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Background:Chronic rhinosinusitis with nasal polyps (CRSwNP), an inflammatory
condition of unclear etiology, may involve immune dysregulation and metabolic
alterations.
Methods: Utilizing Mendelian randomization, we investigated causal links
between CRSwNP and profiles of 731 immune cell types and
1,400 metabolites. Single-cell RNA sequencing (scRNA-seq) was employed for
cell type identification and transcription factor analysis. Metabolic profiling
characterized cellular subpopulations, while Gene Set Enrichment Analysis
(GSEA) and machine learning pinpointed key genes functionally linked to
immune and inflammatory pathways (categorized via WGCNA and Metascape).
Results:We identified expression of HLA-DR on CD33−HLA-DR + B cells and the
lipid metabolite 1-stearoyl-2-arachidonoyl as risk factors for CRSwNP. scRNA-
seq further revealed these specific B cell subpopulations exhibit metabolic levels
linked to immune responses. Bulk RNA analysis confirmed upregulation of genes
CD27 and DERL3, while machine learning identified a signature of ten key genes
showing positive correlation with B cell regulatory functions.
Conclusion: This integrated study advances understanding of immune-
metabolic crosstalk in CRSwNP pathogenesis, highlighting the role of
metabolite-influenced B cell subsets in shaping the immune
microenvironment, thereby suggesting novel therapeutic targets.
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1 Introduction

CRSwNP is a persistent inflammatory disorder affecting the nasal mucosa and
paranasal sinuses. Characterized by infiltration of diverse inflammatory cells, this
condition typically presents with symptoms including persistent nasal congestion,
rhinorrhea, pain, and hyposmia/anosmia (Bachert et al., 2021). Studies have shown that
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the prevalence of CRSwNP is about 1.1% in the United States and
2.1%–4.4% in Europe (Laidlaw et al., 2021). Notably, CRSwNP
affects about 20%–30% of patients with chronic rhinosinusitis
(CRS), which imposing a substantial socioeconomic burden and
significantly impairing patients’ quality of life. Current treatment for
CRSwNPmainly includes corticosteroid drugs and endoscopic sinus
surgery; however, these approaches are associated with potential
adverse effects (e.g., from corticosteroids) and notably high
recurrence rates following surgery (Hox et al., 2020).

While the precise etiology of CRSwNP remains incompletely
elucidated, the roles of immune dysregulation and metabolic
perturbations in its pathogenesis have garnered increasing attention
(Veloso-Teles et al., 2019). Emerging evidence suggests metabolites
can modulate immune cell function (Veloso-Teles et al., 2019).
CRSwNP is commonly stratified into eosinophilic (ECRSwNP) and
non-eosinophilic (non-ECRSwNP) subtypes based on tissue
eosinophilia levels (Cao et al., 2009). Notably, linoleic acid has been
implicated in eCRSwNP pathogenesis through its suppressive effects on
eosinophilic inflammation (Ma et al., 2021). Furthermore,
M2 macrophages contribute to CRSwNP development via complex
immune responses and tissue remodeling processes, with several M2-
associated hub genes identified as critical contributors (Zhu et al., 2022).
Interestingly, resolvin D1 (RvD1), a specialized pro-resolving mediator,
promotes macrophage polarization towards this M2 phenotype (Vickery
et al., 2021). B-cell responses, including proliferation, antibody
production, and aberrant pathway activation, are increasingly
recognized as key drivers in CRSwNP (Bai and Tan, 2023), and
heightened expression of B-cell activating factor (BAFF) is strongly
linked to postoperative recurrence (Zhang et al., 2022). Intriguingly,
RvD1 and its precursor 17-HDHA have been shown to influence naïve
B-cell differentiation (Kim et al., 2015). Collectively, these findings
underscore the intricate interplay between immunity and metabolism
in CRSwNP. This relationship is further highlighted by distinctmetabolic
profiles observed across CRSwNP subtypes. Specific metabolites,
including maresins, specialized pro-resolving lipid mediators (SPMs),
and linoleic acid, are considered potential diagnostic biomarkers (Guo
et al., 2023), while enzymes and metabolites involved in fatty acid
metabolism represent promising therapeutic targets (Miyata et al.,
2019). Nevertheless, a comprehensive understanding of the specific
metabolic-immunoregulatory mechanisms governing CRSwNP
pathogenesis is still lacking.

In this study, we employed an integrated approach utilizing
Mendelian randomization, single-cell RNA sequencing (scRNA-
seq), and transcriptome analysis to elucidate the underlying
immunometabolic regulatory mechanisms in CRSwNP.
Specifically, Mendelian randomization was applied to identify
metabolites and immune cells exhibiting causal relationships with
CRSwNP. Subsequently, integrated scRNA-seq and transcriptomic
analyses were leveraged to delineate the specific immunomodulatory
roles of key metabolites within the CRSwNP context.

