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Bacterial persisters are growth-arrested cells with low metabolic activities, but
have no genetic mutations compared to their parental cells. The dormant nature
of persister cells enables them to tolerate high doses of conventional antibiotics
and restart growth after the antibiotic is withdrawn, posing an important
challenge to infection control. To promote more research in this important
area, we present a concise review of current persister control strategies and
discuss future opportunities.
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What are persister cells and why are they important?

Persister cells are growth-arrested phenotypic variants found in essentially all bacterial
populations (Balaban et al., 2004; Lewis, 2010). Persisters can form both spontaneously
(Balaban et al., 2019) and triggered by stressors such as pH change (Leimer et al., 2016),
nutrient limitation (Nguyen et al., 2011), and antibiotic attack (Dewachter et al., 2019).

Conventional antibiotics were discovered based on bacterial growth inhibition. These
molecules target and corrupt growth associated cellular processes, such as cell wall
synthesis, DNA replication, and protein synthesis (Halawa et al.,, 2024). These processes
require energy and are rather inactive in dormant persister cells (Germain et al., 2013;
Amarh and Arthur, 2019); thus, conventional antibiotics commonly fail to eradicate
persisters (Salcedo-Sora and Kell, 2020). Persister cells play an important role in
recalcitrant diseases such as chronic lung infections of cystic fibrosis patients (Mulcahy
et al,, 2010), medical device-associated infections (Mishra et al., 2024), and Lyme disease
(Sharma et al,, 2015). Persisters also provide a reservoir of cells for the development of
antibiotic-resistant strains over time (Santi et al., 2021). Thus, finding effective treatment for
persister cells is a necessity for disease control.

In this mini-review, we briefly summarize the current strategies for persister control and
discuss our view for future development. As a mini review, it is not a comprehensive
overview with in-depth coverage of all related topics, but rather focuses on the principles
and future perspectives. We are in debt to the scholars whose work is not cited here due to
the limit of its scope.

What strategies have been developed for killing
persister cells?

Although persister cells are dormant and tolerant to most conventional antibiotics,
persister cells still need to retain cell integrity and a capability to return to normal cells upon
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TABLE 1 Major persister control strategies, advantages, and limitations (see specific sections above for references).

Strategy Function
Direct killing of

persister cells proteins

Inhibiting persister Alters bacterial metabolism, or inhibits QS

formation

Synergistic killing with
antibiotics
electrochemical factors

Exploiting persister

dormancy deeper dormancy

favorable changes in the environment. Thus, some targets of
antimicrobials are retained in persister cells and new strategies
can be developed leveraging unique characteristics of these
metabolically dormant cells (Figure 1). The major strategies of
persister control are summarized in Table 1 and discussed in the
sections below.

Direct killing

Targeting cell membrane

Direct killing strategies attack growth-independent targets such
as the cell membrane to cause cell lysis. Membrane damage can also
generate lethal level of reactive oxygen species (ROS), contributing
to persister killing (Gray et al., 2024). Multiple agents have shown
activities against persister cells or dormant cells in general by directly
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Causes cell lysis by disrupting bacterial membranes or degrading

Disrupts membrane integrity, enhances antibiotic uptake, alters
metabolic state of persisters, or leverages other controls, e.g.,

Binds to intracellular targets to kill during wake-up or drives to

Advantages Limitations

Independent of bacterial growth state or
metabolic activity

Off-target toxicity needs to be
considered

Bacteria-specific targets; reduces persister
formation and antibiotic tolerance

May not be effective against
already-formed persisters

Needs to be effective across
different bacterial species

Can eradicate both persister and actively
growing bacterial cells

Limited research; mechanisms
not fully understood

Specifically target dormant cells

damaging cell membranes. Some examples include 2D-24 (Bahar
et al.,, 2015), AM-0016 (Mukherjee et al., 2016), XF-70 and XF-73
(Ooi et al., 2010; Board-Davies et al., 2023), SA-558 (Tu et al., 2023),
thymol triphenylphosphine conjugates (TPP-Thy3) (Tang et al,
2024), and tea tree essential components (Nguyen et al., 2023). For
example, SA-558 is a synthetic cation transporter. It disrupts
bacterial homeostasis, leading to autolysis (Iu et al., 2023). Both
XF-70 and XF-73 (Ooi et al., 2010; Board-Davies et al., 2023) are
effective in killing non-dividing and slow-growing cells of
Staphylococcus aureus by disrupting cell membranes. In addition,
XF-73 generates ROS upon light activation, which oxidizes essential
cellular components as a mechanism of its cidal effects (Maisch
et al., 2005).

