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Plants have evolved with complex sensory systems to recognize signals from
multiple environmental conditions. A light signal is one of the most important
environmental factors that regulates not only photomorphogenesis but also the
developmental strategy of plants throughout their life cycle. The molecular
mechanisms of the light signaling modules and the interactions between light
and other environmental signals have been studied extensively. However, to
enhance plant growth, particularly in crop production, we need to gain a deeper
understanding of how light regulates plant development within gene regulatory
networks (GRNs). Understanding GRNs is important to identify not only the novel
genes and transcription factors in light signaling pathways but also the factors that
connect light signaling and other environmental signals. Weighted gene co-
expression network analysis (WGCNA) has been used to study GRN. We applied
WGCNA to 58 RNA-seq samples of wild-type Arabidopsis grown under different
light treatments and built the gene co-expression networks. We identified
14 different modules that are significantly associated with different light
treatments. Among them, the honeydew1 and ivory display significant
association with the dark-grown seedlings. Many hub genes identified from
these modules are significantly enriched in light responses, including
responses to red, far-red, blue light, light stimulus, auxin responses, and
photosynthesis. Although we found many known transcription factors in these
modules, we also identified several unknown genes and transcription factors that
are significantly associated with the honeydew1 module and highly differentially
expressed between dark and light conditions. To examine whether the hub genes
in the honeydew1 module play a role in light signaling, we isolated mutants in
selected hub genes and measured hypocotyl lengths under dark, red, and far-red
light conditions. These assays showed that four hub genes are involved in
regulating light signaling pathways. This study provides a new approach to
identifying novel genes in GRNs underlying light responses in Arabidopsis.
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Introduction

Light is not only the main energy source for photosynthesis but also
the signal to optimize plant growth and development through the entire
plant life cycle, from germination to flowering. Extensive studies have
identified a large number of key photoreceptors, regulators, and
downstream target genes in light signaling in Arabidopsis (Cheng
et al., 2021; Huq et al., 2024). Different subsets, as well as a common
set of genes, are regulated under various light conditions, including red,
far-red, blue, andwhite light, or under-shade conditions. Transcriptomics
data provided the genomic expression profiles in response to different
light conditions and in different light signaling mutants. Genome-wide
mapping of binding targets of a transcription factor data is also available
for transcription factors, including LONGHYPOCOTYL5 (HY5), FAR-
RED ELONGATED HYPOCOTYL3 (FHY3), PHYTOCHROME-
INTERACTING FACTORS (PIFs), and PHYTOCHROME A (phyA)
under dark and different light treatments (Lee et al., 2007; Li et al., 2016;
Pfeiffer et al., 2014; Chen et al., 2014). In addition, functional profiling also
revealed a small subset of early response genes necessary for seedling
deetiolation (Khanna et al., 2006). However, a gene regulatory network
(GRN) that combines available transcriptomic data to identify novel
regulators and obtain a holistic view of light signaling in Arabidopsis has
not yet been constructed.

With the increase in available genomics data, combinations of
large-scale genomics data and molecular genetics have been leveraged
for in-depth research in Arabidopsis. Microarray and RNA sequencing
were applied to study differential gene expression, upregulated or
downregulated genes under specific conditions or mutations or
different tissues. A number of useful co-expression and co-functional
online tools using plant databases enable the study of plant regulatory
networks. One example is theAranet functional network inArabidopsis,
with the integration of 24 types of omics data to identify the gene
connections and group gene function together http://www.
functionalnet.org/aranet/ (Lee et al., 2010). Using co-expression of
microarray data, STARNET2 is a web-based tool to discover gene
regulatory networks (Jupiter et al., 2009).

Co-expression network analysis has been successfully applied to
study potential functional connections between genes, identifymodules,
and select hub genes in each module. Weighted gene co-expression
network analysis (WGCNA) has been used widely as the most reliable
method for identifying gene co-expression networks. In plants, a
growing number of studies are applying WGCNA to Arabidopsis,
including flower organ morphogenesis (Xie et al., 2015), seed
germination (Bassel et al., 2011), and biotic stress-responsive
(Amrine et al., 2015). Other plants are also being studied, such as
the medicinal plant Dioscorea nipponica (Sun et al., 2017), tomato, rice
(Lou et al., 2017), strawberry (Shahan et al., 2018), and wheat (Girousse
et al., 2018). In these studies, theWGCNAmethod systematically builds
scale-free gene co-expression networks from complex transcriptomic
data, uncovering highly interconnected hub genes and biologically
relevant modules tailored to specific conditions, such as energy
metabolism clusters in rice roots or dioscin synthesis pathways in
medicinal plants. Soft-threshold power selection and topological
overlap matrix (TOM) analysis organize thousands of genes into
functionally cohesive modules, highlighting intramodular hub genes
(e.g., 18 ATP-linked hubs and 36 dioscin-associated genes) and
clarifying module–trait correlations. This framework supports
module preservation assessments and eigengene-driven clustering,

connecting conserved regulatory architectures to traits like drought
adaptation or specialized metabolite biosynthesis. However, WGCNA
has not been applied to study light signaling pathways in Arabidopsis.