2 Methods

2.1 Mendelian randomization analysis

Mendelian randomization (MR) utilizes genetic variants as
instrumental variables, adhering to the principle of Mendelian
inheritance, to infer causal relationships between exposures and
outcomes while mitigating confounding biases. In this study, we
employed a two-sampleMR design to investigate the causal effects of
plasma metabolites and circulating immune cells on CRSwNP (Zhu
et al., 2018). The results of which Mendelian randomization satisfy
three core assumptions: (1) Association assumption: The
instrumental variables (IVs) must be strongly associated with the
exposure. (2) Independence assumption: The IVs must be
independent of confounding factors that influence the exposure-
outcome relationship. (3) Exclusion restriction assumption: The IVs
must influence the outcome solely through the exposure pathway.
Primary MR analyses were conducted using the inverse variance
weighted (IVW) method implemented in the TwoSampleMR
package. We defined plasma metabolites and peripheral blood
immune cell phenotypes as exposures, and CRSwNP as the
outcome. Exposure data for 1,400 plasma metabolites were
sourced from the genome-wide association study (GWAS) by
Chen et al. (2023). Exposure data for 731 circulating immune cell
phenotypes, encompassing diverse developmental stages and cell
types, were obtained from a comprehensive GWAS of peripheral
blood immune cells (Orru et al., 2020). This dataset included
absolute cell counts, relative cell counts, median fluorescence
intensity (MFI) reflecting surface antigen expression, and
morphological parameters. We performed MR analyses to
identify metabolites and immune cell traits causally associated
with CRSwNP risk. All reported associations underwent false
discovery rate (FDR) correction for multiple testing. Ethical
approval and participant informed consent were secured in the
original studies providing the GWAS summary statistics used in this
MR analysis. These data are publicly accessible via the GWAS
catalog (https://www.ebi.ac.uk/gwas/) under the accession codes
provided in the respective publications (Burgess et al., 2013).

2.2 Metabolomic profiling of CRSwNP

Nasal secretion samples were collected from 12 healthy
individuals and 19 patients with CRSwNP. These samples were
prospectively collected specifically for this study at Guangzhou Red
Cross Hospital. This study was approved by the Medical Ethics
Committee of Guangzhou Red Cross Hospital (Approval No: 2024-
128-01), conducted in accordance with the Declaration of Helsinki,
and all participants provided written informed consent. Clinical trial
number: not applicable. Following nasal mucosa preparation using
ephedrine and 2% tetracaine, sterile swabs were employed to gather
secretions from the middle meatus, and these samples were
subsequently stored at −80 °C. For metabolite extraction, 100 µL
of each sample was combined with 700 µL of extraction solvent
(methanol:acetonitrile:water = 4:2:1, v/v/v), vortexed, incubated
at −20 °C for 2 h, and centrifuged at 25,000 × g for 15 min at
4 °C; the resulting supernatant was then evaporated and
reconstituted in 180 µL of methanol:water (1:1, v/v). Liquid

Abbreviations: CRS, chronic rhinosinusitis; CRSwNP, Chronic rhinosinusitis
with nasal polyps; ECRSwNP, eosinophilic Chronic rhinosinusitis with nasal
polyps; non-ECRSwNP, non-eosinophilic chronic rhinosinusitis with nasal
polyps; RVD1, resolvin D1; SPM, specialised pro-resolving lipid mediators;
IVW, inverse variance weighting; AUC, Area Under Curve; Km, K-means; RFE,
Recursive Feature Elimination; BAFF, B cell-activating factor of the TNF family;
TNFR, tumor necrosis factor receptor.
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chromatography-mass spectrometry (LC-MS) analysis was
conducted using a Thermo Q Exactive system equipped with a
BEH C18 column, utilizing specific mobile phases for positive and
negative ion modes and electrospray ionization (ESI) in full scan
mode (m/z 70–1,050). Metabolites were identified by referencing the
BGI HR-PMDB and mzCloud databases, and differential
metabolites between the CRSwNP and normal groups were
determined through principal component analysis (PCA), partial
least squares discriminant analysis (PLSDA), and orthogonal partial
least squares discriminant analysis (OPLSDA). Finally, pathway
enrichment analysis was performed using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database.