Additionally, synthesized cephalosporin derivatives (Chen et al.,
2025) and red blood cell membrane-coated nanoparticles (Hb-Naf@

RBCM NPs), which incorporate naftifine and oxygenated
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hemoglobin, effectively kill S. aureus persisters including those in
biofilms (Zhu J. et al., 2024). Organo-soluble antimicrobial polymer
nanocomposite (Patra et al, 2024) and semapimod (an anti-
inflammatory drug) (Zheng et al, 2024) also exhibit anti-
persister effects. Furthermore, cationic silver nanoparticle shelled
nanodroplets (C-AgND) interact with the negatively charged
components of the extracellular polymeric substance (EPS) layer,
enabling effective killing of S. aureus persisters within biofilms (Bose
and Das, 2025).

Other targets for direct killing

Pyrazinamide is a prodrug against Mycobacterium tuberculosis
persisters. Its active form pyrazinoic acid disrupts membrane
energetics, and binds to PanD (essential for coenzyme A
biosynthesis) to trigger degradation of PanD by ClpCl-ClpP
(Gopal et al,, 2020; Conlon et al., 2013; Niu et al., 2024)Another
example is ADEP4, a semi-synthetic acyldepsipeptide that binds to
the ClpP protease and causes conformational changes, enabling
ATP-independent protein degradation. This results in breakdown of
over 400 intracellular proteins, including metabolic enzymes
essential for persister wake-up. Their destruction renders the cells
unable to recover and resume growth (Conlon et al, 2013; Niu
et al.,, 2024).

Direct lysis of persisters is an effective approach as it does not
require metabolic activities of the target cell. However, if an agent
also affects mammalian membranes, it will limit its therapeutic
potential due to off-target toxicity (Kaldalu et al., 2020). The field
will benefit from more research on persister physiology and
discovery of new persister-specific targets.

Indirect killing

Most challenges posed by persister cells stem from their
dormant nature. Conceptually, persisters can be eradicated either
by preventing cells from entering dormancy or by inducing them to
exit the persister state. Once reactivated, these cells become more
susceptible to conventional antimicrobials. Alternatively, if a cell
enters a deeper dormancy from which it cannot resuscitate, it
effectively results in cell death. Exploiting shifts in dormancy
depth may also create synergies with other treatments such as
antibiotics.

Inhibit persister formation

Although the mechanism of persister formation is still not fully
understood, multiple strategies have been shown to reduce persister
formation (Balaban et al., 2019). For example, the pheromone
cCf10 inhibits Enterococcus faecalis persister formation by
reducing (p)ppGpp alarmone accumulation and maintaining its
metabolically active state (Zhu L. et al, 2024). Another example
is potentiation of persister killing using inhibitors of H,S biogenesis.
H,S protects bacteria under stress conditions by scavenging free
radicals and increasing the activity of antioxidant enzymes (Pal et al.,
2018). Bacterial cystathionine g-lyase (bCSE) is the primary
generator of H,S in S. aureus and Pseudomonas aeruginosa. CSE
inhibitors were found to reduce biofilm formation and the number
of persister cells, and potentiate antibiotics against both bacteria
(Shatalin et al., 2021). Additionally, synthetic H,S scavengers were
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found to sensitize S. aureus, P. aeruginosa, E. coli, and MRSA
persisters to gentamicin (Sun et al., 2024).

Also effective in preventing persister formation are nitric oxide
(NO) that act as a metabolic disruptor (Orman and Brynildsen,
2016), and pinaverium bromide (PB) that disrupts PMF and
generates ROS (Mao et al,, 2023). In addition, some medium-
chain saturated fatty acids have been shown to reduce persister
formation, e.g., undecanoic acid, lauric acid, and N-tridecanoic acid
(Jin et al., 2021).

While persister formation is controlled at the individual cell
level, signaling between bacterial cells via quorum sensing (QS) has
also been shown to affect persistence. QS is a bacterial cell-cell
communication system that regulates multicellular behaviors in
response to increase in cell density (Papenfort and Bassler, 2016).
Moker et al. (2010) showed that the QS signals phenazine pyocyanin
and the N-(3-oxododecanoyl)-L-homoserine lactone increase
persister formation in P. aeruginosa by inducing oxidative stress
and metabolic changes. Compounds that share a benzamide-
benzimidazole backbone were found to bind to the QS regulator
MvfR and inhibit MvfR regulon in P. aeruginosa, reducing its
persister formation without affecting growth (Starkey et al., 2014;
Maura and Rahme, 2017). Similarly, brominated furanones that are
QS inhibitors reduce persister formation in P. aeruginosa (Pan
et al.,, 2012).

