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Diatoms, heterokont microalgae found in all aquatic habitats, can be
distinguished by their typical brown colour due to the presence of a
characteristic light-harvesting carotenoid: fucoxanthin. The biosynthesis of
fucoxanthin involves several intermediates, some of which also play a key role
in photoprotection via the xanthophyll cycle, controlling the dissipation of
excessively absorbed light energy in the form of Non-Photochemical
Quenching (NPQ). The regulation of the fucoxanthin pathway is therefore
crucial to direct xanthophyll biosynthesis towards light harvesting or
photoprotective functions. Yet, until recent years most of the steps in this key
metabolical route remained unknown. Interestingly, diatoms possess multiple
homologs of the ancestral genes encoding the two xanthophyll cycle enzymes:
Violaxanthin De-Epoxidase (VDE) and Zeaxanthin Epoxidase (ZEP). Here, we
review the recent discoveries of the function of most VDE and ZEP isoforms
in the fucoxanthin pathway of the model diatom Phaeodactylum tricornutum.
Some of these enzymes have a central role in photoprotection, while other have
been identified as ideal targets for engineering and industrial applications. We
discuss the physiological role of these proteins and address missing links in the
pathway and unknown properties of these enzymes. Finally, we argue that the
expansion of the VDE and ZEP gene families represented a turning point in the
evolution of xanthophyll cycling and fucoxanthin biosynthesis in diatoms.
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1 Introduction

Carotenoids are essential molecules for life on Earth, contributing to photosynthesis
and several other biological processes (Stange, 2016). Xanthophylls, carotenoids that
contain oxygen, stand out for their role in light harvesting and photoprotection: they
are structural components of the photosynthetic apparatus, increase the absorption of blue-
green light wavelengths and actively protect the photosystems from light-induced damage
via constitutive energy dissipation or via the inducible xanthophyll cycle, involved in the
Non-Photochemical Quenching (NPQ) of excess light energy (Cazzaniga et al., 2016; Jahns
and Holzwarth, 2012). Since the discovery of the violaxanthin cycle in the early 1960s
(Yamamoto et al., 1962), xanthophyll cycling and its connection to NPQ have been
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described numerous times in plants and algae (Arsalane et al., 1994;
Demmig et al., 1988; 1987; Niyogi et al., 1998; 1997; Olaizola et al.,
1994, to cite the most seminal works). These processes are
characterised by the interconversion between two or more
xanthophylls, through the epoxidation and de-epoxidation of the
ionone rings present at the two ends of the polyene chain of the
molecule (Latowski et al., 2011; Stransky and Hager, 1970). In the
two main forms of xanthophyll cycling (the violaxanthin and the
diadinoxanthin cycle) the enzyme Violaxanthin De-Epoxidase
(VDE) catalyses the formation of de-epoxidized xanthophylls
(zeaxanthin or diatoxanthin), that trigger the activation of NPQ.
The cycle is closed with the counteracting reaction operated by
Zeaxanthin Epoxidase (ZEP), that restores the epoxidized
xanthophyll (violaxanthin or diadinoxanthin) thus abolishing
NPQ (for a comprehensive review we refer to: Fernández-Marín
et al., 2021; Goss and Latowski, 2020; Goss and Lepetit, 2015). Beside
their role in photoprotection, epoxy xanthophylls are also
intermediates in the biosynthesis of other carotenoids and
derived compounds (called apocarotenoids), like abscisic acid
(DellaPenna and Pogson, 2006; Moreno et al., 2021). Thus, the
regulation of xanthophyll cycle enzymes has both a
photophysiologic and a metabolic relevance.

Xanthophylls have been gaining scientific and commercial interest
in recent years, due to their relevance in sectors like human health or
agriculture (Aziz et al., 2020; Beyer et al., 2002; Demmig-Adams et al.,
2020; Karniel et al., 2020; Mann et al., 2000; Van Der Straeten et al.,
2020). One of the frontiers of this industry is represented bymicroalgae,
regarded as a powerful and sustainable source for xanthophyll
production (Smaoui et al., 2021). In this framework, diatoms
(brown heterokont microalgae) are emerging as a new platform for
the production of xanthophylls of high interest, like fucoxanthin but
also diadinoxanthin and diatoxanthin. For this purpose, the pennate
diatom Phaeodactylum tricornutum has been identified as an ideal
target: several molecular tools are already available for this species, that
is also fast and easy to grow compared to other microalgal models
(Butler et al., 2020; Morelli et al., 2025; Russo et al., 2023).