Here, we constructed nondirectional WGCNA applied to
variations of light treatments from 58 RNA-seq datasets (Paik
et al., 2019; Pham et al., 2018b; Sun et al., 2016; Pedmale et al.,
2016; Xin et al., 2017; Yang et al., 2017;Wang et al., 2014; Chen et al.,
2014; Suzuki et al., 2015). The various studies include red light-
induced gene expression (Paik et al., 2019), differential light
regulation of the development of cotyledon and hypocotyl (Sun
et al., 2016), blue light-dependent CRY signal by modulating PIF
activity genome-wide (Pedmale et al., 2016), light-controlled
hypocotyl elongation via modulating histone acetylation (Tang
et al., 2017), noncoding RNA mediated control of
photomorphogenesis by red light (Wang et al., 2014), splicing
regulation in light signaling under red light (Xin et al., 2017),
and light stress acclimation (Suzuki et al., 2015). Our goal is to
apply WGCNA using a scale-free topological network to identify
different modules containing co-expressed genes based on a pairwise
correlation between genes and relating modules to specific light
treatments. Then, in each module, we will be able to identify the hub
genes and highly connected genes in light responses.

Our analysis provided a comprehensive characterization of gene
expression changes and identified the novel genes that might be
potential key regulatory genes not only in light signaling but also in
different developmental signals such as stress, hormones, and
temperature. By using the hypocotyl length as a readout phenotype,
we further confirmed that some hub genes are involved in regulating
light signaling pathways. Therefore, this study provides a holistic view of
light signaling regulatory networks and leverages the use of existing gene
expression data to identify the novel genes and protein functions in light
signaling in Arabidopsis.

Materials and methods

RNA-seq data preprocessing

RNA-seq samples were collected from NCBI databases, including
different RNA-seq, in wild-typeArabidopsis grown under different light
treatments. The quality of all the raw sequencing samples was tested
using FastQC and MultiQC (https://multiqc.info/). Low-quality
samples were removed from the list, and the final list contained
58 RNA-seq samples as described in the data. Raw reads from
RNA-seq were accessed using FastQC to check the quality of the
reads, and the adapter was removed (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/.

Read alignment and differentially expressed
gene (DEG) analysis

Kallisto (Bray et al., 2016) was used to quantify the abundance of
transcripts, using pseudo alignment to rapidly determine the
compatibility of reads with the target. The Arabidopsis reference
genome was obtained from TAIR10 (https://www.arabidopsis.org/).
Transcript abundance values from Kallisto can be further analyzed
using sleuth or transformed into DEseq2 using tximport (Love et al.,
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TABLE 1 RNASeq samples used in this study.

Run GEO accession Light Condition Stage (days) Annotation

SRR1292205 GSE57806 Red 5 days 5 GSM1390693

SRR1292206 GSE57806 Red 5 days 5 GSM1390694

SRR1292207 GSE57806 Red 5 days 5 GSM1390695

SRR1307153 GSE48767 Far-red 3 h 4 GSM1401633

SRR1421920 GSE58552 Blue 4 days 4 GSM1413821

SRR1421921 GSE58552 Blue 4 days 4 GSM1413822

SRR1523303 GSE59699 Low blue 1 h 4 GSM1443113

SRR1523304 GSE59699 Low blue 1 h 4 GSM1443114

SRR1523305 GSE59699 White light 1 h 4 GSM1443115

SRR1523306 GSE59699 White light 1 h 4 GSM1443116

SRR1523311 GSE59699 Low blue 6 h 4 GSM1443121

SRR1523312 GSE59699 Low blue 6 h 4 GSM1443122

SRR1523313 GSE59699 White light 6 h 4 GSM1443123

SRR1523314 GSE59699 White light 6 h 4 GSM1443124

SRR1523319 GSE59699 Low blue 24 h 4 GSM1443129

SRR1523320 GSE59699 Low blue 24 h 4 GSM1443130

SRR1523321 GSE59699 White light 24 h 4 GSM1443131

SRR1523322 GSE59699 White light 24 h 4 GSM1443132

SRR1560610 GSE60865 White light 21 days 21 GSM1491393

SRR1560611 GSE60865 White light 21 days 21 GSM1491394

SRR1560612 GSE60865 White light 21 days 21 GSM1491395

SRR1560613 GSE60865 High light 20 s 21 GSM1491396

SRR1560614 GSE60865 High light 20 s 21 GSM1491397

SRR1560615 GSE60865 High light 20 s 21 GSM1491398

SRR1560616 GSE60865 High light 60 s 21 GSM1491399

SRR1560617 GSE60865 High light 60 s 21 GSM1491400

SRR1560618 GSE60865 High light 60 s 21 GSM1491401

SRR3046818 GSE59699 Low blue 16 h 4 GSM1978184

SRR3046819 GSE59699 Low blue 16 h 4 GSM1978185

SRR3046820 GSE59699 White light 16 h 4 GSM1978186

SRR3046821 GSE59699 White light 16 h 4 GSM1978187

SRR3290779 GSE79576 Cotyledon dark 4 GSM2098509

SRR3290780 GSE79576 Cotyledon dark 4 GSM2098510

SRR3290781 GSE79576 Cotyledon dark 4 GSM2098511

SRR3290782 GSE79576 Hypocotyl dark 4 GSM2098512

SRR3290784 GSE79576 Hypocotyl dark 4 GSM2098514

SRR3290785 GSE79576 Cotyledon light 1 h 4 GSM2098515

SRR3290786 GSE79576 Cotyledon light 1 h 4 GSM2098516

(Continued on following page)
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2014) for DEG analysis. The VarianceStabilizingTransformation
function from DEseq2 was applied to normalize the gene-level
count, and significant genes were defined as p-adjust <0.05.
Finally, we identified 24,447 genes as differentially expressed
genes, and variant-transformed data were used for furtherWCGNA.

