
The Quantum Optics of Asymmetric
Mirrors With Coherent Light
Absorption
Benjamin Dawson1,2*, Nicholas Furtak-Wells 2, Thomas Mann1, Gin Jose1 and Almut Beige2

1School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom, 2School of Physics and Astronomy,
University of Leeds, Leeds, United Kingdom

The local observables of the quantised electromagnetic field near a mirror-coated interface
depend strongly on the properties of the media on both sides. In macroscopic quantum
electrodynamics, this fact is taken into account with the help of optical Green’s functions
which correlate the position of an observer with all other spatial positions and photon
frequencies. Here we present an alternative, more intuitive approach and obtain the local
field observables with the help of a quantum mirror image detector method. In order to
correctly normalise electric field operators, we demand that spontaneous atomic decay
rates simplify to their respective free space values far away from the reflecting surface. Our
approach is interesting, since mirror-coated interfaces constitute a common basic building
block for quantum photonic devices.
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1 INTRODUCTION

The fluorescence properties of an atomic dipole depend primarily on the so-called local density of
states of the electromagnetic (EM) field, i.e., on the number of EM mode decay channels available at
the same location (van Tiggelen and Kogan, 1994; Sprik et al., 1996; Kwadrin and Koenderink, 2013).
For example, inside a homogeneous dielectric medium with refractive index n, the spontaneous
decay rate Γmed of an atomic dipole equals (Glauber and Lewenstein, 1991; Scheel et al., 1999)

Γmed � nΓair (1)

to a very good approximation, where Γair denotes the corresponding free space decay rate. However,
deriving the local density of states of the EM field in more complex scenarios, which involves the
calculation of the imaginary parts of the dyadic Green’s function (Novotny and Hecht, 2006; Scheel
and Buhmann, 2008; Bennett and Buhmann, 2020; Stourm et al., 2020), can be computationally
challenging. Although such calculations can aid the design of photonic devices, they do not provide
much physical intuition.

Taking a different approach, Carniglia and Mandel (Carniglia and Mandel, 1971) modeled semi-
transparent mirrors by only considering stationary photon modes which contain incoming as well as
reflected and transmitted contributions. Their so-called triplet modes depend on reflection and
transmission rates and are a subset of the free space photon modes of the EM field. Unfortunately,
this approach can result in the prediction of unphysical interference effects when modeling light
approaching a mirror from both sides (Zakowicz, 1995). If one wants to avoid such interference
problems, adjustments have to be made (Khosravi and Loudon, 1991; Creatore and Andreani, 2008),
for example by doubling the usual Hilbert space of the quantised EM field in the presence of a semi-
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transparent mirror (Furtak-Wells et al., 2018). However, this
immediately raises the question where the doubling of the Hilbert
space comes from. For a detailed discussion of this question see a
recent paper by Southall et al. (2021) which models two-sided
semi-transparent mirrors with the help of locally-acting mirror
Hamiltonians and a recent paper by Hodgson et al. (2021) which
quantises the electromagnetic field in position space.

In the following we use the quantum mirror image detector
method by Furtak-Wells et al. (2018) to obtain the basic
observables of the quantised EM field in the presence of a
mirror-coated dielectric interface. This method maps light
scattering in the presence of a two-sided semitransparent
mirror onto two analogous free space scenarios. More
concretely, in our model, we choose an initial time t � 0
and use one Hilbert space (labeled a) to describe the EM
field on the right and another one (labeled b) to describe the
EM field on the left hand side of the mirror interface. For times
t > 0, we assume that state vectors evolve simply as they would
in free space. To identify the electric field amplitude seen by a
detector at a certain position r and at a given time t in the
experimental setup in Figure 1, we notice that this amplitude is
a superposition of electric field amplitudes seen in two
corresponding free space scenarios. To construct the electric
field observable for the above experimental setup, we sum up
the signals seen by the original detector and a mirror image
detector after placing them at the right positions. Doubling the
Hilbert space of the EM field and distinguishing two different
types of photons, namely a and b photons, helps to ensure that
wave packets which never meet in real space do not interfere in
our model.

As illustrated in Figure 1, the experimental setup which we
consider here consists of a dielectric medium with refractive

index n≠ 1, a mirror coating and air with refractive index n � 1
next to the coating. The possible absorption of light in the
mirror interface, which may consist of different layers and may
contain different materials, is explicitly taken into account.
However, for simplicity, we only consider coherent light
absorption and assume that incoming wave packets do not
lose their coherence properties when passing through the
interface. In this case, there is a linear relation between
incoming and outgoing electric field amplitudes which allows
us to characterise the mirror interface by (real) electric and
magnetic field reflection and transmission rates ra, rb, ta, and tb.
Moreover, the complex amplitudes of electric field vectors
accumulate phase factors ϕ1, . . ., ϕ4 upon reflection and
transmission. The indices a and b refer to light approaching
the mirror from the left and from the right hand side,
respectively.

In the absence of losses, energy is conserved and Stokes
relation implies that the reflection rates for both sides of the
mirror interface are the same (ra � rb). In addition, the phases
ϕi obey certain conditions (Degiorgio, 1980; Zeilinger, 1981).
However, suppose losses are taken into account and the
absorption rate for light approaching the reflecting layer of
the mirror interface from the left is much higher than the
absorption rate for light approaching from the right. In this
case, the reflection rate rb is much smaller than ra, even for a
symmetric reflecting layer, and Stokes relation no longer
applies. Instead, for mirror interfaces with coherent light
absorption, we have ra ≠ rb (Monzón and Sánchez-Soto,
1995; Barnett et al., 1998; Uppu et al., 2016). In the
literature, interfaces with this property are usually referred
to as asymmetric mirrors, since they break the forward-
backward scattering symmetry of conventional semi-
transparent mirrors (Schwanecke et al., 2008; Plum et al.,
2009; Zhukovsky et al., 2009; Tumkur et al., 2012; Xu and
Lezec, 2014; Kenanakis et al., 2015; Filonov et al., 2018). An
alternative way of breaking the symmetry of ideal mirrors,
i.e., without the introduction of absorbing layers, is to use
surface roughness. Suppose, the reflecting layer is very smooth
and highly-reflecting on one side but diffracts light on the
other, then we also have ra ≠ rb.

