability of
response and relapse timing

Efficacy varies with immune-
excluded vs. inflamed tumor

ecosystems

Oncogenic pathways influencing
response (e.g., WNT/β-catenin)

Tumor-intrinsic signaling linked to
immune exclusion

Tissue genomics or
surrogate signatures

Context for interpreting lack of
benefit from immunotherapy

Use as a resistance-context
indicator rather than a
standalone predictor
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operative CT/MRI radiomics can predict microvascular invasion
and relapse risk, but meta-analyses indicate only moderate pooled
accuracy to date, emphasizing the need for prespecified cut-points,
geography-split validation, and impact analyses before routine use
(Vasey et al., 2022; Collins et al., 2021; Whybra et al., 2024). Liquid
biopsy adds orthogonal signal: methylation signatures in cfDNA
have achieved promising diagnostic performance in HCC and
provide a substrate for AI classifiers that may refine surveillance
and early-relapse detection when interpreted alongside AFP/
PIVKA-II kinetics and imaging trends (Yoshizawa et al., 2025; L
et al., 2024; Sakai et al., 2024). As shown in Figure 1, multi-omic
integration—combining digital pathology, radiology, circulating
biomarkers, and transcriptomic or epigenomic features—can
increase discriminative performance and support subtype-aware
predictions, but integration must be accompanied by rigorous
control of overfitting, transparent feature provenance, and
reproducibility across platforms.

Clinical utility requires evidence that AI-augmented decisions
improve patient-centred outcomes or operational endpoints
without disproportionate harms across subgroups. Early-phase,
“silent mode” or decision-support evaluations specified under
DECIDE-AI (with clear actionability thresholds and fallback
rules) can precede randomized or stepped-wedge deployments
registered under SPIRIT-AI/CONSORT-AI.Deployment
planning should also include dataset-quality audits, shift/
fairness monitoring, and recalibration schedules. Frameworks
for medical-AI data quality (e.g., METRIC) distinguish dataset
shift (changes in case-mix, scanners, or workflows between
development and deployment) from shortcut learning (spurious
correlates the model exploits, such as devices or text markers) and
from performance disparities across etiologies/geographies; these
drive bias-detection, subgroup auditing, and safe model updates
under distribution shift (Katsube et al., 2011; Cao et al., 2022;
Kocak et al., 2024; Wei et al., 2024). When estimating treatment
effect (e.g., benefit from VEGF- or ICI-based regimens), models
must be predictive—not merely prognostic—by posing
counterfactual questions (individual/conditional average
treatment effect) with appropriate adjustment for confounding;
otherwise, risk scores reflect baseline prognosis rather than drug-
specific benefit.

An AI-enabled validation framework for liver cancer recovery
pairs standardized, reproducible analytics with multi-modal
external validation and prospective, guideline-conformant
evaluation. By enforcing these steps—robust feature engineering
and harmonization; transparent modeling with calibration
assessed by reliability curves and Brier score; reporting time-
dependent decision-curve analysis and net benefit alongside
AUC; generalization checks across scanners, assays, and
populations; and bias-aware deployment—AI can more credibly
forecast recurrence, guide therapy selection, and monitor
hepatic function.

4 Clinical translation: prognostic/
response readouts and recovery
monitoring

Clinical translation requires that model outputs align with
accepted clinical endpoints and can be acted on within standard
pathways for hepatocellular carcinoma. In routine monitoring,
dynamic serum markers and standardized imaging response
criteria remain the anchors; therefore AI outputs should be
actionable endpoints—e.g., ‘probability of viable tumor at next
imaging’ and ‘risk of hepatic decompensation within
90 days’—with example threshold ranges (≈30–40% to trigger
earlier imaging/loco-regional therapy; ≈10–15% 90-day
decompensation risk to avoid TACE/resection) and pre-
specified fallback to guideline-concordant management when
predictions are indeterminate (Beaufrère et al., 2024; Kocak
et al., 2025; Lee et al., 2025). For response assessment, AI can
harmonize longitudinal radiology with laboratory kinetics by
mapping feature trajectories to categorical readouts used in
clinics. mRECIST refinements emphasize viable enhancing
tissue as the relevant target, and the LI-RADS Treatment
Response algorithm formalizes viability after loco-regional
therapy; AI models that predict or emulate these adjudications
from serial CT/MRI, together with early on-treatment AFP/
PIVKA-II changes, can generate consistent response
probabilities and reduce inter-reader variability (Babu et al.,
2025; Cabibbo et al., 2025; Lu et al., 2025). Evidence syntheses
indicate that delta-radiomics—feature change over time,
typically sampled at baseline and first on-treatment imaging
(≈6–12 weeks depending on regimen)—improves sensitivity to
early therapeutic change; pitfalls include scanner/protocol drift
and confounding by treatment-timing; HCC-focused meta-
analyses suggest radiomics can predict immunotherapy
response, but prospective, multi-centre validation remains
limited (Reddy et al., 2022; Olbrich et al., 2024; Zhang et al.,
2020), so outputs should include calibrated uncertainty and
externally validated thresholds before guiding escalation or de-
escalation.