2.3 Single-cell RNA sequencing data
processing

Guided by Mendelian randomization findings identifying
metabolites and immune cells potentially causally linked to
CRSwNP, we performed integrated analyses using scRNA-seq
data. Single-cell transcriptomic data from CRSwNP patient
samples were retrieved from the Gene Expression Omnibus
(GEO) database under accession number GSE196169 (Bangert
et al., 2022). Raw scRNA-seq data processing, quality control,
normalization, dimensionality reduction, clustering, and
annotation were conducted using the Seurat package (v4.3.0)
(Zheng et al., 2017). Quality control filtering was applied as
follows: cells expressing fewer than 200 genes or more than
4,000 genes were excluded, and cells with mitochondrial gene
content exceeding 10% were also removed. Normalization and
feature selection: Filtered gene expression counts were
normalized using the NormalizeData function. Subsequently,
highly variable genes (HVGs) were identified using
FindVariableFeatures. Scaling, dimensionality reduction, and
integration: Expression data were scaled (ScaleData) and centered
prior to principal component analysis (PCA). To mitigate technical
batch effects, batch correction was performed using the
RunHarmony function (Stuart et al., 2019). The resulting
integrated data were then subjected to uniform manifold
approximation and projection (UMAP) for non-linear
dimensionality reduction and visualization. Cell clustering and
annotation: Cells were clustered using the shared nearest
neighbor (SNN) modularity optimization approach
(FindNeighbors followed by FindClusters) based on a selected
number of principal components. Cell types were annotated
using the SingleR package (Kanehisa et al., 2023) with reference
datasets. Metabolic pathway scoring and differential expression
analysis: Metabolic pathway activity was inferred and scored per
cell using gene signatures derived from KEGG pathways. Finally, the
FindMarkers function was employed to identify differentially
expressed genes (DEGs) between biologically relevant
subpopulations.

2.4 Bulk RNA-seq data processing

To validate immunometabolic regulatory genes identified
through scRNA-seq analysis in CRSwNP, we performed

integrative transcriptomic analysis using bulk RNA-seq datasets.
Datasets GSE36830 and GSE23552 were retrieved from the GEO
database (Stevens et al., 2015; Plager et al., 2010). The results after
batch removal were visualized by the principal component analysis
method to finally obtain a comprehensive data expression matrix,
from which differential genes obtained from a single-cell analysis
were extracted for subsequent analysis and modeling. GSVA was
used for enrichment analysis, limma package was used for
differential analysis, volcano plots obtained significant
differentially expressed genes, and correlation analysis was used
to explore the correlation changes of genes (Ritchie et al., 2015).

2.5 Gene set enrichment analyses

GSEA analysis assesses the distribution trend of genes in gene
expression for a predefined gene set (Powers et al., 2018). GOBP_B_
CELL_RECEPTOR_SIGNALING_PATHWAY was selected as a
predefined gene set to evaluate the expression of B-cell receptor
signaling pathways in differential genes and significant signaling
pathways were selected by FDR q-value<0.25. Ssgsea allows for
assessment of the enrichment of a gene set in a single sample (Jin
et al., 2021). Immune infiltration analysis was performed by ssgsea.
And the expression of genes in B cells was analyzed.

2.6 Single-cell transcription factor and cell
communication analysis

Transcription Factor (TF) Analysis: B cell subsets isolated from
scRNA-seq data were subjected to TF activity inference using the
DoRothEA regulon database (Xu et al., 2024) via the run_viper
function. Data scaling ensured comparability across cells. TF activity
scores were computed using GetAssayData, with the top 20 most
variable TFs visualized in heatmaps generated by the pheatmap
package (minsize parameter = 4). Cell-Cell Communication
Analysis: Intercellular signaling was investigated using CellCall
(Zhang et al., 2021). Cellular populations were categorized as
B cells and non-B cells. The analysis workflow included: (1)
Object creation with CreateNichConObject; (2) Pathway-centric
communication network identification via TransCommuProfile;
(3) Statistical filtering (padj <0.05) and correlation analysis of
significant ligand-receptor pairs.

2.7 Machine learning

We applied machine learning for feature selection and predictive
modeling using the randomForest package (Ishwaran and Kogalur,
2010). Models were trained on the integrated bulk RNA-seq data
from GSE36830 and GSE23552, with internal validation via 5-fold
cross-validation and bootstrap resampling. This robust method
efficiently handles high-dimensional data while maintaining noise
resistance. Key genes were identified via feature importance ranking,
followed by multivariable logistic regression modeling (glm
function). Models underwent bootstrap validation
(1,000 iterations) with performance quantification via sensitivity/
specificity and receiver operating characteristic (ROC) curves (roc
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function), including AUC calculations. Decision curve analysis
(decision_curve function) evaluated clinical utility, while
nomogram visualization utilized the regplot package.