In the following, we construct the observables of the quantised
EM field near a mirror-coated interface with coherent light
absorption. To correctly normalise these observables, we
demand locality and assume that the spontaneous decay rate
of a test atom at a relatively large distance x from the reflecting
surface equals its free space value. The spontaneous atomic decay
rates near highly-reflecting mirrors (Morawitz, 1969; Stehle,
1970; Milonni and Knight, 1973; Arnoldus and George, 1988;
Drabe et al., 1989; Meschede et al., 1990; Amos and Barnes, 1997;
Matloob, 2000; Beige et al., 2002; Dorner and Zoller, 2002) and
near dielectric media with and without losses (Carniglia and
Mandel, 1971; Wylie and Sipe, 1984; Khosravi and Loudon, 1991;
Snoeks et al., 1995; Yeung and Gustafson, 1996; Urbach and
Rikken, 1998; Xu et al., 2004; Wang et al., 2005; Creatore and
Andreani, 2008; Eberlein and Zietal, 2012; Falinejad and
Ardekani, 2019) have already been studied extensively in the
literature and theoretical predictions are generally in very good

FIGURE 1 | Schematic view of amirror-coated dielectric medium with air
on its right hand side. The coating which can be characterised by its electric
field reflection and transmission rates ra, rb, ta and tb may consist of different
layers and materials. The possible absorption of light in the interface is
explicitly taken into account when we derive the basic observables of the
quantised EM field with the help of a quantum mirror image detector method
(Furtak-Wells et al., 2018). In order to correctly normalise field operators, we
introduce a test atom and demand that its spontaneous decay rate simplifies
at large distances to the respective free space expression.
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agreement with experimental findings (Drexhage, 1970; Chance
et al., 1975a; Eschner et al., 2001; Creatore et al., 2009). Like these
papers, we ignore interactions of the atomic dipole with the
quantum matter of the mirror surface. Instead we assume here
that the test atom and the atoms inside the mirror surface are
strongly detuned. For simplicity, we also neglect the angle-
dependence of reflection rates.

Despite taking an alternative approach, our results are in
good agreement with previous results. In addition, our approach
allows us to model scenarios which are not as easily accessible
using alternative approaches. For example, the main difference
between the setup considered in Ref (Furtak-Wells et al., 2018)
and the setup which we consider here is the presence of a
dielectric with n> 1 on the left hand side of the interface. The
main difference between Ref (Creatore and Andreani, 2008) and
our calculations is that we allow for arbitrary mirror coatings,
including asymmetric mirrors and mirrors with coherent light
absorption.

This paper comprises five sections. In Section 2 we
quantise the EM field in a homogenous medium with a
refractive index n≠ 1 by mapping this situation onto an
analogous scenario with n � 1. Section 3 covers the
quantisation of the EM field in the presence of a mirror-
coated interface using the mirror image detector method. In
Section 4 we determine the missing normalisation factors of
electric and magnetic field amplitudes by calculating the
spontaneous emission rate of a test atom. Lastly, Section 5
contains a summary of our findings.

2 THE QUANTISED ELECTROMAGNETIC
FIELD INSIDE A DIELECTRIC MEDIUM

The purpose of this section is to obtain the Hamiltonian and the
electric and magnetic field observables of the quantised EM field
inside a dielectric medium with refractive index n. To do so, we
relate its properties to the properties of the quantised EM field in
an analogous free space scenario.

2.1 Maxwell’s Equations
Our starting point is classical electrodynamics. In a dielectric
mediumwith permittivity ε and permeability μ and in the absence
of any charges and currents, Maxwell’s equations state that
(Stratton, 1941)

∇ · Emed(r, t) � ∇ · Bmed(r, t) � 0,
∇ × Emed(r, t) � − _Bmed(r, t),
∇ × Bmed(r, t) � εμ _Emed(r, t).

(2)

Here Emed(r, t) and Bmed(r, t) denote electric and magnetic field
vectors at positions r and times t. Moreover, we know that the
energy of the EM field inside the dielectric medium equals

Hmed � 1
2
∫

R3
d3r[εEmed(r, t)2 + 1

μ
Bmed(r, t)2]. (3)

As an example, we now have a closer look at horizontally
polarised light which propagates along the x-axis. In this case,

consistency with Maxwell’s equations and with the right hand
rule of classical electrodynamics requires that Emed(r, t) �
[0, Emed(x, t), 0] and Bmed(r, t) � (0, 0,Bmed(x, t)) for wave
packets traveling in the positive x direction. Moreover,
Emed(r, t) � (0, Emed(x, t), 0), and Bmed(r, t) �
(0, 0,−Bmed(x, t)) for wave packets traveling in the negative x
direction. Substituting these vectors into Eq. 2, they reduce to the
differential equations

zxBmed(x, t) � ± εμ ztEmed(x, t),
zxEmed(x, t) � ± ztBmed(x, t), (4)

where the minus and plus signs correspond to different directions
of propagation. The solutions of these equations are wave packets
which travel at the speed of light c � 1/

��
εμ

√
. Analogous equations

apply for vertically-polarised light traveling along the x axis and
for light traveling in other directions.

A special example of a dielectric medium is air with ε � ε0 and
μ � μ0. In the following, we denote the corresponding field
vectors by Eair(r, t) and Bair(r, t). Using this notation, a closer
look at Eq. 4 implies the equivalency relations

Emed(r, t) �
����
n3ε0
ε

√
Eair(nr, t),

Bmed(r, t) �
���
n3μ
μ0

√
Bair(nr, t)

(5)

with the refractive index, as usual, defined as

n �
����
εμ

ε0μ0

√
. (6)

For air, we simply have n � 1. Eq. 5 guarantees that Emed(r, t) and
Bmed(r, t) solve Maxwell’s equations in a dielectric medium when
Eair(nr, t) and Bair(nr, t) solve Maxwell’s equations in air.