WGCNA

The WGCNA algorithm was implemented as described in the R
WGCNA package (Langfelder and Horvath, 2008). Detail R scripts
can also be found at https://github.com/donalbonny/co-expression-
analysis-WGCNA. Heat maps were generated using DESeq2 and the
ComplexHeatmap package (Gu et al., 2016) in R. Correlations of
module eigengene with traits were calculated based on:

cor (MEs, Trait).
Where ME: Module eigengenes that represent the module’s gene

expression profile.
Trait: the phenotypic interest trait used to measure the

correlation with the module eigengene.
GS: gene significance to illustrate the absolute value of the

correlation between the gene and the trait.
GS = |cor (xi, Trait)| where xi is the gene expression profile of

the i-th gene.

TABLE 1 (Continued) RNASeq samples used in this study.

Run GEO accession Light Condition Stage (days) Annotation

SRR3290788 GSE79576 Hypocotyl light 1 h 4 GSM2098518

SRR3290791 GSE79576 Cotyledon light 6 h 4 GSM2098521

SRR3290792 GSE79576 Cotyledon light 6 h 4 GSM2098522

SRR3290794 GSE79576 Cotyledon light 6 h 4 GSM2098524

SRR3290795 GSE79576 Hypocotyl light 6 h 4 GSM2098525

SRR6936276 GSE112662 Dark 4 days 4 GSM3075908

SRR6936277 GSE112662 Dark 4 days 4 GSM3075909

SRR6936278 GSE112662 Dark 4 days 4 GSM3075910

SRR4046133 GSE85883 Red 3 h 4 GSM3271472

SRR4046134 GSE85883 Red 3 h 4 GSM3271473

SRR4046135 GSE85883 Red 3 h 4 GSM3271474

SRR5020734 GSE89850 Red 2 days 2 GSM2391502

SRR5020735 GSE89850 Red 2 days 2 GSM2391503

SRR5020736 GSE89850 Red 2 days 2 GSM2391504

SRR6215007 GSE106568 White light 30 days 30 GSM2842781

SRR6215008 GSE106568 White light 30 days + 48 h high light 30 GSM2842784

SRR6215009 GSE106568 White light 30 days + 48 h high light 30 GSM2842783

SRR7521802 GSE117114 Red 1 h 4 GSM3271472

SRR7521803 GSE117114 Red 1 h 4 GSM3271473

SRR7521804 GSE117114 Red 1 h 4 GSM3271474

TABLE 2 Number of genes in each module.

Module colors Number of genes

Antiquewhite4 1452

Brown 1601

Coral2 153

Darkorange2 3488

Darkseagreen4 75

Darkslateblue 104

Green 644

Grey 8031

Honeydew1 164

Ivory 2617

Lightcyan1 1674

Mediumpurple3 1716

Pink 1691

Plum2 460

Thistle1 577
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Functional enrichment analysis of modules

Gene ontology (GO enrichment) analysis was performed
using The Database for Annotation, Visualization and
Integrated Discovery v6.8 (DAVID) (https://david.ncifcrf.gov/
home.jsp) (Dennis et al., 2003). Significantly enriched terms with
the lowest p-values and FDR (≤0.05) for GO terms were used to
generate the GO enrichment graphs. Venn diagrams were

generated using Venny 2.1.0 (http://bioinfogp.cnb.csic.es/tools/
venny/).

Hub gene identification and visualization

Hub genes were defined by the genes with high gene significance
(GS) and module membership (MM) values in each module. A gene

FIGURE 1
Characterization of RNASeq data. (A) The heat map shows the transcription expression value (TPM) of the most significant 100 differentially
expressed genes from each sample. Each column represents a sample, and each gene is shown in a row. (B) Principal component analysis of 58 RNASeq
samples. Samples are grouped by different conditions (light treatments).
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with a higher absolute value of GSwill bemore biologically significant to
that specific trait. Module membership values measure the correlation
of a gene to the specific module (based on module eigengene). To
identify the hub genes, we filtered values for MM > 0.8 and GS > 0.3, p-
value <0.05 in each module. Weighted network and hub genes were
visualized using VisANT http://visant.bu.edu/.

Results and discussion

Preprocessing the datasets and construction
of weighted gene co-expression networks

Fifty-eight RNA-seq samples of wild-type Arabidopsis grown
under different light treatments, including red, far-red, blue,

white light, and dark conditions, were collected from publicly
available studies (Paik et al., 2019; Pham et al., 2018b; Sun et al.,
2016; Pedmale et al., 2016; Xin et al., 2017; Yang et al., 2017;
Wang et al., 2014; Chen et al., 2014; Suzuki et al., 2015).
Comprehensive data, including detailed information about the
samples, references, run accession, and light treatments, are
described in Table 1. First, to minimize all the batch effects
and low read quality during analysis, we obtained raw reads from
RNA-seq data and reanalyzed the data using the same pipeline for
all samples from quality control, alignment, and identification of
differentially expressed genes. The heat map shows the
normalized read count of the top 100 differential genes from
58 samples (Figure 1A). We performed principal component
analysis (PCA) of 58 RNA-seq samples to confirm the identity of
any outliers (Figure 1B). In PCA, different light treatments were

FIGURE 2
Heatmap of sample-to-sample distance. Euclidean distances between the 58 samples were created using the variance-stabilizing transformation of
the count data from Kallisto.

Frontiers in Photobiology frontiersin.org06

Bai et al. 10.3389/fphbi.2025.1597248

http://visant.bu.edu/
https://www.frontiersin.org/journals/photobiology
https://www.frontiersin.org
https://doi.org/10.3389/fphbi.2025.1597248


indicated by different colors. Data points are spread out in the
two directions that explain most of the differences. The
PC1 explains 30.6% of the variance, and PC2 explains 21.2%
of the variance. We also plotted the heat map of sample-to-
sample distance to quickly obtain an overview of similarities and
dissimilarities between samples (Figure 2). The transcript
abundance estimation using Kallisto is reported as transcripts
per million (TPM) and estimated count (est_count). TPM values
were then used to perform differential expression analysis using
DESeq2 (Love et al., 2014). In order to prepare for downstream
WGCNA, the data were transformed using variance-stabilizing
transformation to stabilize variance (Figure 2).