2.8 Immune infiltration analysis

Immune microenvironment profiling was conducted via the
IOBR package (Newman et al., 2015), employing CIBERSORT
(deconvo_cibersort) for relative immune cell quantification and
MCP-counter for absolute cell abundance assessment. Analysis
was restricted to DEGs meeting thresholds (adj. p < 0.05,
|log2FC| > 0.5). Spearman correlations (psych:corr.test) with FDR
correction analyzed gene-infiltration relationships, with identical
methodology applied to inflammatory factors.

2.9 Clustering and Co-expression analysis

Consensus clustering (ConsensusClusterPlus) (Wilkerson and
Hayes, 2010) defined molecular subtypes using k-means clustering
(kmax = 10, 100 iterations, 80% sample retention). Cluster stability
was evaluated via consensus matrices and item-consistency indices
(calcICL). Weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008) identified co-
regulated modules through: 1) Selection of top 2000 variant
genes (goodSamplesGenes QC), 2) Sample outlier removal (hclust
+ cutreeStatic), 3) Soft-threshold determination
(pickSoftThreshold), 4) Network construction

(blockwiseModules), 5) Module eigengene extraction
(moduleEigengenes), and 6) Module-trait correlation (cor +
corPvalueStudent). Significant modules (p < 0.05) underwent
functional annotation in Metascape (Zhou et al., 2019).

2.10 Statistical analysis

All analyses used R v4.2.3. Statistical methods included:
Spearman correlation with FDR correction (psych:corr.test), data
scaling (scaleData), recursive feature elimination with 5-fold cross-
validation (rfe), group comparisons via Wilcoxon test, odds ratio
calculation with forest plotting (forestploter), and Benjamini-
Hochberg FDR adjustment. Significance was defined as two-sided
p < 0.05 unless specified.

3 Results

3.1 Mendelian randomization analysis of
immune cells and metabolites

Mendelian randomization analysis was performed to assess
causal relationships between CRSwNP and 731 immune cell
phenotypes or 1,400 plasma metabolites. Analysis of immune
cells revealed that HLA-DR expression on CD33− HLA-DR+

B cells exhibited a potential causal association with CRSwNP risk
(beta = 0.181, FDR = 0.007; Figures 1A–D). For metabolites, 1-
stearoyl-2-arachidonoyl showed evidence of significant causal

FIGURE 1
Mendelian randomization analysis of CRSwNP with immune cells and metabolites. (A) Forest plot of Mendelian randomization results for CRSwNP
and HLA DR on CD33− HLA DR+. (B) Leave-out analysis for CRSwNP and HLA DR on CD33− HLA DR+. (C) Scatter plot of Mendelian randomization for
CRSwNP and HLA DR on CD33− HLA DR+. (D) Volcano plot of Mendelian randomization for CRSwNP and immune cells. (E) Forest plot of Mendelian
randomization results for CRSwNP and 1-stearoyl-2-arachidonoyl-gpc. (F) Leave-out analysis for CRSwNP and 1-stearoyl-2-arachidonoyl-gpc. (G)
Scatter plot of Mendelian randomization for CRSwNP and 1-stearoyl-2-arachidonoyl-gpc. (H) Volcano plot of Mendelian randomization results for
CRSwNP and metabolites.
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effects on CRSwNP development (beta = 0.114, FDR = 0.015; Figures
1E–H). Complete MR results are documented in Supplementary
Table S1, S2.

3.2 Integrated metabolomic profiling
of CRSwNP

To further elucidate the metabolic alterations linked to
CRSwNP, particularly the role of 1-stearoyl-2-arachidonoyl
identified through Mendelian randomization, we performed
metabolomic profiling comparing CRSwNP and healthy controls
which were prospectively collected specifically for this study at
Guangzhou Red Cross Hospital. Volcano plot analysis revealed
significant upregulation of 1-stearoyl-2-arachidonoyl in CRSwNP
(Figure 2A), confirmed by elevated levels in boxplot visualization
(Figure 2B). KEGG pathway enrichment identified
glycerophospholipid metabolism and cysteine-methionine
metabolism as significantly dysregulated pathways (Figure 2C),
consistent with 1-stearoyl-2-arachidonoyl’s role as a key
glycerophospholipid. 1-stearoyl-2-arachidonoyl is a diacylglycerol
species within the glycerophospholipid pathway, serving as a
precursor for arachidonic acid release and subsequent eicosanoid
production, which are known to modulate inflammatory responses
in mucosal tissues. Principal component analysis (PCA)
demonstrated clear separation between groups (Figure 2D),
indicating distinct metabolic signatures. Hierarchical clustering of

metabolites further corroborated disease-associated patterns
(Figure 2E). Receiver operating characteristic (ROC) analysis
revealed exceptional diagnostic performance for 1-stearoyl-2-
arachidonoyl (AUC = 0.987, Figure 2F), supporting its biomarker
potential. These results establish glycerophospholipid metabolic
dysregulation as a hallmark of CRSwNP, highlighting 1-stearoyl-
2-arachidonoyl’s central role.