One difference between electric andmagnetic field solutions in
a dielectric medium and in air is a re-scaling of field vector
amplitudes. Here the factors on the right hand side of Eq. 5 have
been chosen such thatHmed in Eq. 3 and the energyHair of the EM
field in air,

Hair � 1
2
∫

R3
d3r[ε0Eair(r, t)2 + 1

μ0
Bair(r, t)2], (7)

are the same,

Hmed � Hair. (8)

Moreover, on the right hand side of Eq. 5 there is a re-scaling of
the position vector r. Inside the medium, light travels a shorter
distance in the same amount of time but electric and magnetic
field amplitudes still oscillate locally at the same rate (Stratton,
1941; Griffiths, 1962).

2.2 Field Quantisation in Air
Wave-particle duality suggests that the EM field is made up of
particles, i.e., photons (Bennett et al., 2016). In the case of light
propagation in three dimensions, we characterise each photon by
its polarisation λ and its wave vector k. Moreover, we know from
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experiments that a photon with wave vector k has the energy Zω
with ω � c0‖k‖ and c0 � 1/

����
ε0μ0

√
. Hence the Hamiltonian of the

quantised EM field can be written as

Hair � ∑
λ�H,V

∫
R3
dk Zωa†kλakλ, (9)

where akλ with the bosonic commutator relation [akλ, a†k’λ’] �
δλ,λ′δ(k − k’) denotes the annihilation operator of photons in the
(k, λ) mode. Consistency with classical electrodynamics (c.f. Eq.
7) requires that this Hamiltonian coincides, up to a constant, with
the observable

Hair � 1
2
∫

R3
d3r[ε0Eair(r)2 + 1

μ0
Bair(r)2], (10)

where Eair(r) and Bair(r) denote the electric and magnetic field
free space observables. Hence both observables are linear
superpositions of photon annihilation and creation operators.
Demanding consistency with Maxwell’s equations and taking the
above field Hamiltonian into account, they can be shown to equal
(Bennett et al., 2016)

Eair(r) � i
4π

∑
λ�1,2

∫
R3
d3k

���
Zω

πε0

√
eik·rakλêkλ +H.c.,

Bair(r) � − i
4πc0

∑
λ�1,2

∫
R3
d3k

���
Zω

πε0

√
eik·rakλk̂ × ê kλ +H.c. (11)

with k � ||k|| and k̂ � k/‖k‖. Here êkλ denotes a polarization
vector with êkλ · k � 0 and ||êkλ|| � 1. The normalisation factors
in Eq. 11 have been chosen such that Eqs 9, 10 differ only by a
constant term with no physical consequences.

2.3 Field Quantisation in a Dielectric
Medium
To obtain the electric and magnetic field observables Emed(r) and
Bmed(r) inside a dielectric medium, we now map the dynamics of
wave packets inside the medium onto analogous free-space
dynamics. In other words, we quantise the EM field in the
dielectric medium in terms of free space photons. To do so, we
employ the equivalency relations in Eq. 5 which imply that

Emed(r) �
����
n3ε0
ε

√
Eair(nr),

Bmed(r) �
���
n3μ
μ0

√
Bair(nr)

(12)

with Eair(r) and Bair(r) given in Eq. 11. From Eq. 7we see that the
energy observable of the EM field in a dielectric medium equals

Hmed � 1
2
∫

R3
d3r[εEmed(r)2 + 1

μ
Bmed(r)2]. (13)

Using this equation, one can show that the EM field Hamiltonian
of the dielectric medium and Hair in Eq. 9 are the same,

Hmed � Hair , (14)

as suggested by Eq. 8. In our description, a photon of frequency ω
has the energy Zω in the medium and in free space. The only
expectation value that changes when we consider a wave packet of
light inside a dielectric medium instead of considering the same
quantum state in free space are its electric and magnetic field
expectation values. Our ability to describe the dielectric medium
with the help of free space observables becomes important in the
next section, when we quantise the EM field in the presence of a
mirror-coated dielectric medium.

3 THE QUANTISED ELECTROMAGNETIC
FIELD IN THE PRESENCE OF A
MIRROR-COATED INTERFACE

To determine the field Hamiltonian Hmirr of the quantised EM
field in Figure 1, we only consider free space photons traveling in
air. As usual, we characterise each photon by its polarisation λ
and by its wave vector k and assume that its energy equals Zω
with ω � c‖k‖. However, as mentioned already in the
Introduction, in the presence of the mirror interface, we need
to double the Hilbert space of the quantised EM field. In the
following, we therefore consider two Hilbert spaces which we
label a and b and which describe light on the right and light on
the left hand side of the mirror surface, respectively, at a given
time t � 0. Describing both sides separately helps us later on to
identify how field excitations contribute to local electric and
magnetic field observables (Furtak-Wells et al., 2018). Hence
Hmirr equals

Hmirr � ∑
s� ± 1

∑
λ�1,2

∫
R3
d3kZω[a†kλakλ + b†kλbkλ], (15)

where akλ and bkλ are bosonic annihilation operators with
[akλ, b†k’λ’] � 0 and [bkλ, b†k’λ’] � δλ,λ′δ(k − k’). Next we derive
the corresponding electric field observable Emirr(r).

3.1 Highly-Reflecting Mirrors
However, for simplicity, we first have a closer look at a highly-
reflecting mirror. In this case, an incoming wave packet changes
its direction of propagation upon reaching the interface such
that its angle of incidence equals its angle of reflection. Suppose
the mirror is placed in the x � 0 plane. In this case, the y and the
z component of the electric field vectors of the incoming light
accumulate a minus-sign upon reflection to ensure that they
remain orthogonal to the direction of propagation. Now
suppose a detector measures the electric field amplitude at a
position r � (x, y, z) in the experimental setup shown in
Figure 1. Then the mirror image method of classical
electrodynamics (Furtak-Wells et al., 2018) suggests that the
electric field seen by the detector equals the electric field seen by
a detector at the same location minus the electric field seen by a
mirror image detector at ~r � (−x, y, z) in free space, i.e., without
the mirror interface present. More concretely, the electric field
observable Emirr(r) equals
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Emirr(r) � 1
ηb

[E(b)
med(r) − ~E

(b)
med(~r)]Θ(−x) + 1

ηa
[E(a)

air (r)

− ~E
(a)
air (~r)]Θ(x), (16)

if we assume that the a and the b photons evolve as they would in
air. Here Θ(x) denotes the Heaviside step function

Θ(x) � { 1 for x ≥ 0
0 for x < 0 (17)

and the tilde indicates that a minus sign has been added to the x
component of the respective vector. Moreover, ηa and ηb are
normalisation constants, E(a)

air (r) can be found in Eq. 11 and
E(b)
med(r) can be obtained from Eq. 12 by replacing the akλ

operators in this equation with bkλ. Notice that the right hand side
of Eq. 16 is a superposition of operators whose expectation values
evolve as predicted byMaxwell’s equations in a dielectricmedium and
in air, respectively. Hence the observable Emirr(r) is automatically
consistent with Maxwell’s equations on both sides of the mirror
interface, independent of what values we assign later on to ηa and ηb.