Gene network construction and module
identification of light signaling responses

A gene expression network was constructed using weighted gene
co-expression network analysis (WGCNA) as described in the
method section (Zhang and Horvath, 2005; Langfelder and

Horvath, 2008). WGCNA identifies modules based on the
topological overlap matrix (TOM), which is the measurement of
Pearson’s correlation raised to a power between every pair of genes
and produces hierarchical clustering. We considered both positive
and negative correlations in our co-expression network. Therefore,
the “unsigned” network type was selected. The adjacency matrix (A)
represents a network created by the correlation between a pair of
genes or how a pair of genes is connected (Zhang and
Horvath, 2005).

A � aij[ ]

aij � cor xi, xj( )
∣∣∣∣∣

∣∣∣∣∣
β
,

where β indicates the soft-thresholding powers, and aij indicates the
correlation between genes i and j. The soft-threshold β is selected as the
prior selected correlation cutoff is a key parameter in the WGCNA
method. Therefore, in this analysis, we chose the soft-threshold powers
(β) of 10 with a scale-free model fitting index R2 > 0.78. Soft-threshold
power 10 is the lowest possible power for which the scale-free topology
fit index curve flattens out upon reaching a high value (Figure 3A).

FIGURE 3
Network construct and module identification. (A) Analysis of the network topology for various soft-thresholding powers (β). The left plot shows the
scale-free fit index as a function of the soft-thresholding power. The red line indicates soft-thresholding powers (β) of 10 with a scale-free model fitting
index R2 > 0.78. The right plot shows the mean connectivity remains high with soft-thresholding powers (β) of 10. (B)Hierarchical clustering dendrogram
ofmodule eigengenes. (C)Clustering dendrograms of genes with dissimilarity based on topological overlapmatrix (TOM) using the dynamic tree cut
method. Each leaf of the clustering tree corresponds to a gene. Highly co-expressed genes are grouped into different modules, shown in different colors
(dynamic tree cut). Then, modules with similar expression levels will be merged into a new module color (merged dynamic).
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Module selection

We grouped the highly correlated genes or groups of nodes
with high topological overlap into different modules across the
samples. First, dissimilarity was computed (topological overlap
ensures dissimilarity (disTOM)); then, modules were identified
using the dynamic tree cut method in WGCNA (Figure 3C). The
identification of the module also applied an unsupervised
hierarchical clustering method using the hclust function in the
WGCNA package. Using a height cut of 0.25 and a corresponding
correlation of 0.75, we merged the similar expression profile of
the modules. We plotted the gene dendrograms again, with the
original and merged module colors underneath (Figure 3C).
Finally, a module dendrogram was constructed using
clustering module eigengene (ME) distance showing the
15 different modules identified (including a gray module
whose genes are not grouped into any of the 14 modules)
(Figure 3B). Module eigengenes (MEs) represent the module’s
gene expression profiles or the first principal component of the
expression matrix of that module. We can observe the close
modules include honeydew1, oral2, and darkseagreen4. In
addition, ivory and lightcyan1 are close to each other. The
numbers of genes in each module, which range from 75 genes

(darkseagreen4 module) to 3,488 genes (darkorange2 module),
are listed (Table 2).

Identification of highly correlated modules
to traits of interest

To identify the modules that are significantly associated with
different light conditions, module eigengenes (MEs) were calculated,
and then the correlation between module eigenegenes with different
light treatments using Pearson’s correlation was determined. Each
association is coded by the correlation value, and the resulting color-
coded table is shown in the association heat map (Figure 4). The
most significant associations have been identified for each trait and
corresponding module. The association heat map shows that
honeydew1 (0.37, p-value 0.004) and antiquewhite4 have the
highest association (0.38, p-value 0.003) with 4 days of dark
treatment. The ivory module shows the strongest negative
association with hypocotyl dark condition (−0.61, p-value 5e−07).
We also observed a darkseagreen4 strong positive correlation (0.99,
p-value 2e−54) with far-red 3-h treatment, and module coral2 shows
a strong positive correlation (0.93, p-value 6e−26) with red light 3 h
treatment (Figure 4).

FIGURE 4
Module–trait associations. A summary profile is provided for each module (module eigengene, ME), then the association between the module
eigengene and the traits is shown in the heatmap. Each association is color coded by the correlation value. Each row represents amodule eigengene, and
each column is a different trait. Numbers indicate the correlation value between the module eigengene and the traits, and numbers in parentheses are
the p-values.
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We observed that some MEs are close in the eigengene
dendrogram (Figure 3B) yet show very different patterns in the
module–trait relationship (Figure 4). For instance, coral2 and
honeydew1 are close in the dendrogram but show very different
patterns in the module–trait relationship. If two modules appear
very close to each other in the eigengene dendrogram, it generally
means their module eigengenes are highly correlated, indicating
similar overall expression patterns across samples. However, this
does not necessarily guarantee that these modules will show similar
module–trait associations. The eigengene dendrogram clusters
modules based on the similarity of their eigengenes, reflecting
how closely the modules’ overall expression profiles resemble each
other. Modules with similar eigengenes may have related biological
functions or co-regulation, but their correlation with external traits
depends on how the trait relates to each module’s expression
pattern. It is possible for two modules to be close in the
dendrogram yet have different strengths or directions of
correlation with a specific trait because the trait association
depends on the specific relationship between the module
eigengene and the trait data, not only module-module
similarity. Therefore, proximity in the dendrogram suggests
similarity in module expression but does not guarantee identical
or even similar module–trait correlations.