Diatoms are a major component of marine and freshwater
phytoplankton dominating turbulent waters, nutrient-rich
environments characterised by frequent and intense light changes
(Falkowski et al., 2004; Lavaud, 2007). In response to this potential
source of stress, diatoms display a highly efficient NPQ that heavily
relies on the diadinoxanthin cycle and on antenna proteins of the Lhcx
family (Buck et al., 2019; Croteau et al., 2025; Lavaud, 2007). The
extent of this remarkable photoprotection capacity seems to be habitat
dependent, with diatoms thriving in highly dynamic environments
(such as coastal or intertidal waters) displaying a higher NPQ capacity
compared to populations in the open ocean (Barnett et al., 2015;
Lavaud et al., 2007). Furthermore, the xanthophyll cycle carotenoids
involved in this photoprotective process are also precursors of the
major light harvesting carotenoid fucoxanthin (as illustrated in
Figure 1). Thus, while the fine regulation of xanthophyll-mediated
NPQ is crucial to respond to dynamic light fluctuations, diatomsmust
also coordinate this with a complex xanthophyll biosynthesis
pathway. Due to these characteristic features, the role of the
enzymes regulating this key metabolical route takes on an even
more marked importance in this relevant group of microalgae.

Diatoms harbor multiple paralogs of the VDE and ZEP enzymes
(homologous to those regulating the violaxanthin cycle in land plants)

that are essential for the regulation of xanthophyll cycling and
fucoxanthin biosynthesis (Bai et al., 2022; Cao et al., 2023; Coesel
et al., 2008; Frommolt et al., 2008). In this work, we review the recent
advances on the characterisation of these key enzymes in P. tricornutum
and address persisting research gaps and future challenges.

2 A quick overview of xanthophyll
biosynthesis in diatoms

In all oxygenic photoautotrophs, the biosynthesis of
xanthophylls begins from the conversion of active isoprene (the
backbone of all carotenoids) into lycopene, the precursor of α- and
β-carotene (Roy et al., 2011). Diatoms synthesise only β-carotene
and therefore contain solely “β-branch” xanthophylls (Dautermann
and Lohr, 2017; Roy et al., 2011). First, zeaxanthin is synthesised,
followed by the two epoxy xanthophylls that complete the
violaxanthin cycle: antheraxanthin and violaxanthin.
Violaxanthin might also be synthetised via alternative routes,
involving epoxi- or diepoxidized forms of β-carotene and/or β-
cryptoxanthin (Bertrand, 2010; Lohr andWilhelm, 2001). An allenic
group is then added to violaxanthin for the synthesis of its allenic
derivatives: first neoxanthin (in its trans- isomer), followed by a yet
unknown reaction that leads to the formation of diadinoxanthin
(Dautermann et al., 2020). The latter can then be de-epoxidized into
diatoxanthin in the diadinoxanthin cycle. Finally, fucoxanthin, the
main light harvesting carotenoid of diatoms, is also synthesised from
diadinoxanthin, in a pathway that involves a series of allenic
intermediates recently described in two seminal papers (Bai et al.,
2022; Cao et al., 2023). Several reactions on this pathway involve the
removal (de-epoxidation), addition (epoxidation) or rearrangement
of the epoxy moiety and are catalysed by different VDE or ZEP
isoforms (Figure 1).

3 Functional characterization of VDE
and ZEP isoforms in Phaeodactylum
tricornutum

VDE and ZEP belong to the lipocalin protein family and are
ubiquitous among photosynthetic eukaryotes (Goss and Jakob,
2010). According to the latest genome annotation (Rastogi et al.,
2018), P. tricornutum harbours 4 paralogs of VDE (VDE: Phatr3_
J51703; VDL1: Phatr3_J36048; VDL2: Phatr3_J45846; VDR: Phatr3_
J43240) and 3 of ZEP (ZEP1: Phatr3_J45845; ZEP2: Phatr3_J5928;
ZEP3: Phatr3_J10970), annotated based on their similarity with the
VDE or ZEP from green algae and land plants (Coesel et al., 2008). Four
of these genes are coupled in tandem, with a tail-to-tail orientation:
ZEP3-VDE (on chromosome 4), and ZEP1-VDL2 (on chromosome 8).
In addition, VDR and ZEP2 are located on the same chromosome (1)
but at more distant positions, while VDL1 is located on chromosome 9.
This structure, also found in other heterokonts and prasinophytes,
indicates that the ancestral VDE-ZEP tandem was subject to several
duplication events followed by functional specialisation in these taxa
(Coesel et al., 2008; Frommolt et al., 2008). Indeed, recent research has
shown that, while some of these paralogs still operate the violaxanthin
and diadinoxanthin cycles, others have specialised in different steps of
xanthophyll biosynthesis (Figure 1).
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3.1 VDE and ZEP3 orchestrate
photoprotective xanthophyll cycling