As mentioned already above, the constants ηa and ηb in Eq. 16
are normalisation factors. In the next section, we determine them
by demanding that the spontaneous decay rate of an atom
Γmirr(x) in the presence of the mirror surface simplifies for
large atom-mirror distances |x| to Γair or to Γmed, respectively,

Γmirr(x) � { Γmed for x→ −∞
Γair for x→∞ (18)

As we shall see below, doing so we find that ηa � ηb �
�
2

√
for highly

reflecting mirrors. Interpreting this result is not straightforward. As
pointed out already in Ref. (Furtak-Wells et al., 2018), for the
experimental setup shown in Figure 1, the mirror Hamiltonian
Hmirr in Eq. 15 does not coincide with the observable for the energy
of the quantised EM field left and right from the mirror interface.
The expectation values of the former are in general larger than the
expectation values of the latter. Some of the energy of the system is
stored inside the mirror interface which makes it difficult to
normalise the electric field observable in Eq. 16 correctly.

3.2 Mirror-Coated Dielectric Media
To obtain the electric field observable Emirr(r) in the presence of a
two-sided semi-transparent mirror, we need to superimpose the
electric field observables of the corresponding free-space
scenarios such that any incoming wave packets evolve
eventually into superpositions of reflected and transmitted
wave packets with their amplitudes accordingly re-scaled.
Taking this into account and generalising Eq. 16 as described
in Ref. (Furtak-Wells et al., 2018), we find that

Emirr(r) � [ 1
ηb
E(b)
med(r) +

rb
ηb
~E
(b)
med(~r, ϕ1) + ta

ηa
E(a)
med(r, ϕ2)]Θ(−x)

+ [ 1
ηa
E(a)
air (r) + ra

ηa
~E
(a)
air (~r, ϕ3) + tb

ηb
E(b)
air (r, ϕ4)]Θ(x). (19)

As before, the superscripts (a) and (b) are used here to
distinguish light originating from the left and from the right

hand side of the mirror interface, respectively. At t � 0, only the
first and the fourth terms in Eq. 19 contribute to the electric field
observable Emirr(r). The remaining terms in Eq. 19 describe the
electric field contributions of wave packets which have either been
reflected by or transmitted through the mirror interface. The
factors in front of those terms are the relevant reflection and
transmission rates. Finally, phases ϕi have been added to describe
the phase shifts that the complex electric field amplitudes
experience when in contact with the mirror interface. These
additional parameters depend on the physical properties of the
mirror coating in Figure 1.

In the absence of absorption, energy conservation implies
ra � rb. Moreover the phases ϕi have to obey certain
conditions (Degiorgio, 1980; Zeilinger, 1981). However, in the
presence of coherent light absorption within themirror surface, ra
and rb are in general not the same and the phases and rates in Eq.
19 can assume a wide range of different values (Monzón and
Sánchez-Soto, 1995; Barnett et al., 1998; Uppu et al., 2016).
Suppose all light approaching the reflecting layer of the mirror
interface from the left is absorbed, while light approaching from
the right reaches the reflecting layer and some of it is turned
around. In this case, we have rb � 0, while ra ≠ 0. Since absorption
is uncontrolled in many practical situations, reflection rates ra
and rb are in general not the same.

4 ATOMIC DECAY RATES IN THE
PRESENCE OF A MIRROR INTERFACE

In this section, we finally determine the normalisation constants
ηa and ηb in Eq. 19 by deriving the spontaneous decay rate
Γmirr(x) of a two-level atom in the presence of a mirror-coated
dielectric interface as a function of the atom-mirror distance |x|.
We then demand that this rate simplifies to its well-known free
space values for large atom-mirror distances (cf. Eq. 18).

4.1 Derivation
As usual in quantum optics, we describe the dynamics of a two-
level atom with ground state |1〉 and excited state |2〉 by a master
equation in Lindblad form (Stokes et al., 2012). In the absence of
any external interactions, like laser excitation, and in the
interaction picture with respect to the free energy of the atom,
its density matrix ρI(t) is known to evolve according to the
differential equation

_ρI(t) � −1
2
Γmirr(x)[σ+σ−ρI(t) + ρI(t)σ+σ−] + Γmirr(x)σ−ρI(t)σ+

(20)

with σ− � |2〉〈1| and σ+ � |1〉〈2|. The last term in this equation
equals (Stokes et al., 2012; Furtak-Wells et al., 2018)

Γmirr(x)σ−ρI(t)σ+Δt �
1

Z2
∫t+Δt

t
dt′∫t+Δt

t
dt″ Trmirr[HI(t’)|0〉ρI(t)〈0|HI(t”)]

(21)

up to terms in second order in Δt. Here Δt denotes a relatively
short time interval with Δt << 1/Γmirr(x) and HI(t) is the

Hamiltonian of the atom-field system in the interaction picture.
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For example, for an atomic dipole inside a dielectric medium
with refractive index n, the above interaction Hamiltonian HI(t)
equals (Stokes et al., 2012)

HI(t) � ie
4π ∑

λ�1,2
∫

R3
d3k

�����
n3Zω

πε

√
eink·rei(ω−ω0)td*12 · êkλσ+akλ +H.c.