Gene expression and GO analysis
of modules

The heatmap displays the module eigengenes (MEs) or the
module gene expressions for honeydew1 and ivory (Figures
5A,B). Each column of the heatmap represents an individual
sample and corresponds to the gene expression profile shown in
the histogram below. To test whether the module identification has
biological meaning, gene ontology (GO) was conducted to obtain
meaningful functional enrichment in eachmodule.We found that in
honeydew1, six different GO terms are enriched (Figure 5C), which
illustrated the specificity of the module identification.
Honeydew1 had enrichment in regulation of transcription
(BBX16, ERF14, VIP5), response to far-red light (HFR1,
GFR7 GROWTH-REGULATING FACTOR 7, and FHY1),
osmotic stress, negative regulation of flower development (LATE,
a zinc-finger transcriptional regulator that controls the transition to
flowering), VERNALIZATION INDEPENDENCE 5 (VIP5), and
UBIQUITIN CARRIER PROTEIN 1 (UBC1) (Figure 5C).

Many genes in ivory were enriched in response to various forms
of light stimulus, including far-red light (FHL, RGA1, and LIGHT
HARVESTING COMPLEX PHOTOSYSTEM II), red light (LIGHT
HARVESTING COMPLEX PHOTOSYSTEM II, CAB, SIG2,

FIGURE 5
Honeydew1 and ivory modules show a strong association with dark-grown seedlings. (A,B) The heat map shows module expression in
honeydew1 (A) and ivory modules (B), where each row represents a gene, and each column represents a sample. Module genes are under-expressed
(green color in the heat map) and over-expressed (red color in the heat map). Below the heat map is a bar plot showing the module gene expression
profile in each sample. (C,D) GO term analysis in honeydew1 and ivory modules, respectively.
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RUBISCO SMALL SUBUNIT, SMALL AUXIN UPREGULATED
RNA 25, HEMERA, IAA29, and ABA1), and blue light (PHOT2,
PLASTID MOVEMENT IMPAIRED (PMI1,2), and SIG2), as well
as photosynthesis genes (Figures 5D, 6). Previous studies have
shown that a number of well-known light signaling target genes,
such as PIF direct genes, HY5/ HFR1 direct target genes, and COP1/
SPA-regulated genes, are enriched in response to light stimulus,
auxin signaling, and photosynthesis (Pham et al., 2018a). The GO
terms analysis in honeydew1 and ivory illustrated that these two
modules have a strong association with light responses and might be
interesting for further study.

Transcription factors identification in
honeydew1 and ivory modules

We also compared genes in honeydew1 and ivory modules with
the Arabidopsis Transcription Factor Database http://planttfdb.cbi.
pku.edu.cn/ and found a large number of TF identified in light
signaling in honeydew1 and ivory modules. For instance, in
comparison to 1717 TF in Arabidopsis, we found 136 TF in ivory
(5.2% total ivory genes) and 16 TF (9.7% total honewdew1 genes) in
hondeydew1 modules (Figures 7A,B). In the honeydew1 module,
some well-known transcription factors, such as HFR1, EIN2, GRF7
(GROWTH-REGULATING FACTOR7), BIM1 (BES1-
INTERACTING MYC-LIKE1 (BIM1), BBX16 (B-BOX DOMAIN
PROTEIN 16), CONSTANS-LIKE 7 (COL7), BBX23, ERF14,
MYBC1, and RAP2-2 (related to AP2), are present (Table 3). In
the Ivory module, we found TCP families (TCP10, 17, 13), B-Box
Domain COL16, Zinc finger nuclease 3 (ZFN3), Zinc finger protein

1 (ZFN1), BES1/BZR1 homolog 4 (BEH4), ERF13, ERF 119, ALSO
ATHB22, CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1),
SEPALLATA 4 (SEP4), AGAMOUS-LIKE 87 (AGL87), and MYB
DOMAIN PROTEIN MYB106 (Table 4).

We also examined the expression patterns of TF in the
honeydew1 module using the RNA-seq data (Figure 7C). The
dark condition illustrates the 4-day-old dark-grown seedlings.
Other samples, including red, far-red, blue, and white light
treatments, are grouped into light conditions. Most of the TFs
displayed differential expression between dark and light
conditions. It will be interesting to look at the TFs in these
modules that are not related to light signaling to elucidate the
cross-talk or novel functions of TF between light and
multiple pathways.

Identification of genes with high gene
significance (GS) and module
membership (MM)

Identification of hub genes is one of the most important goals of
co-expression network analysis. We identified genes with high
significance (gene significance) to the light condition and also
genes with high correlation (module membership) with the
module. GS measures the correlation between the gene and the
interesting trait, and MM measures the correlation between the
expression levels of a gene and the module eigengene. Furthermore,
a specific module whose MM and GS were significantly connected
and associated with the trait is a module that plays a more important
biological role in light response and regulation. Because

FIGURE 6
A large number of ivory genes are involved in light signaling. The word cloud shows a large number of genes in the ivory module are related to light
signaling, including response to blue light, red, far-red light, response to auxin, and photosynthesis. GO analysis was done using the Database for
Annotation, Visualization and Integrated Discovery (DAVID). The word cloud was generated using WordItOut, with word colors and sizes assigned
randomly. The responses to different forms of light in different colors were enriched in response to light stimulus, far-red light, and blue light, as well
as photosynthesis genes, to illustrate the GO analysis and genes in the ivory module.
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FIGURE 7
Transcription factors (TF) in honeydew1 and ivory modules. (A,B) Venn diagrams show the number of TFs in honeydew1 and ivory modules (in
comparison with the transcription factor database results for Arabidopsis (1717 TF) http://planttfdb.cbi.pku.edu.cn/). (C) Expression patterns of selected
TFs in honewdew1 by RNASeq. Expression values are plotted using different colors grouped by light conditions. The dark condition illustrates the dark-4-
day hypocotyl and cotyledon samples grown in the dark. Other samples with red, far-red, blue, and white light treatments are grouped into light
conditions.