Early physiological studies already proposed that de-epoxidation of
both violaxanthin and diadinoxanthin must be operated by the same
enzyme in P. tricornutum (Jakob et al., 2001; Lohr andWilhelm, 1999).
Subsequent experiments in recombinant and transient systems (Bojko
et al., 2013; Dautermann et al., 2020; Lavaud et al., 2012; Olchawa-Pajor

et al., 2019) identified the responsible isoform as VDE, as recently
confirmed by the corresponding CRISPR/Cas9 gene knockout (Giossi
et al., 2025). Identification of the specific ZEP isoform(s) responsible for
the counteracting reactions (i.e., the epoxidation of zeaxanthin and
diatoxanthin) has proven more challenging. Experiments on
transformed Arabidopsis thaliana initially pointed to ZEP2 as best
candidate for diatoxanthin epoxidation, due to its broader substrate
specificity (Eilers et al., 2016). However, three independent studies

FIGURE 1
Confirmed roles of VDE and ZEP isoforms in the xanthophyll biosynthesis pathway of Phaeodactylum tricornutum. Reactions catalysed by other
enzymes are represented with an unlabelled arrow, while uncharacterised steps are indicated by a question mark. Formation of epoxy and allenic groups
are highlighted in red and blue, respectively. Next to each VDE/ZEP isoform, coloured symbols represent the proposed regulatory network (pH,
ascorbate, O2 + NADPH/FAD, ROS and MGDG). A complete overview of fucoxanthin biosynthesis is presented in Bai et al. (2022) and Cao
et al. (2023).
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employing knockout mutants later identified ZEP3 as the main
epoxidase of the photoprotective diadinoxanthin cycle in P.
tricornutum (Giossi et al., 2025; Græsholt et al., 2024; Ware et al.,
2024). While most likely both ZEP2 and ZEP3 can accept diatoxanthin,
zeaxanthin and antheraxanthin as substrates (Eilers et al., 2016; Giossi
et al., 2025), these isoforms clearly developed different functions, with
ZEP3 being mostly responsible for the rapid epoxidation of
diatoxanthin (and thus for NPQ recovery) after light stress. This
might be explained by differences in the light-dependent activation
properties, substrate specificity and/or localisation of the two enzymes
in the plastid (for a detailed elucidation of these hypotheses and
corresponding models we refer to: Giossi et al., 2025).

Inmost photosynthetic eukaryotes VDE is localised in the thylakoid
lumen and is activated by its acidification. In diatoms, it is inhibited at
relatively higher pH (7.5) and requires lower amounts of co-factor
ascorbate compared to plants (Bratt et al., 1995; Goss et al., 2006;
Grouneva et al., 2006; Jakob et al., 2001). VDE is active as a dimer,
formed upon acidification of the lumen pH, and requires the presence
monogalactosyl diacylglycerols (MGDGs) in the thylakoid membrane
(Goss and Latowski, 2020; Grouneva et al., 2006; Yamamoto and
Higashi, 1978). ZEPs are instead found at the stromal side of the
thylakoids, have a pH optimum slightly above neutral (~7.5) and
require O2, NADPH and FAD as co-substrates for zeaxanthin or
diatoxanthin epoxidation (Büch et al., 1995; Goss and Latowski,
2020; Hager, 1975; Siefermann and Yamamoto, 1975). In plants,
ZEP activity is inactivated in presence of certain reactive oxygen
species (ROS) (Bethmann et al., 2019; Holzmann et al., 2022;
Reinhold et al., 2008). In diatoms, epoxidase activity is significantly
faster compared to the green lineage counterparts (Giossi et al., 2025;
Goss et al., 2006; Lohr and Wilhelm, 1999) and is active at non-
saturating irradiances (i.e., is inactive in both high light and darkness)
due to a yet unknown mechanism which might be independent of
pH (Blommaert et al., 2021). It is also inhibited by cadmium (Bertrand
et al., 2001). Due to its clear role in the recovery of the diadinoxanthin
cycle, we can now reasonably attribute these properties at least to ZEP3.