Synergy between antibiotics and
other factors

Increasing membrane permeability has been shown to sensitize
persister cells to antibiotics. For example, MB6-a potent
methylazanediyl bisacetamide derivative-and two synthetic retinoids,
CD437 and CDI1530, bind to and embed in the MRSA lipid bilayer,
thereby disrupting membrane integrity and increasing antibiotic uptake.
Combined treatment of these compounds with gentamicin showed
strong anti-persister activities (Kim et al, 2018; Heo et al, 2024).
Similarly, Kim et al. (2019) reported MRSA persister cell killing by
cotreatment with gentamicin and membrane active compounds
bithionol and nTZDpa. Also functioning through membrane
disruption are IMT-P8, a cell-penetrating peptide (Singh and
Nandanwar, 2024), polymyxin B nonapeptide (PMBN) (Kim et al,
2024), and the polymyxin B derivative SPR741 (She et al, 2022).
Moreover, Schmidt et al. (2014) engineered the aminoglycoside
antibiotic tobramycin by adding 12 amino acids to convert it to the
transporter sequence. The resultant molecule (Pentobra) exhibits strong
activities in persister penetration and killing. In addition, gold nanocluster
adjuvant, when combined with ofloxacin, could effectively kill persister
cells (Cao et al., 2022). This was attributed to the ability of AuNC@CPP to
hyperpolarize the cell membrane and disrupt the proton gradient (Cao
et al,, 2022). Dihydropyrrolidone-thiadiazole disrupts biofilm integrity
and cell wall homeostasis by binding to cardiolipin, leading to cell wall
disruption. Consistently, it showed synergistic effects with daptomycin in
persister killing (Xiong et al., 2024).

Another strategy is to combine multiple antibiotics to eradicate
persisters. Colistin paired with either aminoglycosides or
coli, K.
pneumoniae, and A. baumannii. Colistin is able to disrupt the

ciprofloxacin is effective against persisters of E.

outer membrane and then facilitate penetration of other
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antibiotics and increase their lethality (Bialvaei and Samadi Kafil,
2015; Chung and Ko, 2019).

Besides membrane disruption, antimicrobials can gain more
penetration by manipulating membrane channels. An example is
felodipine, an FDA approved dihydropyridine class of calcium
channel blocker, which has low cytotoxicity to mammalian cells.
When combined with gentamicin, the treatment dissipates MRSA
membrane potential and increases cell membrane permeability.
Additionally, felodipine reduces the TCA cycle and expression of
aminoglycoside resistance proteins such as AacA-AphD. These led to
killing MRSA persisters and biofilm cells in a mouse model (Zhang
et al,, 2022).

Disruption of proton motive force (PMF) also hinders efflux
pump activities and increases the accumulation of certain antibiotics
(Dewachter et al., 2019). One example is econazole, an FDA approved
drug that dissipates the PMF and kills persister cells when used in
combination with ampicillin, gentamycin, or ciprofloxacin.
Cotreatment with econazole and ceftazidime was also found to kill
tolerant bacterial populations in vivo (Wang et al., 2022). Additionally,
exogenous adenosine and/or guanosine were found to increase
accumulation of tetracycline in Vibrio splendidus persister cells,
and cause cell death during the wake-up phase (Li et al,, 2023).

Contrary to the approaches to reduce membrane integrity and
PMF, increase in PMF and ATP could also reduce bacterial tolerance
to antibiotics by increasing membrane energetics. Higher PMF, in
addition to promoting the production of ROS, powers the uptake of
antibiotics, especially the aminoglycosides, increasing their lethality
(Lee et al., 2023). Compounds such as fumarate (Allison et al., 2011;
Koeva et al., 2017), n-Butanol (Lv et al., 2022a), small molecule SA-
558 (Iu et al., 2023), L-lysine (Deng et al., 2020) have anti-persister
effects through increased antibiotic uptake. It is important to note
that for the approaches that increase bacterial energetics, caution
should be taken so that bacteria do not resume full growth and
overpower the antimicrobials and the host immune system.

Other mechanisms of synergy in
persister killing

Besides chemical agents, hypoionic shock physically disrupts the
cytoplasmic membrane, leading to activation of mechanosensitive
channels. If effective antibiotics are applied during this process, it
can result in substantial killing of persister cells (Lv et al., 2022b). In
addition, low level electric currents have been found to increase
persister killing by antibiotics. Electric currents can depolarize the
cell membrane and facilitate passive diffusion of ions and antibiotics
to persister cells (Niepa et al., 2012; 2016; 2017; Wang et al., 2020);
Non-transducing phages have also been found to work in synergy
with ciprofloxacin and ampicillin against cultures of uropathogenic
E. coli (Vera-Mansilla et al., 2023).