TABLE 3 List of TF in the honeydew1 module with high module significance >0.8.

Locus Gene
name

MM.honeydew1 p.MM.honeydew1 All.Gene.Symbols

AT3G14230 RAP2-2 0.899191528 9.29E−22 RELATED TO AP2 2 (RAP2.2)

AT1G02340 HFR1 0.888769665 1.27E−20 LONG HYPOCOTYL IN FAR-RED (HFR1); REDUCED PHYTOCHROME
SIGNALING 1 (REP1); (FBI1); REDUCED SENSITIVITY TO FAR-RED LIGHT 1
(RSF1)

AT2G40970 MYBC1 0.879269447 1.10E−19 (MYBC1)

AT1G44830 ERF014 0.871159079 6.08E−19 (ATERF014); ERF TRANSCRIPTION FACTOR 14 (ERF014)

AT5G08130 BIM1 0.869485928 8.53E−19 BES1-INTERACTING MYC-LIKE1 (BIM1)

AT4G10240 BBX23 0.85627688 1.06E−17 B-BOX DOMAIN PROTEIN 23 (BBX23)

AT5G53660 GRF7 0.842521723 1.12E−16 GROWTH-REGULATING FACTOR 7 (AtGRF7); GROWTH-REGULATING
FACTOR 7 (GRF7)

AT1G50420 SCL3 0.81002378 1.36E−14 SCARECROW-LIKE 3 (SCL3); SCARECROW-LIKE 3 (SCL-3)

AT3G06160 AT3G06160 −0.846235672 6.07E−17

AT5G61270 BHLH72 −0.853130878 1.85E−17 PHYTOCHROME-INTERACTING FACTOR7 (PIF7)

AT1G73870 COL7 −0.871964867 5.16E−19 B-BOX DOMAIN PROTEIN 16 (BBX16); CONSTANS-LIKE 7 (COL7)
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honeydew1 and ivory have shown strong associations with light
signaling in GO analysis and are also highly correlated with the dark
condition, we plotted a scatterplot of GS vs. MM in honeydew1 and
ivory modules compared with the grey module. The scatterplots
show that the gray module exhibits a very weak correlation between
GS and MM (0.18). Honeydew1 and ivory, however, show strong
associations with dark 4-day treatment (correlation values of
0.36 and 0.39, respectively) (Figure 8). Modules with high trait
significance and genes with high module membership were selected
for further study for the identification of hub genes and network
analyses. In order to identify the hub genes in those two modules, we
selected genes with high MM (or high intramodular connectivity),
which is a good representative of the overall expression profile in the
module. In the honeydew1, hub genes were defined by the genes
with MM > 0.8 and GS > 0.3. A list of 75 genes was selected from the
module (Dataset 1). In the ivory module, genes with MM > 0.95 and
GS > 0.3, 89 genes were selected (Dataset 2).

Characterization of hub genes related to
light responses from the honeydew1module

The most interconnected hub genes from the
honeydew1 module with strong connections (TOM >0.13)

were selected and are shown in Figure 9A. The top eight genes
that show strong positive and negative correlations to the dark 4-
day condition are labeled with blue color in Figure 9A. We also
examined the expression levels of these eight top genes, as shown
in Figure 9B. We refer to the samples, including dark 4 days,
hypocotyl in the dark, and cotyledon in the dark, as “Dark” and
the far-red, red, and blue light, and white light treatments as
“Light” (Figure 9B). Indeed, we observed that AT5G15840 (CO),
AT1G20790 (F-box family protein), HSD5 (encodes a putative
hydroxysteroid dehydrogenase), and OL3 (encodes oleosin3, a
protein found in oil bodies, involved in seed lipid accumulation)
show a strong positive correlation with dark 4 days in the
honeydew1 module. These data correlated with the gene
expression value, showing a stronger expression of these genes
in the dark than in the light conditions. Similarly, gene
expression values in AT5G67370 (DUF1230 family protein),
AT5G63060 (Sec14p-like phosphatidylinositol transfer family
protein), AT1G28610 (L-aspartase-like family protein), and
AT1G36280 (L-aspartase-like family protein) all show a strong
negative correlation with dark 4 days, which is correlated to the
lower expression of these genes in the dark than the light
conditions (Figure 9B).

To identify potential new regulators in light signaling pathways,
we selected eight genes from the honeydew1 module to investigate

TABLE 4 List of TFs in the ivory module with high module significance >0.8.