3.2 ZEP2: at the interface between
photoprotection and de novo xanthophyll
biosynthesis

As discussed above, ZEP2 can most likely catalyse the
epoxidation of both zeaxanthin/antheraxanthin and diatoxanthin,
but showed a broader substrate specificity compared to ZEP3 when
transformed into land plants (Eilers et al., 2016; Giossi et al., 2025).
Mutants lacking ZEP2 display a wild type-like diatoxanthin
epoxidation capacity after a short light stress, but accumulate
significantly higher amounts of pigments of the violaxanthin
cycle when exposed to extreme high light for several hours
(Giossi et al., 2025; Græsholt et al., 2024). This indicates that
ZEP2 is mostly employed in de novo xanthophyll biosynthesis,
while ZEP3 is likely specialised to strictly control photoprotective
xanthophyll cycling in response to light stress (Giossi et al., 2025).

This leads to the hypothesis that ZEP2 is rather constitutively active
to support downstream xanthophyll biosynthesis under a broad range
of environmental conditions. Such feature could be extremely relevant
for diatoms: while plants and green algae can accumulate their main
NPQ-inducing pigment, zeaxanthin, directly from β-carotene, diatoms

must synthesise violaxanthin to accumulate diadinoxanthin and
diatoxanthin (Figure 1). Thus, an alternative ZEP activity (here
attributed to ZEP2) would allow the flow of de novo xanthophyll
biosynthesis independent of photoprotective ZEP3 regulation, leading
to the increase of the diadinoxanthin cycle pool under high light and
uncoupling the synthesis of fucoxanthin from photoprotective
xanthophyll cycling. If ZEP3 would also be responsible for de novo
xanthophyll biosynthesis, no accumulation of the total diadinoxanthin
cycle pool would be possible in prolonged high light, as ZEP3 seems to
be completely switched off under these conditions to enable
photoprotection by diatoxanthin-based NPQ.

Still, further studies are needed to clarify these hypotheses.
Transient expression of diatoms ZEPs in plant leaves is a
powerful tool for investigating their catalytic activity, but this
method presents limitations for studying their substrate
specificity or their physiological role as plants lack several
potential carotenoid substrates present in diatom plastids (such
as diatoxanthin). Further functional studies on ZEP2 and
ZEP3 will be needed to assess the relative contributions of these
two enzymes in photoprotection and de novo xanthophyll
biosynthesis and to examine postulated differences in their light
dependency or cellular localisation.

3.3 VDL1, VDL2 and ZEP1 are involved in
fucoxanthin biosynthesis

Frommolt et al. (2008) proposed that VDE-like (VDL) proteins,
found in chromist algae but absent in the green lineage (Coesel et al.,
2008), were unlikely to participate in xanthophyll cycling due to the
lack of characteristic amino acids of the catalytic domain of VDE.
Indeed, it was recently established that these enzymes catalyse the
formation of allenic xanthophylls (Figure 1): VDL1 synthesises
neoxanthin from violaxanthin, while VDL2 is responsible for the
conversion of diadinoxanthin to allenoxanthin, an intermediate
product of fucoxanthin biosynthesis (Bai et al., 2022;
Dautermann et al., 2020). Further down the pathway,
ZEP1 epoxidizes haptoxanthin to phaneroxanthin, the direct
precursor of fucoxanthin (Bai et al., 2022; Cao et al., 2023).

Due to competition for substrates (violaxanthin and
diadinoxanthin, as shown in Figure 1), the activity of VDE,
VDL1 and VDL2 must be finely regulated to direct carotenoid
biosynthesis towards photoprotective xanthophyll cycling or
light-harvesting fucoxanthin depending on the physiological
needs of the cell (Dautermann et al., 2020). Indeed, in vitro
assays indicated that VDL1 activity is modulated solely by pH, in
contrast to VDE that has a more complex regulation relying also on
the cofactor ascorbate (Dautermann et al., 2020). VDL2 should also
be subject to a tight regulation by a yet unknown factor (Bai et al.,
2022). Finally, in vitro experiments suggested that ZEP1 is regulated
by NADPH, FAD and molecular O2 (Bai et al., 2022), as known for
the ZEP from plants (Büch et al., 1995).

Due to their involvement in the regulation of downstream
fucoxanthin biosynthesis, VDL1, VDL2 and ZEP1 have a strong
influence on the accumulation of light harvesting carotenoids but
play no role in xanthophyll cycle-related photoprotection. For
instance, Li et al. (2024) reported that natural variations of VDL1
expression in different P. tricornutum strains enhance fucoxanthin
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accumulation, with none or only minor effects on the
diadinoxanthin cycle and on the NPQ capacity. For these
reasons, these genes represent potential engineering targets for
the industrial production of fucoxanthin.