3.3 Single-cell profiling and B Cell
heterogeneity in CRSwNP

Single-cell RNA sequencing (scRNA-seq) of CRSwNP samples
(GSE196169) was performed to elucidate the roles of HLA-
DR+CD33− B cells and 1-stearoyl-2-arachidonoyl. After quality
control and normalization, cell clustering identified five major
populations: NK cells, T cells, B cells, monocytes, and epithelial
cells (Figure 3A). Expression patterns of MR-implicated genes
(CD33, HLA-DRA, HLA-DRB5, HLA-DRB1) were visualized
across cell types (Figures 3B–E), confirming enrichment in the
B cell compartment. Based on MR results for 1-stearoyl-2-
arachidonoyl, we computed metabolic activity scores for
glycerophospholipid pathway genes (LCAT, PLA2G4, PLA2G6,
PLA2G16, PLB1, TGL4, DAGD, LCAT3) within B cells.
Unsupervised clustering stratified B cells into two distinct
subpopulations: PC_high_B_cell (elevated phospholipid
metabolism) and PC_low_B_cell (Figure 3F).

FIGURE 2
Integrated Metabolomic Profiling Identifies Dysregulated Glycerophospholipid Metabolism in CRSwNP. (A) Volcano plot displaying differential
metabolites in CRSwNP versus Normal. (B) Elevated levels of 1-stearoyl-2-arachidonoyl in CRSwNP versus Normal groups. (C) KEGG pathway
enrichment of differential metabolites. (D) PCA score plot demonstrating separation between CRSwNP and Normal groups based on metabolomic
profiles. (E) Metabolic heatmap analysis of CRSwNP vs. Normal. (F) ROC curve analysis of 1-stearoyl-2-arachidonoyl for distinguishing CRSwNP.
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3.4 Characterization of PC_high_B_cell-
Associated pathways and interactions

Differential gene analysis of B cell subpopulations (PC_high_B_
cell vs. PC_low_B_cell) revealed enrichment in immune response
pathways via GSEA, including adaptive immunity and immune
system activation (Figure 4A). Specifically, upregulated B-cell
receptor signaling pathways suggested potential metabolite-
receptor interactions modulating B cell function (Figure 4B).
Transcription factor profiling identified elevated activity of ATF6,
SP1, IRF4, ZNF263, CREB3, and HIF1A in PC_high_B_cells
(Figure 4C). Intercellular communication analysis demonstrated
preferential interactions between PC_high_B_cells and
monocytes/epithelial cells, with signaling enriched in ErbB and
chemokine pathways (Figure 4D). This was corroborated by
significant upregulation of chemokines CCL3 and
CCL4 alongside enhanced antibody production in PC_high_B_
cells (Figures 4E,F), indicating metabolite-dependent B cell
activation contributes to CRSwNP pathogenesis.

3.5 Bulk RNA-seq analysis of CRSwNP
differential genes

While MR highlighted HLA-DR and CD33 as surface markers
on B cells, scRNA-seq and bulk RNA analyses revealed downstream
effectors such as CD27, DERL3, and TNFRSF17, which are
functionally linked to B cell activation and survival in the context
of elevated glycerophospholipid metabolism. Building on the single-
cell findings, we analyzed bulk RNA-seq datasets (GSE36830 and
GSE23552) to validate differentially expressed genes. After batch
effect correction (Supplementary Figure S1A,B), differential

expression analysis using limma identified significant alterations:
NUCB2 was downregulated while CD27 and DERL3 were
upregulated in CRSwNP (Supplementary Figure S1C–E).
Correlation analysis revealed co-expression patterns among key
genes (Supplementary Figure S2A–C), with pairwise comparisons
confirming positive correlations between DERL3-CD27 and
FKBP11-CD27 (Supplementary Figure S2D,E). These findings
demonstrate coordinated upregulation of CD27 and DERL3 in
CRSwNP, suggesting their potential role in disease pathogenesis.
These DEGs align with MR-identified B cell subsets and
metabolite dysregulation, supporting the hypothesis that 1-
stearoyl-2-arachidonoyl drives B cell-mediated inflammation
via genes involved in activation (CD27) and stress
responses (DERL3).