Locus Gene name MM.ivory p.MM.ivory Primary.Gene.Symbol

AT2G31070 TCP10 0.910477231 3.90E−23 TCP DOMAIN PROTEIN 10 (tcp10)

AT5G08070 TCP17 0.907559817 9.20E−23 TCP DOMAIN PROTEIN 17 (tcp17)

AT1G25440 COL16 0.896455801 1.89E−21 B-BOX DOMAIN PROTEIN 15 (BBX15)

AT3G11090 LBD21 0.895739117 2.28E−21 LOB DOMAIN-CONTAINING PROTEIN 21 (LBD21)

AT2G20570 GPRI1 0.88781301 1.59E−20 GBF’S PRO-RICH REGION-INTERACTING FACTOR 1
(GPRI1)

AT1G22590 AGL87 0.873481179 3.77E−19 AGAMOUS-LIKE 87 (AGL87)

AT5G16540 ZFN3 0.867900768 1.17E−18 ZINC FINGER NUCLEASE 3 (ZFN3)

AT5G02030 BLH9 0.8640762 2.47E−18 REPLUMLESS (RPL)

AT3G01140 MYB106 0.853717582 1.67E−17 MYB DOMAIN PROTEIN 106 (MYB106)

AT4G24660 ATHB22 0.852937391 1.92E−17 HOMEOBOX PROTEIN 22 (HB22)

AT3G02830 ZFN1 0.846255414 6.05E−17 ZINC FINGER PROTEIN 1 (ZFN1)

AT4G26150 GATA22 0.823588365 2.07E−15 CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1)

AT3G25890 ERF119 0.82137767 2.84E−15 CYTOKININ RESPONSE FACTOR 11 (CRF11)

AT2G03710 AGL3 0.816646168 5.52E−15 SEPALLATA 4 (SEP4)

AT3G02150 TCP13 0.80188461 3.91E−14 PLASTID TRANSCRIPTION FACTOR 1 (PTF1)

AT5G66700 ATHB-53 −0.825006946 1.68E−15 HOMEOBOX 53 (HB53)

AT3G10760 AT3G10760 −0.834994386 3.74E−16 Homeodomain-like superfamily protein; (source: Araport11)

AT1G78700 BEH4 −0.861157028 4.29E−18 BES1/BZR1 HOMOLOG 4 (BEH4)

AT1G77640 ERF013 −0.874216015 3.24E−19 Encodes a member of the DREB subfamily A-5 of the ERF/
AP2 transcription factor family. The protein contains one
AP2 domain. There are 15 members in this subfamily, including
RAP2.1, RAP2.9, and RAP2.10
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their involvement in this process. Given that hypocotyl elongation
experiments are commonly used to test light signaling phenotypes,
we focused on measuring hypocotyl lengths for seedlings grown in
darkness and under red and far-red light conditions for this study.
We obtained at least two independent T-DNA insertion lines for
each candidate gene and designed genotyping primers to isolate
homozygous mutant lines from the segregating population (see
Supplementary Table S1; Supplementary Figures S1A–H). We
then measured hypocotyl lengths for seedlings grown under
darkness for 4 days and 1 day dark, followed by three additional
days of growth under red and far-red light conditions using two
different light intensities. Finally, we compared the hypocotyl
lengths between the Col-0 and the candidate gene mutant lines
using a Student’s t-test.

AT1G20790 (F-box family protein) shows lower expression
under light than dark conditions (Figure 9B). This gene has been
identified as a homolog of novel genes in legumes (Graham et al.,
2004). Being at the core of the honeydew1 module, this gene might
play an important role in light signaling. We isolated two
independent homozygous T-DNA insertion lines and examined
their phenotypes. The results show that both alleles display longer
hypocotyls under red and far-red light than the wild type (Figures
10A–C). Hypocotyl lengths were comparable for the mutant and
wild-type under dark, suggesting that these mutants are
hyposensitive to red and far-red light conditions in a light-
dependent manner. Previously, several F-box proteins have
been shown to be involved in light signaling pathways. For
example, EID1 (Dieterle et al., 2001), EBF1/2 (Dong et al.,
2017), MAX2 (Shen et al., 2007), CTG10 (Majee et al., 2018),
and CFH1 (Liu et al., 2024) have been shown to regulate
photomorphogenesis. Many of these F-box proteins promote

the degradation of the negatively acting phytochrome-
interacting factors (PIFs) and thereby promote
photomorphogenesis. It is possible that AT1G20790 might also
control PIF stability to regulate photomorphogenesis. Further
analysis is necessary to understand how AT1G20790 regulates
photomorphogenesis.

AT5G63060 (CHLOROPLAST-LOCALIZED SEC14-LIKE
PROTEIN, CPSFL1, and PITP7) shows higher expression
when transitioning from dark to light (Figure 9B). Previous
studies have demonstrated that CPSFL1 is essential for
chloroplast vesicle formation and photoautotrophic
development of Arabidopsis (Hertle et al., 2020; Kim et al.,
2022). As CPSFL1 is located at the core of the
honeydew1 module, it might play an important role in light
signaling. For our hypocotyl elongation experiments, we used one
heterozygous T-DNA insertion line, AT5G63060-1(+/−) (Salk_
116713), as homozygous seedlings did not grow to adult plants,
and one homozygous weak T-DNA insertion line, AT5G63060-2
(Salk_047586C). We measured the hypocotyl lengths of all the
seedlings for both alleles. The results showed that both
AT5G63060-1(+/−) and AT5G63060-2 exhibited shorter
hypocotyl lengths than the wild type under both red and far-
red light conditions but no significant phenotype difference
under dark conditions compared to Col-0 (Figures 10D–F).
This suggests that cpsfl1 is hypersensitive to red and far-red
light and may function as a negative regulator in phytochrome-
mediated hypocotyl elongation.