(22)

in the usual dipole and rotating wave approximations and with
respect to the free energy of the atom and the quantised EM field
near the mirror interface. Here e is the charge of a single electron,
d12 denotes the complex atomic dipole moment and ω � ||k||/c.
Moreover, Zω0 is the energy difference between the ground and
the excited state of the atom. Substituting Eq. 22 into Eq. 21,
proceeding as usual (Stokes et al., 2012; Furtak-Wells et al., 2018)
and evaluating the above integrals, we find that the spontaneous
decay rate Γ � Γmed of an atom inside a dielectric medium equals

Γmed � n3e2ω3
0||d12||2

3πZεc30
� e2ω3

0||d12||2
3πεc3Z . (23)

For n � 1 and ε � ε0, Γmed simplifies to the free space decay rate
Γair of an atomic dipole in air,

Γair � e2ω3
0||d12||2

3πε0c30Z
. (24)

Itmust be noted that inmost dielectricmedia, μ and μ0 are very similar
(Griffiths, 1962). Assuming that μ � μ0 and combining the definition
of the speed of light in air and in amediumwithEq. 6, we obtainEq. 1.
In this case, Γmed and Γair differ only by a factor n (Scheel et al., 1999).

To derive the interaction Hamiltonian HI(t) for the
experimental setup shown in Figure 1, we notice that it
consists of a dielectric medium with mirror coating and an
atom at a position r in front of the interface. Hence, in the
Schrödinger picture, its Hamiltonian is of the form

Htotal � Hatom +Hmirr +Hint . (25)

HereHatom � Zω0 σ+σ− describes the energy of the atom andHmirr

denotes the energy of the EM field in the presence of an optical
interface which can be found in Eq. 15. Moreover, Hint describes
the atom-field interaction and equals Hint � ed · Emirr(r) in the
usual dipole approximation (Stokes et al., 2012). Here Emirr(r)
equals the electric field observable in Eq. 19 at the position r of the
atom and d � d12σ− + d*12σ

+ with d12 � ||d12||(d1, d2, d3)T
denoting the complex atomic dipole moment with
|d1|2 + |d2|2 + |d3|2 � 1. Transforming Htotal into the interaction
picture with respect to the free Hamiltonian H0 � Hatom + Hmirr

yields the interaction Hamiltonian HI(t) � U†
0(t, 0)Hint U0(t, 0).

Combining Eqs 11, 19, and applying the rotating wave
approximation, one can show that this Hamiltonian equals

HI(t) � ie
4π

∑
λ�1,2

∫
R3
d3k

���
Zω

πε0

√
e−i(ω−ω0)t[ 1

ηa
d*12e

ik·rakλ

− ra
ηa
~d
*

12e
ik·~reiϕ3akλ + tb

ηb
d*12e

ik·reiϕ4bkλ] · êkλσ+ +H.c.

(26)

for an atomic dipole in front of a mirror-coated dielectric
medium (cf. Figure 1).

To calculate its spontaneous decay rate Γmirr(x), we substitute
Eq. 26 into the right hand side of Eq. 21. Doing so one can show
that

Γmirr(x) � e2

16π3Zε0Δt
∫t+Δt

t
dt′∫t+Δt

t
dt″∫

R3
d3k

× ∑
λ�1,2

ω[ 1
η2a

∣∣∣∣∣∣d*12 · êkλeik·r − ra~d
*

12 · êkλeik·
~reiϕ3

∣∣∣∣∣∣
2

+ t2b
η2b
|d12 · êkλ|2]ei(ω−ω0)(t′−t″). (27)

Before performing any time integrations, we substitute s’ � t’ − t
and s” � t” − t and notice that the time integrals

∫t+Δt

t
dt’∫t+Δt

t
dt”ei(ω−ω0)(t’−t”) � ∫Δ

0
ds′∫Δt

0
ds′′ei(ω−ω0)(s′−s′′)

� 2Re[∫Δt

0
ds′∫s′

0
ds′′ei(ω−ω0)(s′−s′′)] (28)

are independent of t and always real. Moreover we know that Δt
and therefore also almost all s′ are much larger than 1/ω0. Hence
we can safely assume that

∫s’

0
ds′′e−i(ω−ω0)s′′ � ∫∞

0
ds”e−i(ω−ω0)s′′ � πδ(ω − ω0) (29)

up to an imaginary part which does not contribute to later
integrals. To perform the remaining k integration we use polar
coordinates and introduce the vectors

k � k⎛⎜⎝ cos ϑ
cosφ sin ϑ
sinφ sin ϑ

⎞⎟⎠, êk1 � ⎛⎜⎝ 0
sinφ
−cosφ

⎞⎟⎠, êk2 � ⎛⎜⎝ sin ϑ
−cosφ cos ϑ
−sinφ cos ϑ

⎞⎟⎠
(30)

with ω � c0k, resulting in

∫
R3

d3k � ∫∞

0
dω∫π

0
dϑ∫2π

0
dφ

ω2

c30
sinϑ. (31)

Using the above equations and performing time and frequency
integrations, while denoting the atom-mirror distance by x such
that r − ~r � 2x, on can now show that

Γmirr(x) � e2ω3
0||d12||2

8π2Zε0c30
∫π

0
dϑ∫2π

0
dφsinϑ

× [( 1
η2a

+ t2b
η2b
)(∣∣∣∣d2sinφ − d3cosφ

∣∣∣∣2 + ∣∣∣∣d1sinϑ − d2cosφcosϑ − d3sinφcosϑ
∣∣∣∣2)

+ r2a
η2a

(∣∣∣∣d2sinφ − d3cosφ
∣∣∣∣2 + ∣∣∣∣d1sinϑ + d2cosφcosϑ + d3sinφcosϑ

∣∣∣∣2)
+ r2a
η2a

((dp1 sinϑ − dp2 cosφ cos ϑ − dp3 sinφ cos ϑ)(d1sinϑ + d2cosφcosϑ + d3sinφcosϑ))
− ∣∣∣∣d2sinφ − d3cosφ

∣∣∣∣2e2ik0x cos ϑe−iϕ3 + c.c.] (32)

with k0 � ω0/c0. Next we perform the φ integration, substitute
u � cosϑ and use the relation

∣∣∣∣d2|2 + ∣∣∣∣d3|2 � 1 − ∣∣∣∣d1|2 to obtain the
integral
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Γmirr(x) � e2ω3
0||d12||2

8πZε0c30
∫1

−1
du[(1 + r2a

η2a
+ t2b
η2b
)(1 + |d1|2 + (1 − 3|d1|2)u2)