3.6 Machine learning model for
CRSwNP diagnosis

In order to further validate gene signatures, we developed a
diagnostic model using random forest to identify key discriminative
features. Feature importance ranking by Mean Decrease Gini
identified 10 pivotal genes, including NUCB2 and CD27
(Figure 5A). Multivariable logistic regression modeling with these
genes demonstrated high discriminative capacity (AUC = 0.969;
Figures 5B,C), validated through bootstrap resampling with
sensitivity/specificity quantification (Figures 5D–F). A nomogram
visualizing predictor contributions (100 resamples, total score
threshold = 0.131) and calibration curve (minimal deviation from
ideal 45° line; Figure 6A) confirmed model robustness. Decision
curve analysis comparing three gene-set models further established
clinical utility (Figure 6B).

FIGURE 3
Single-cell RNA-seq analysis of B cells in CRSwNP. (A)UMAP plot of different cell subpopulations in CRSwNP. (B) Expression of CD33 in CRSwNP. (C)
Expression of HLA-DRA in CRSwNP. (D) Expression of HLA-DRB5 in CRSwNP. (E) Expression of HLA-DRB1 in CRSwNP. (F) Expression of key genes in
different cells.
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FIGURE 4
Differential analysis of different B cell subpopulations in CRSwNP. (A) GSEA enrichment analysis of differentially expressed genes in B cell
subpopulations. (B) Analysis of B cell receptor pathway expression. (C) Transcription factor analysis of B cell subpopulations. (D)Cell-cell communication
analysis of different cell subpopulations using CellCall. (E) Expression of CCL4 and CCL3 in different B cell subpopulations. (F) Expression of
immunoglobulin-related genes in different B cell subpopulations.

FIGURE 5
Screening of characteristic genes in CRSwNP. (A)Machine learning-based screening of characteristic genes in CRSwNP. (B) ROC curve of the results
from multiple logistic regression. (C) Bootstrap validation combined with ROC. (D) Display of model bootstrap results. (E) Model sensitivity results. (F)
Model specificity results. (G) Nomogram of different characteristic genes.
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3.7 Immune microenvironment
characterization via key gene signatures

To delineate the immunomodulatory role of identified key
genes, we performed comprehensive immune infiltration analysis
using CIBERSORT and ssGSEA (Figures 6C,D). Quantitative
assessment via MCP-counter revealed distinct immune cell
abundance patterns associated with CD27, DERL3, and
TNFRSF17 expression (Figures 7A,B). Inflammatory factor
profiling demonstrated significant correlations between CD27 and
Th2 cytokines (IL13, IL4; Figure 7C), while B lineage-specific
analysis showed positive associations of CD27, DERL3, and
TNFRSF17 with B cell infiltration (Figures 7D,E). These findings
suggest coordinated regulation of PC_high_B_cell functionality
through metabolic-immunological crosstalk.

3.8 Molecular subtyping and Co-expression
network analysis

To define molecular subtypes associated with CRSwNP
pathogenesis, consensus clustering identified two stable

subgroups (k = 2) using k-means algorithm (100 iterations,
kmax = 10). Cluster 1 exhibited elevated expression of key genes,
while Cluster 2 showed reduced expression (Figures 8A,B).
Inflammatory factor clustering further revealed differential
abundance of CD4, IL7, and IFNA1 between subtypes
(Figure 8C). Weighted gene co-expression network analysis
(WGCNA) identified functionally cohesive modules, with soft-
thresholding power set to 5 based on scale-free topology criteria
(Figure 8D). The green module demonstrated highest immune
relevance (Figure 8E), with Metascape enrichment confirming
involvement in pro-inflammatory responses and cytotoxic
regulation (Figure 8F; Supplementary Table S3).

4 Discussion

CRSwNP constitutes a persistent inflammatory disorder
distinguished by mucosal hyperplasia and polyp formation within
the sinonasal cavity, frequently characterized by chronicity, elevated
recurrence rates, and heterogeneous responses to treatment
(Nakayama and Haruna, 2023). These clinical complexities arise
from sustained inflammation that precipitates pathological

FIGURE 6
CRSwNP model prediction results and immune infiltration analysis. (A) Calibration curve of the model. (B) Decision curve of the regression model.
(C) Infiltration analysis of differentially expressed genes. (D) Immune infiltration analysis of characteristic genes.

Frontiers in Pharmacology frontiersin.org08

Wu et al. 10.3389/fphar.2025.1719897

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1719897


remodeling, thereby perpetuating symptom burden and rendering
therapeutic management challenging. Through an integrated multi-
omics approach—incorporating Mendelian randomization, single-
cell transcriptomics, and bulk RNA sequencing—we have elucidated
dysregulated immunometabolic pathways fundamental to the
pathogenesis of CRSwNP. Specifically, our investigation
delineates causal contributions of HLA-DR+CD33− B cell subsets
and the glycerophospholipid metabolite 1-stearoyl-2-arachidonoyl,
thereby unveiling novel mechanistic associations between metabolic
reprogramming and immune dysregulation in this
refractory condition.