AT1G36280 (L-aspartase-like family protein) also exhibits
higher gene expression under light conditions (Figure 9B),
although its function in plants is not yet fully characterized.
The L-aspartase-like family proteins primarily function in

FIGURE 8
Identifying genes with high gene significance (GS) and module membership (MM). Scatter plots of GS for a dark-4-day condition vs. MM in the
honeydew1 and ivory modules show a highly significant correlation between GS and MM in these modules (correlation values of 0.36 and 0.39 in
hondeydew1 and ivory, respectively); however, the gray module shows a very weak correlation (correlation value −0.18). The p-value is shown on top.
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deaminating L-aspartate into fumarate and ammonia (Mizobata
and Kawata, 2007). In plants, L-aspartate (Asp) serves as a
precursor for the biosynthesis of other amino acids,
nucleotides, nicotinamide adenine dinucleotide (NAD), and
other aspartate-derived biomolecules, playing a crucial role in
plant growth and development. L-aspartate also influences the
biosynthesis of phytohormones, such as ethylene and indole-3-
acetic acid (IAA) (Han et al., 2021). However, how light affects
L-aspartase and, subsequently, L-aspartate remains unclear. To
test whether AT1G36280 functions in the light signaling

pathway, we measured hypocotyl lengths of two independent
T-DNA insertional mutants under red and far-red light
conditions. Both AT1G36280-1 and AT1G36280-2 T-DNA
insertion lines exhibited a shorter hypocotyl phenotype than
Col-0 under both red and far-red light conditions (Figures
10G–I). This suggests that AT1G36280 might be a negative
regulator in the light signaling pathway.

From our WGCNA, we identified several hypothetical
proteins, including AT1G13650, whose function is currently
unknown. Previous reports indicate that this gene is expressed

FIGURE 9
Characterization of hub genes related to light responses from the honeydew1 module. (A) Visualization of the network connections in the
honeydew1 module using VisANT. The network shows connections whose topological overlap is above the threshold of 0.13. The network only shows
the genes with more than two connections. (B)Gene expression using transcripts per million (TPM) values for eight hub genes in the honeydew1 module
from RNASeq data. These genes are indicated in blue colors in Figure (A).
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FIGURE 10
Four selected hub genes display the hypocotyl phenotype under red and far-red light. Box plots show the hypocotyl lengths of two independent
alleles of each gene showing red light phenotypes (A,D,G,J) and far-red light phenotypes (B,E,H,K) compared to dark conditions (C,F,I,L). Seedlings were
grown under darkness for four days or one day under dark followed by 3 days under red or far-red light at two intensities (in μmol/m−2/s−1) shown on top
of the box plots. Statistically significant differences are indicated by *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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in various biological processes, such as pathogen response, cold
treatment, osmotic stress, seed maturation, and leaf development
(Ascencio-Ibánez et al., 2008; Hannah et al., 2005; Wohlbach
et al., 2008; Efroni et al., 2008). Because AT1G13650 is present in
the honeydew module, we aim to further investigate its role in
light signaling. Based on its hypocotyl phenotype under red and
far-red light conditions, two independent alleles of
AT1G13650 mutants exhibit significantly longer hypocotyl
lengths than Col-0 (Figures 10J–L). This suggests that
AT1G13650 may act as a positive regulator for seedling
hypocotyl elongation under red and far-red light.
Interestingly, AT1G13650 mutants also display a cotyledon
opening phenotype under dark conditions, which suggests that
AT1G13650 might act as a negative regulator in regulating
cotyledon opening in the dark. These findings provide new
insights into the role of hypothetical proteins in identifying
new regulators in light signaling pathways.

The other four genes, including AT5G67370
(DUF1230 family protein, accumulates progressively upon
iron deficiency), AT3G06160 (AP2/B3-like transcriptional
factor family protein), AT3G03770 (leucine-rich repeat protein
kinase family protein), and AT1G28610 (GGL3, GUARD-CELL-
ENRICHED GDSL LIPASE 3, which is a GDSL-motif esterase/
acyltransferase/lipase), did not show significant hypocotyl
phenotypes in a light-dependent manner (Supplementary
Figures S2A–L). However, we found that AT1G28610 mutants
exhibit longer hypocotyl lengths under dark conditions but no
significant hypocotyl phenotype under red and far-red light
conditions (Supplementary Figures S2A–C). GDSL-type lipases
can hydrolyze and synthesize lipids, affecting lipid metabolism
and energy production (Ding et al., 2019). These lipases are
essential for various aspects of plant development, including seed
germination, coleoptile elongation, root development, stomata
development, and flower development (Shen et al., 2022).
Additionally, the GDSL-type lipase family responds to both
abiotic and biotic stresses. Thus, these data suggest that
AT1G28610 might play a negative role in regulating hypocotyl
elongation under dark. Thus, these genes might function in
regulating other facets of light-mediated plant development.
Further experiments are needed to explore their roles in light
signaling pathways.

In summary, this study shows the first evidence of using
WGCNA co-expression networks to predict the functional roles
of individual genes at a system-wide scale in light responses by
leveraging transcriptomic data in wild-type Arabidopsis.
Fourteen modules have been identified, and each module
shows a strong association with different light treatments.
Among them, honeydew1 and ivory show a strong association
with the dark condition, coral 2 shows a strong connection with
red light, and darkslateblue shows a high correlation with low
blue light and white light, respectively. We identified hub genes
from the honeydew1 module, including many known genes in
light signaling but also hypothetical proteins with unknown
functions in light signaling pathways. Functional analyses
showed that at least four of eight hub genes (50%) are
involved in regulating light signaling pathways. It is possible
that the other hub genes are also involved in regulating other

facets of photomorphogenesis. Moreover, the survey nature of
our phenotypic analysis did not reveal the mechanistic details by
which these hub genes regulate light signaling. A more
comprehensive phenotypic and functional analysis is
necessary to determine if and how these genes play a role in
light signaling pathways. These results demonstrate that
WGCNA is an efficient method for utilizing published RNA-
seq data to construct gene co-expression networks (GRNs) and
identify potential new regulators in light signaling pathways.
This approach may also be beneficial for other plant
developmental regulatory pathways.
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