−2ra
η2a

(1 − 3|d1|2 + (1 + |d1|2)u2)cos(2k0xu − ϕ3)]
(33)

with cos(2k0xu − ϕ3) � cos(2k0xu)cos(ϕ3) + sin(2k0xu)sin(ϕ3).
Finally also performing the u integration in Eq. 4.1, we obtain the
spontaneous decay rate

Γmirr(x)
Γair

� 1 + r2a
η2a

+ t2b
η2b

+ 3ra
η2a

cos(ϕ3)[(1 − ∣∣∣∣d1∣∣∣∣2) sin(2k0x)2k0x

+(1 + ∣∣∣∣d1∣∣∣∣2)(cos(2k0x)(2k0x)2 − sin(2k0x)
(2k0x)3 )] (34)

for x > 0. Here
∣∣∣∣d1|2 denotes the relative overlap of the normalised

atomic dipole moment vector d12/‖d12‖ with the x axis. For∣∣∣∣d1|2 � 0, the atomic dipole aligns parallel to the mirror
interface, while it aligns in a perpendicular fashion when∣∣∣∣d1|2 � 1. An equivalent expression for Γmirr(x) can be derived
for the case x < 0. The result is the same as in Eq. 34 but with the
subscripts a and b interchanged and with Γair and ϕ3 replaced by
Γmed and ϕ1, respectively. The above calculations are well justified,
as long as the atom-mirror distance |x| is not too large such that
the travel time of light between the atom and the mirror surface
remains negligible (Dorner and Zoller, 2002).

The only other simplification which has been made in the
derivation of Eq. 34 is the negligence of surface plasmons and
evanescent modes. These modes can provide an additional
decay channel for atomic excitation and their presence can
lead to an increase of emission rates. However, here we
assume that x should be large enough for interactions with
surface plasmons and evanescent modes not to become
important.

4.2 The Normalisation Constants ηa and ηb
However, before we can make more quantitative predictions, we
need to determine the normalisation factors ηa and ηb. To do so,
we demand that the spontaneous decay rate Γmirr(x) in Eq. 34
simplifies to the expressions in Eqs 23, 24, respectively, for large
atom-mirror distances |x|, as suggested in Eq. 18. It is relatively
straightforward to show that this applies when

1 + r2a
η2a

+ t2b
η2b

� 1 + r2b
η2b

+ t2a
η2a

� 1 (35)

which implies

η2a � 1 + r2a +
1 + r2a − t2a
1 + r2b − t2b

t2b ,

η2b � 1 + r2b +
1 + r2b − t2b
1 + r2a − t2a

t2a .

(36)

Both normalisation factors η2a and η2b are always larger than one.
They only equal one, in the absence of the mirror interface,
i.e., when all reflection and transmission rates are equal to zero. In
this case, the electric field observable in Eq. 19 simplifies to its free
space value.

For symmetric mirrors, we have ra � rb � r and ta � tb � t.
Substituting these constants into the above expressions, they
simplify and we find that η2a � η2b � η2 with

η2 � 1 + r2 + t2 (37)

which can assume any value between 1 and 2. For example, for
highly-reflecting symmetric mirrors with r � 1 and t � 0 we have
η2 � 2 (Furtak-Wells et al., 2018). However, for asymmetric
mirrors, ηa and ηb are no longer bound from above. This is
illustrated in Figure 2 which shows η2a and η2b for an asymmetric
mirror with equal loss rates la � lb � l and l2 � 0.2. These rates are
defined such that energy is conserved (Monzón and Sánchez-
Soto, 1995; Barnett et al., 1998; Uppu et al., 2016) and

r2a + t2a + l2a � r2b + t2b + l2b � 1 . (38)

For example, suppose the reflection rate ra is relatively large,
while rb is very small, as it applies when the mirror surface is very
smooth and highly reflective on the right hand side but rough and
highly dispersive on the left (cf. Figure 1). In this case, ηa can be
significantly larger than ηb, if the loss rates la and lb are similar in
size (cf. Figure 2). This implies that the electric field observable
Emirr(r) in Eq. 19 is dominated by the contributions of the b
rather than the a photons. This can be understood by taking into
account that the b photons are present on both sides of the mirror
interface in this case while, to a very good approximation, the a
photons can only be seen on one side.

4.3 Discussion
In this subsection, we have a closer look at the spontaneous decay
rates Γmirr(x) of an atom on the right hand side of a mirror-coated
interface with coherent light absorption where x is positive. Using
Eq. 35, Γmirr(x) in Eq. 34 simplifies to

Γmirr(x)
Γair

� 1 + ξab[(1 − ∣∣∣∣d1 2) sin(2k0x)
2k0x

+ (1 + ∣∣∣∣d1 2)(cos(2k0x)(2k0x)2 − sin(2k0x)
(2k0x)3 )]∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(39)

with the mirror parameter ξab given by

ξab � 3ra
η2a

cos(ϕ3) . (40)

This equation shows that the difference between the spontaneous
decay rates Γmirr(x) and Γair depends on the phase ϕ3 which is the
phase that complex electric field amplitudes accumulate upon
reflection by the mirror surface on the same side as the atom. It
also depends on the orientation

∣∣∣∣d1|2 of the atomic dipole
moment with respect to the mirror surface, as one would
intuitively expect.

However, a closer look at Eq. 39 also shows that the
spontaneous decay rate Γmirr(x) depends in addition on all the
reflection and transmission rates of the mirror interface. This
might seem surprising but remember that the dipole interaction
between the atom and the surrounding free radiation field plays
an integral role in the spontaneous emission of a photon (cf. Eq.
25). In the experimental setup in Figure 1, the atom couples to
incoming, reflected and transmitted photonmodes which leads to
interference effects and the strong dependence of Γmirr(x) on the
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atom-mirror distance x. Moreover, the strength of the atom-field
interaction depends on the magnitude of the electric field
observable Emirr(r) at the position r of the atom (cf. Eq. 19).
As we have seen in the discussion at the end of Section 3.1,
normalising this observable is not straightforward, since the total
energy of the a and the b photons is shared between the quantised
EM field and the mirror interface (Furtak-Wells et al., 2018).