The etiology of CRSwNP is multifaceted, involving factors such
as infection, allergy, environmental pollution, and anatomical
abnormalities. The role of immunity in its pathogenesis has
increasingly come under scrutiny (Schleimer, 2017). SResearch by
Shigeharu Fujieda et al. indicates that the activation of eosinophil-
associated functions may contribute to the development of nasal
polyps (Fujieda et al., 2019), while Jacob G. Eide et al. identified
elevated levels of functionally active antiphospholipid antibodies in
CRSwNP (Eide et al., 2022). Additionally, Kathryn E. Hulse et al.
demonstrated that nasal polyp tissue creates an environment
conducive to B cell survival and functionality, thereby facilitating
disease progression (Hulse et al., 2013). To further elucidate the
immunological mechanisms driving CRSwNP, we utilized
Mendelian randomization and single-cell analysis to explore the
causal links between immune cells and the condition. Our findings
highlight the critical role of B cells in CRSwNP, confirming their
contribution to disease advancement.

As key players in the adaptive immune response, B cells not only
produce antibodies and cytokines that exacerbate CRSwNP

pathogenesis but also participate in inflammation as antigen-
presenting or regulatory cells (Tan et al., 2018). These cells
secrete an array of cytokines, including IL-4, IL-5, IL-13, and
chemokines, which amplify the inflammatory response and
promote granulocyte activation and aggregation. This aligns with
findings by Gwanghui Ryu, who noted that B-cell activators drive
the progression of refractory CRSwNP through Th17-mediated
immune responses and neutrophil recruitment (Ryu et al., 2019).
Moreover, B cells serve as antigen-presenting cells, delivering
antigens to T cells and triggering adaptive immune responses
that result in further inflammatory cell infiltration. The chronic
airway inflammation characteristic of CRSwNP fosters a unique
milieu that supports B cell activation and antibody production
(Feldman et al., 2017). Concurrently, activated mast cells in
CRSwNP can stimulate B cells to produce IgE, intensifying the
inflammatory cascade (Zhai et al., 2018). Another study revealed
that the B cell-activating factor of the TNF family (BAFF) promotes
IgA production and eosinophil activation, with increased presence
of both naïve and effector B cell subtypes in CRSwNP (Miljkovic
et al., 2018). Together, these findings underscore the indispensable
role of B cells in both nasal mucosal health and the pathogenesis
of CRSwNP.

Metabolic dysregulation plays a pivotal role in the pathogenesis
of CRSwNP, as metabolites are known to modulate immune cell
function and thereby influence inflammatory processes. Through
Mendelian randomization analysis, we identified a causal
relationship between the lipid metabolite 1-stearoyl-2-
arachidonoyl and CRSwNP, with this metabolite exacerbating the
condition. Composed of stearic acid and arachidonic acid, 1-
stearoyl-2-arachidonoyl is integral to signaling pathways and

FIGURE 7
MCPcounter immune infiltration and correlation analysis of CRSwNP genes. (A) MCPcounter quantitative infiltration analysis of differentially
expressed genes. (B) MCPcounter quantitative infiltration analysis of characteristic genes. (C) Inflammatory factor infiltration analysis of characteristic
genes. (D)Correlation analysis between CD27 and B cell expression. (E)Correlation analysis between DERL3 and B cell expression. (F)Correlation analysis
between TNFRSF17 and B cell expression.
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inflammatory responses, acting as a key mediator that receives
upstream signals and activates downstream inflammatory cascades
(Xu et al., 2022). This finding aligns with research by Hao et al., who,
through transcriptomic and metabolomic studies, demonstrated that
1-stearoyl-2-arachidonoyl coordinates the release of inflammatory
cytokines (Hao et al., 2023). To further explore the effects of this
metabolite, we conducted cell subpopulation annotation and
differential gene expression analysis based on varying metabolic
levels of 1-stearoyl-2-arachidonoyl. Our results revealed that B cell
subpopulations exhibiting high metabolism of this lipid are closely
associated with immune response pathways, including adaptive
immune responses and positive regulation of the immune system,
suggesting a pro-inflammatory role in CRSwNP. Additionally,
differential gene analysis indicated significant upregulation of
CD27, DERL3, and TNFRSF17 in these subpopulations,
highlighting their involvement in the pro-inflammatory functions
driven by 1-stearoyl-2-arachidonoyl metabolism.