For prognostication, AI adds value by integrating multi-modal
signals that capture microscopic vascular dissemination, molecular
resistance contexts, and the host–liver axis. Radiomics models for
microvascular invasion—an established driver of relapse—show
only moderate pooled accuracy in comparative meta-analysis,
supporting their use as components of composite risk tools
rather than standalone surrogates. Tumor-intrinsic WNT/

FIGURE 1
AI-enabled validation of multimodal biomarkers and targets for
liver cancer recovery.
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CTNNB1 activation typifies an ‘immune-excluded’ (non-inflamed)
phenotype versus ‘inflamed’ tumors; tissue/genomic surrogates (e.g.,
CTNNB1 mutations, glutamine-synthetase staining or RNA
signatures) should be encoded as negative-predictive
contexts—modifying probabilities rather than imposing absolute
rules—when estimating ICI benefit (Nguyen Hoang et al., 2025;
Chen Y. et al., 2024; Fu et al., 2023). In parallel, longitudinal serum
kinetics contribute orthogonal information: PIVKA-II has
outperformed AFP for early disease in several settings and tracks
post-transplant or post-curative recurrence in subsets, enabling AI
to weight marker trajectories alongside imaging to forecast near-
term relapse risk (Chen L. et al., 2024; Xu et al., 2022; Kim et al.,
2023). For recovery monitoring, clinically actionable outputs are
continuous estimates of hepatic functional reserve and its trajectory
after surgery, loco-regional therapy, or systemic treatment.
Albumin–bilirubin (ALBI) grading—computed from serum
albumin and bilirubin with grade 1–3 cut-offs—has reproducible
prognostic value and, by avoiding subjective ascites/encephalopathy
items in Child–Pugh, offers a more objective baseline; AI models
that ingest serial labs can project individualized ALBI trajectories
and event-risk horizons (Kim et al., 2024; Zha et al., 2025;
Bartholomä et al., 2025). Quantitative gadoxetate-enhanced MRI
yields indices (e.g., hepatic uptake–based metrics and T1 mapping)
that correlate with ALBI and indocyanine-green clearance; fusing
these with labs in AI frameworks can forecast post-treatment liver
reserve and procedure tolerance for resection, TACE repetition, or
systemic-therapy continuation.

Liquid biopsy can further operationalize minimal/measurable
residual disease surveillance. Multi-centre data show cell-free
DNA methylation assays achieve phase-appropriate
performance for detection and surveillance, and emerging
prospective studies in HCC indicate that ctDNA status and
dynamics stratify molecular residual disease and predict
recurrence beyond conventional markers (Wehrle et al., 2024;
Ren et al., 2024; Hu et al., 2025; Abdelrahim et al., 2025);
embedding these signals with AFP/PIVKA-II kinetics and
imaging trends allows AI models to generate calibrated,
interval-specific relapse probabilities suitable for risk-stratified
follow-up and trial triage.

An implementation-ready translation pathway specifies, in
advance, how AI-computed probabilities or risk classes will
modify monitoring intensity or therapy selection,
demonstrates external validity against mRECIST/LI-RADS and
laboratory/imaging standards, and quantifies impact on concrete
endpoints such as earlier detection of viable tumor, reduction in
unnecessary retreatment, and preservation of liver function. This
approach maintains compatibility with guideline-based care
while enabling individualized prognostic, response, and
recovery readouts that are transparent, reproducible,
and auditable.

5 Outlook for AI–traditional integration
in liver cancer recovery

The near-term priority is to operationalize AI as an adjunct to
established serum and imaging anchors by constraining model
outputs to clinically accepted targets and by enforcing evaluation

standards already outlined for medical AI. Prospective protocols
should state the intended use (recurrence forecasting, treatment-
response adjudication, hepatic function trajectories) and follow
DECIDE-AI/SPIRIT-AI/CONSORT-AI guidance for early “silent-
mode” and subsequent impact studies, with explicit decision
thresholds and fallback rules (Zhang et al., 2025; Vogel et al.,
2018). Analytical validity requires leakage-resistant pipelines,
harmonized pre-analytics, and feature/test–retest robustness,
supported by radiomics quality criteria and cross-site
harmonization strategies before external validation (Wang et al.,
2021; Vasquez-Venegas et al., 2024). Calibration of predictions to
mRECIST/LI-RADS response and relapse windows is necessary to
ensure interoperability with routine reading and scheduling
(Beaufrère et al., 2024; Lu et al., 2025).

For prognostication and recovery monitoring, composite tools
that integrate AFP/PIVKA-II kinetics, pre-/on-treatment
radiology, and tissue or surrogate indicators of oncogenic
programs are most likely to generalize. Current radiomics
models for microvascular invasion show only moderate pooled
accuracy and should be embedded as components of composite
scores rather than standalone surrogates, with geography-split
validation and prespecified cut-points (Vasey et al., 2022; Zhang
et al., 2020). Clinical context modifiers—including WNT/
CTNNB1-linked immune exclusion for immunotherapy
decision-making, and longitudinal ALBI trajectories for
procedure tolerance and liver reserve—should be encoded as
negative- or positive-predictive contexts rather than universal
rules (Dantzer et al., 2024; Lehrich et al., 2024; Cai et al., 2024).
In post-curative and transplant follow-up, weighting of PIVKA-II
alongside AFP within multivariable frameworks is reasonable
where assay standardization is in place, acknowledging cohort-
dependent effect sizes (Keller et al., 2022; Xu et al., 2023; Chen L.
et al., 2024).

The most immediate translational gains are expected from
multi-modal residual-disease surveillance that fuses cell-free DNA
methylation/ctDNA dynamics with calibrated imaging–serology
trends to produce interval-specific relapse probabilities suitable
for risk-adapted surveillance and trial triage. To sustain
performance outside the development domain, deployments
should include dataset audits, shift/fairness monitoring, and
scheduled recalibration, with subgroup analyses aligned to
etiologies and geography. Success metrics should move beyond
AUC toward time-dependent net benefit, avoided unnecessary
retreatment, earlier detection of viable tumor, and preservation of
liver function under standard pathways. If these standards are met,
AI will function as a transparent layer that strengthens, and when
warranted revises, traditional biomarker and target readouts to
individualize surveillance intensity, optimize therapy selection,
and forecast hepatic functional recovery within guideline-
concordant care.
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