3.4 VDR: an unknown role in carotenoid
biosynthesis

VDE-related (VDR) genes were first discovered in the green alga
Chlamydomonas reinhardtii and are found in most photosynthetic
eukaryotes, including land plants and diatoms (Coesel et al., 2008).
VDR proteins share some similarities with the other VDE isoforms
but lack characteristic cysteine residues potentially relevant for their
enzymatic activity (Coesel et al., 2008; Olchawa-Pajor et al., 2019;
Simionato et al., 2015). The sequences from P. tricornutum and the
centric diatom Thalassiosira pseudonana (synonym of Cyclotella
nana) showed significant similarity to the respective homologs of C.
reinhardtii and land plants (Coesel et al., 2008), suggesting
conserved properties albeit their exact function remains unresolved.

In P. tricornutum, overexpression of VDR was linked to
increased xanthophyll production (Manfellotto et al., 2020),
confirming that this paralog is also involved in carotenoid
biosynthesis. However, silencing and knockout of VDE caused
severe NPQ-deficiency phenotypes (Giossi et al., 2025; Lavaud
et al., 2012), indicating that VDR is not involved in
photoprotective xanthophyll cycling, while it may still catalyse
some kind of de-epoxidation reaction. It was previously
postulated that this isoform might also de-epoxidize a lipid-
bound pool of diadinoxanthin under conditions of stronger light
intensity and prolonged illumination (Lavaud et al., 2012). However,
due to the complete absence of diatoxanthin in VDE knockout
cultures exposed to extreme high light for several hours (Giossi et al.,
2025) we can now reasonably exclude that VDR catalyses the de-
epoxidation of diadinoxanthin to diatoxanthin.

4 Conclusion

Xanthophyll biosynthesis in diatoms has been gaining high
interest due to the commercial relevance of pigments like
fucoxanthin and diatoxanthin. In this context, the tuning of
selected VDE and ZEP paralogs already proved successful for
increasing carotenoid production and may represent an ideal
target for future industrial purposes (Græsholt et al., 2024; Li
et al., 2024; Manfellotto et al., 2020). The synthesis of
diadinoxanthin is another essential step in fucoxanthin
biosynthesis and represents a central hub for regulating the
balance between photoprotective and light harvesting pigment
pools (Bai et al., 2022). The discovery of the so far unknown
diadinoxanthin synthase and of the putative acetyl transferase
catalyzing the formation of haptoxanthin from allenoxanthin (Bai
et al., 2022; Cao et al., 2023) would represent not only an interesting
target for biocatalytic purposes in diatoms, but would also allow the
engineering of fucoxanthin biosynthesis into other taxa for both
industrial and research purposes.

The gene expansion of the ZEP-VDE cluster in diatoms
opened the door to the development of new pathways but also

increased the complexity of the regulation of xanthophyll
biosynthesis. Indeed, compared to plants that employ VDE
and ZEP only in the violaxanthin cycle, the activity of the
diatom paralogs must be finely tuned to direct the pathway in
response to specific needs (i.e., photoprotection or light
harvesting). How this regulation is achieved is still poorly
understood. Gene expression studies have highlighted the co-
expression of some ZEP-VDE clusters under specific light
treatments (Coesel et al., 2008; Nymark et al., 2009). This is
not surprising, as light dynamics play a key role in the regulation
of photosynthetic and photoprotective genes in diatoms
(Madhuri et al., 2024; Manzotti et al., 2025; Zhang et al.,
2024). Now that the pathway of fucoxanthin biosynthesis has
been almost entirely elucidated, further studies focusing on the
involved enzymes might provide new answers to questions
related to their regulation.

To summarise, all VDE and ZEP isoforms evolved from the
duplication of the ancestral genes devoted to the violaxanthin
cycle in the common ancestor of Chromista, red and green algae,
in a sequence of gene repurposing (Bai et al., 2022; Coesel et al.,
2008; Dautermann and Lohr, 2017; Frommolt et al., 2008). This
trend was essential for the development of new pigments like the
major light harvesting xanthophyll fucoxanthin, driving the
evolution of algae utilising new photosynthetic strategies that
now dominate aquatic environments (Bai et al., 2022). This
reservoir of adaptations and genetic diversity not only
represents an exciting playground for industrial applications
but might have also contributed to the widespread ecological
success of diatoms.
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