Leveraging the dormant nature of
persister cells

Persisters are metabolically dormant and thus have reduced
efflux activities. We reported recently that the agents capable of
penetrating persister cells by passive diffusion can kill persister
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during wake up if the intracellular targets are available and if
target binding is strong (Roy et al., 2021). These criteria can help
guide the rational search for persister control agents. One example
that fits these criteria is eravacycline, which is an amphiphilic
antibiotic from the tetracycline family. It can enter persister cells
through passive diffusion. Interestingly, it is more effective against
persister cells than normal cells. This was attributed to the reduction
of efflux in persister cells (Roy et al., 2021). Using eravacycline as a
lead, we recently searched a small antimicrobial compound library
with a chemoinformatic model. It is encouraging that 5 out of
11 candidate compounds identified through clustering are effective
against persister cells (Roy et al,, 2025). These findings provide
helpful insights for finding new agents.

Drive persister to deeper dormancy states

Previous research suggested that persisters and the viable but
non-culturable (VBNC) state are not distinct, but rather stages along
a dormancy spectrum (Ayrapetyan et al., 2018). A key driver of the
transition from dormant persistence to difficult-to-resuscitate
VBNC is
(Dewachter et al., 2021). Thus, persister control may be achieved

protein aggregation during nutrient starvation
by driving cells to a deeper dormancy state like VBNC (Zhou et al.,
2023). With more in-depth studies carried out in future, this could
have major implications for antibiotic treatment strategies, chronic
infection management and resuscitation protocols in the field. For
example, it was found that lactate dehydrogenase (involved in
pyruvate metabolism) promotes resuscitation of E. coli VBNCs,
and cells with enhanced oxidative stress defense were more likely to
resuscitate (Wagley et al,, 2021). Finding new strategies/control
agents that can stop VBNCs from resuscitation and/or going to
deeper dormancy will also kill persisters. This is still a largely
unexplored area.

How to find better persister
control agents?

Since persister cells are growth arrested, the search for persister
killing agents should be focused on targets independent of metabolic
activities. This requires new knowledge and strategies to identify
these targets and new leads.

Artificial intelligence (AI) and machine learning (ML) are
quickly transforming drug discovery and have been used in
searching for better persister control agents (Wan et al., 2024;
Zheng et al,, 2024). Al particularly deep learning models, enables
researchers to efficiently screen millions of chemical compounds for
antibacterial activities in a fraction of the time required by
traditional methods. For example, large chemical libraries with
more than 107 million molecules have been screened, leading to
the discovery of new antibiotics including halicin (Stokes et al.,
2020). In addition, deep learning-powered virtual screens were
successfully applied to search for new agents against
metabolically dormant bacteria, e.g., semapimod (Zheng et al,
2024). There is no doubt that the field will see more applications
of Al models to accelerate both drug screening and the development

of new models.
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To better combat persistent infections, there are also needs for
changes in drug discovery strategies. For persister control, this
requires a shift from conventional MIC based screening to more
specific targets in dormant cells. It is important to identify predictors
for persister penetration, target binding, and killing activities based
on new mechanisms. One method to gaining significant knowledge
is the utilization of microfluidic platforms to isolate and manipulate
individual bacterial cells in controlled environments (Luo et al.,
2022). Integrating AI can automate imaging and predict cell fate,
streamlining key steps in drug discovery.

To identify new targets in persister cells, we must obtain an in-
depth understanding of persister formation mechanism and the true
physiological stage of persister cells. There have been significant
debates about the molecular mechanism of persister formation,
which is partially attributed to the lack of robust methods to
obtain persister cells in large quantities and the capability to
separate the effects of persister formation itself from the effects
of inducers applied to trigger persister formation. Heterogeneity in
persister populations and the stochastic nature of formation is
another challenge, which can possibly be solved by new persister
isolation protocols and new technologies such as single cell RNAseq
(Yan et al,, 2024). To better eradicate persister cells, the drug of
choice needs to bind the target strongly to overcome dormancy
related slow killing kinetics. This can be achieved by modifying the
drug molecule for stronger targeting including covalent binding.
However, because these molecules are more active, the activity of the
lead and possibility of undesired side effects must be carefully
considered.

The field also need to address challenges in clinical translation of
persister-targeting strategies. A central hurdle revolves around drug
delivery of candidate compounds to niches where persisters reside,
typically within biofilms (Wood et al, 2013), host tissues, or
intracellularly within immune cells (Niu et al.,, 2024). Off-target
toxicity is also a concern if the target is not bacteria specific and/or a
high dosage of treatment agent is needed. Regulatory considerations
may introduce further complexities such as fitting persister therapies
within existing approved frameworks or introducing new
regulations to fit the relapse and chronic nature of persistent
infections (Defraine et al, 2018). Addressing these barriers is
essential to moving persister therapies from the bench into
clinical practice.

By exploiting the predictive power and speed of artificial
intelligence and new biotech tools, scientists are now able to
discover anti-persister drugs more efficiently. This marks a
significant step forward in the global effort to develop the next-
generation therapeutics for persistent infections.
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