The reason for the dependence of Γmirr(x) on ra, rb, ta and tb is
its dependence on the mirror constant ξab. Figure 3 shows that
ξab can assume any value between −1.5 and 1.5. For example, the
case

∣∣∣ξab∣∣∣ � 1.5 corresponds to a perfectly-reflecting mirror with
ra � 1, tb � 0 and ϕ3 � 0 or ϕ3 � π. From Figure 4 we see that
Γmirr(x) can therefore assume any value between 0 and 2Γair. The
presence of loss in the mirror interface reduces the amount of
light which can be transmitted and changes ξab in a relatively
complex way (cf. Eqs 36, 44). For example, increasing la results in
a reduction of ξab, while increasing lb results in general in an
increase of ξab. To better illustrate the dependence of Γmirr(x) on
mirror parameters, we will now have a closer look at concrete
examples. First it will be shown that our approach reproduces

well-known results for loss-less symmetric mirrors, thereby
verifying the consistency of our approach. Afterward, we will
discuss how the coherent absorption of light in the mirror surface
alters atomic decay rates.

4.3.1 Dielectric Media Without Mirror Coatings
In the absence of any coating, energy is conserved and the overall
transition matrix for incoming photons needs to be unitary.
Taking this into account one can show that (Degiorgio, 1980;
Zeilinger, 1981)

la, lb � 0 ; ra, rb � r ; ta, tb � (1 − r2)12 (41)

in this case. As a result, the mirror constant ξab in Eq. 40
simplifies to

ξab � 3r
2

cos(ϕ3) . (42)

and depends only on r and ϕ3. Figure 5A illustrates the
dependence of Γmirr(x) on r and x for two different

FIGURE 2 | The normalisation factors η2a and η2b of the electric field observable Emirr(r) in Eq. 19 as a function of the reflection rates ra and rb for mirror loss rates
la � lb � l with l2 � 0.2. In the absence of loss, η2a and η2b only vary between 1 and 2. However, in the presence of light absorption within the mirror interface, these rates
can assume much larger values, while still being bound from below by 1.

FIGURE 3 | The mirror parameter ξab in Eq. 40 as a function of the reflection rates ra and rb of the mirror interface for ϕ3 � 0 and ϕ3 � π. As in Figure 2, we consider
non-zero absorption rates and assume la � lb � l with l2 � 0.2. In general, the mirror parameter ξab can vary between −1.5 and 1.5.
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orientations of the atomic dipole moment
∣∣∣∣d1|2 and ϕ3 � π.

Because of the dependence of the reflection rate r of a
dielectric medium on its refractive index n (Novotny and
Hecht, 2006),

r � n − 1
n + 1

, (43)

the spontaneous decay rate Γmirr(x) depends on the optical
properties of the media on both sides of the interface. This
observation is in agreement with actual experiments
(Drexhage, 1970; Chance et al., 1975a; Eschner et al., 2001;
Creatore et al., 2009). It is also in agreement with the literature
where the spontaneous decay of an atom in the presence of a
dielectric medium has already been studied in great detail
(Carniglia and Mandel, 1971; Wylie and Sipe, 1984; Khosravi
and Loudon, 1991; Snoeks et al., 1995; Yeung and Gustafson,
1996; Urbach and Rikken, 1998; Xu et al., 2004; Wang et al.,

2005; Creatore and Andreani, 2008; Eberlein and Zietal, 2012;
Falinejad and Ardekani, 2019).

In the special case of a highly-reflecting mirror, which adds a
minus sign to the electric field amplitude upon reflection
(Morawitz, 1969; Stehle, 1970; Milonni and Knight, 1973;
Arnoldus and George, 1988; Drabe et al., 1989; Meschede et al.,
1990; Amos and Barnes, 1997; Matloob, 2000; Beige et al., 2002;
Dorner and Zoller, 2002), we have ϕ3 � π, r � 1 and ξab � 1.5. At
x � 0, incoming and reflected light interferes destructively and the
resulting y and the z components of the electric field vanish along
the mirror surface. If there is no electric field to couple to, then
there is no atom-field interaction and the atom cannot decay. In
contrast to this, an atomic dipole which aligns parallel to themirror
surface couples only to the x component of the electric field. This
component is now

�
2

√
times its usual amplitude which results in an

enhanced spontaneous decay rate of Γmirr(x) � 2Γair. A closer look
at the r � 1 case in Figure 5A shows that this is indeed the case.

FIGURE 4 | The spontaneous decay rate Γmirr(x) in Eq. 39 as a function of the atom-mirror distance x for different mirror parameters ξab. When the atomic dipole
moment is parallel to themirror interface (

∣∣∣∣d1|2 � 0), the variations of Γmirr(x) are more long-range than in the case of a perpendicular atomic dipole moment (∣∣∣∣d1|2 � 1). In
both cases, the decay rate Γmirr(x) converges and assumes its free space value Γair when the atom-mirror distances x becomes much larger than the wave length of the
emitted light.

FIGURE 5 | The spontaneous decay rate Γmirr(x) in Eq. 39 of an atom in front of a dielectric medium as a function of the atom-mirror distance x for ϕ3 � π and∣∣∣∣d1|2 � 0. (A) Here we ignore the mirror-coating and the reflection and transmission rates are chosen as suggested in Eq. 41. (B) Here the mirror coating is taken into
account. Again we assume that ra � rb � r. However, instead of ignoring the possible absorption of light in the mirror interface and to better showcase its effects we
consider relatively high loss rates with la � lb � l and l2 � 0.9. Nevertheless, (A) and (B) have many similarities.
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4.3.2 Dielectric Media With Mirror Coatings
In the presence of mirror coatings, the possible absorption of light
in the interface needs to be taken into account. As we have seen in
Section 2, in the quantum mirror image detector method
(Furtak-Wells et al., 2018), this is done by evolving photon
states in exactly the same way as they would evolve in free
space, i.e. without reducing their energy in time. However, as
one can see from Eq. 19, photons which have either been
transmitted or reflected by the mirror interface contribute less
to the electric field observable Emirr(r) at the location of the atom
than photons which have not met the mirror. Intuitively, one

might therefore expect that losses result in a significant reduction
of the dependence of the spontaneous decay rate Γmirr(x) on the
atom-mirror distance x. However, as Figure 5B shows, this is not
the case. The calculations in Section 4.2 show that the presence of
non-zero loss rates,

la, lb ≠ 0 , (44)

changes the normalisation constant ηa of the electric field
observable E(r) in Eq. 19. This means, losses not only affect
the relative weighting of the terms in Eq. 19, they also affect the
normalisation factor of the electric field observable. Hence the
spontaneous decay rates Γmirr(x) with and without losses are
more similar than one might naively expect. Figure 5B shows
Γmirr(x) for a case with significant light absorption (la � lb � l
with l2 � 0.9). Nevertheless, Figures 5A,B both show a strong
change of Γmirr(x) with the atom-mirror distance x. The only
difference is that, while Γmirr(x) varies between 0 and 2 in one
case, it varies between 0.4 and 1.6 in the other.