CD27, a cell surface molecule belonging to the tumor necrosis
factor receptor (TNFR) superfamily, plays a critical role in immune
responses by promoting B cell survival and antibody production
(Grimsholm, 2023). Upon antigenic stimulation, CD27+ B cells
differentiate more efficiently into plasma cells and generate

antibodies, a process facilitated by the interaction between
CD27 and its ligand CD70, which provides co-stimulatory signals
that enhance B cell activation and proliferation (Borst et al., 2005).
Additionally, CD27 has been implicated in the differentiation of
mouse B cells into memory B cells (Raman et al., 2003), and it
directly drives the synthesis of IgG and IgM, both of which are
essential in inflammatory processes. Notably, IgM+CD27+ B cells
exhibit immunomodulatory functions and serve as a significant
source of IL-10 (Sun et al., 2019), further underscoring the
multifaceted role of CD27 in B cell-mediated immunity.

DERL3 (Derlin-3), a member of the Derlin family involved in
protein folding and cellular stress responses, has been shown to
exacerbate inflammation through the activation of NF-κB (Geng
et al., 2020). Research by Li et al. also highlights DERL3’s close
association with immune regulation, particularly in adaptive
immune response and immune response regulation pathways (Li
et al., 2020), which aligns with our findings. Similarly, TNFRSF17
(Tumor Necrosis Factor Receptor Superfamily, Member 17), also
known as B-Cell Maturation Antigen (BCMA), is a TNFR
superfamily member predominantly expressed on mature B cells
and plasma cells. It regulates B cell survival, differentiation, and
function, with BAFF mediating B cell activation through BCMA

FIGURE 8
WGCNA analysis of CRSwNP. (A) Box plot of gene expression for clustering results. (B) Heatmap of gene expression for clustering results. (C) Box
plot of clustering results for inflammatory factors. (D) WGCNA clustering dendrogram. (E) Heatmap of phenotype-gene correlations in WGCNA. (F)
Metascape enrichment analysis of genes in the MEgreen module of WGCNA.
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(Saltzman et al., 2013). Furthermore, TNFRSF17/BCMA is involved
in antibody production and the formation of immune memory
(Sabat et al., 2023), emphasizing its significance in sustaining
immune responses. Together, the upregulation of CD27, DERL3,
and TNFRSF17 in B cells within CRSwNP underscores their
collective contribution to the pro-inflammatory milieu and
immune dysregulation characteristic of this condition.

While our integrated multi-omics approach provides robust
evidence for immunometabolic dysregulation in CRSwNP, several
limitations should be acknowledged. Mendelian randomization offers
evidence of potential causal associations but may be affected by
pleiotropy or population stratification, despite FDR correction. The
metabolomics analysis used a small sample size (12 controls and
19 patients), potentially limiting generalizability due to variability in
collection and metabolite stability. Public datasets for scRNA-seq
(GSE196169) and bulk RNA-seq (GSE36830, GSE23552) introduce
risks of batch effects and heterogeneity from different platforms or
populations. Inferences linking 1-stearoyl-2-arachidonoyl to B cell
functions rely on correlations, which could be influenced by
unmeasured confounders. No functional experiments (e.g., in vitro
validations) were performed to confirm mechanisms. Future studies
with larger, multi-ethnic cohorts and experimental validations are
needed to enhance these findings.

5 Conclusion

Our study underscores the critical interplay between immune and
metabolic processes in the pathogenesis of CRSwNP. Notably, the
metabolite 1-stearoyl-2-arachidonoyl has been shown to bind to
B-cell receptors, thereby enhancing inflammatory responses.
Additionally, our findings highlight the significant roles of genes
such as CD27, DERL3, and TNFRSF17 in shaping the immune
microenvironment, elucidating specific pathological mechanisms
underlying CRSwNP. A deeper comprehension of these molecular
and cellular pathways offers a robust foundation for the
development of personalized therapeutic strategies, with the potential
to optimize clinical management and improve patient outcomes.
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SUPPLEMENTARY FIGURE S1
Gene expression analysis of CRSwNP. (A) PCA before data integration. (B)
PCA after data integration. (C) Heatmap of gene expression in CRSwNP
group versus normal group. (D) Volcano plot of gene expression in

CRSwNP group versus normal group. (E) Box plot of gene expression in
CRSwNP group versus normal group.

SUPPLEMENTARY FIGURE S2
Correlation analysis of differentially expressed genes in CRSwNP.
(A) Correlation analysis of differentially expressed genes across all groups.
(B) Correlation analysis of differentially expressed genes in the
CRSwNP group. (C) Correlation analysis of significantly differentially
expressed genes. (D) Correlation analysis of DERL3 and CD27. (E)
Correlation analysis of FKBP11 and CD27.
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