Figure 6 shows cases, where the reflection rates ra � rb � r are
fixed and r2 � 0.4, while the loss rate l changes between 0 and its
maximum possible value of r. As in Figure 5B, we observe a
relatively weak dependence on the spontaneous decay rate
Γmirr(x) on loss rates of the mirror interface. The most
significant effect of the absorption of light in the mirror
interface is seen for relatively small values of x which matches
the results presented for example in Refs. (Yeung and Gustafson,
1996; Eberlein and Zietal, 2012).

Finally, Figure 7 shows that the spontaneous decay rate
Γmirr(x) depends differently on the loss rates la and lb. For
example, varying la (which is the loss rate of light approaching
the mirror from the same side as the atom) while keeping ra the
same has almost no effect on the size of the spontaneous decay
rate Γmirr(x) (cf. Figure 7A). This can be understood by noticing
that light which has left the atom no longer affects its dynamics.
Once a photon has been emitted, it does not matter whether it is
absorbed in the mirror surface, by a far-away detector or by the

FIGURE 6 | The spontaneous decay rate Γmirr(x) in Eq. 39 of an atom in
front of a mirror-coated dielectric medium as a function of the atom-mirror
distance x. Here ra � rb � r with r2 � 0.4, ϕ3 � π and

∣∣∣∣d1|2 � 0. Moreover, we
assume that the loss rates la and lb are the same and l2 with la � lb � l
varies between 0 and 0.6. Again we find that the possible absorption of light in
the mirror interface does not change the atomic decay rate of the atom
very much.

FIGURE 7 | The spontaneous decay rate Γmirr(x) in Eq. 39 of an atom in front of a mirror-coated dielectric medium as a function of the atom-mirror distance x. As in
Figure 6, ra � rb � r with r2 � 0.4, ϕ3 � π and

∣∣∣∣d1|2 � 0. The figure illustrates that Γmirr(x) depends on the loss rates la and lb in different ways. (A) For example, varying la
(which is the loss rate of light approaching the mirror from the same side as the atom) has almost no effect on Γmirr(x). (B) However, changing lb (which is the loss rate of
light approaching the mirror from the opposite side as the atom) changes Γmirr(x) in a much more significant way.

Frontiers in Photonics | www.frontiersin.org July 2021 | Volume 2 | Article 70073710

Dawson et al. Asymmetric Mirrors with Coherent Absorption

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


walls of the laboratory. In contrast to this, changing lb (which is
the loss rate of light approaching the mirror from the opposite
side as the atom) can have a noticeable effect on the spontaneous
decay rate Γmirr(x) (cf. Figure 7B). For example, increasing lb
while keeping rb the same can result in an increase of the
dependence of Γmirr(x) on the atom-mirror distance x. This
occurs due to a reduction of the normalisation constant ηa of
the electric field observable Emirr(r) in Eq. 19 which leads to an
increase of the dipole interaction between the atom and the b
photons.

5 CONCLUSION

The fluorescence properties of an atomic dipole depend on the so-
called local density of states of the quantised EM field (van
Tiggelen and Kogan, 1994; Sprik et al., 1996) which itself
depends in a complex way on the properties of all of its
surroundings. For example, as this paper illustrates, the
spontaneous decay rate of an atom near a mirror-coated
interface depends on the reflection and transmission rates, ra,
rb, ta, and tb, of light approaching the mirror from both sides (cf.
Figure 1). While standard methods, which are based on the
calculation of Greens functions or on the introduction of triplet
modes [cf. e.g. Refs (Khosravi and Loudon, 1991; Creatore and
Andreani, 2008; Eberlein and Zietal, 2012)], already yield good
agreement with experimental findings, this paper aims to provide
more physical insight. The potential coherent absorption of light
in the interface is explicitly taken into account by assuming that
the mirror does not change the shape of incoming wave packets
but only reduces amplitudes by given rates.

To obtain an expression for the electric field observable
Emirr(r) in the presence of a mirror-coated dielectric
medium, this paper employs the quantum mirror image
detector method (Furtak-Wells et al., 2018), doubles the
standard Hilbert space of the EM field and maps the
dynamics of incoming wave packets onto their dynamics in
analogous free space scenarios. In this way, we are able to obtain
an expression which is consistent with Maxwell’s equations but
contains two unknown normalisation factors ηa and ηb (cf. Eq.
19). These constants cannot be derived by simply demanding
that the energy observable of the EM field and the Hamiltonian

of the experimental setup in Figure 1 are the same (Furtak-
Wells et al., 2018). Instead we demand locality and assume that
the spontaneous decay rate Γmirr(x) of an atom at a relatively
large distance |x| from the mirror interface coincides with its
respective free space rates (cf. Eq. 18).

The main difference between the current paper and earlier
work (Furtak-Wells et al., 2018) is that this paper considers a
more general scenario. It is emphasised that the quantum optical
properties of the atom depend on the characteristics of the media
on both sides of the mirror interface. It is also shown that non-
zero loss rates do not necessarily reduce the effect of the mirror by
as much as one might naively expect. For example, the
spontaneous decay rate of an atom can exhibit a relatively
strong dependence on the atom-mirror distance x even for
loss rates l2a and l2b as large as 0.9 (cf. Figure 5). In agreement
with other authors (Chance et al., 1975b; Yeung and Gustafson,
1996; Eberlein and Zietal, 2012), we find that the effect of
absorption in the medium is most felt by dipole moments
close to the interface.
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