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We propose to reconstruct 3D images by combining the merits of transport of intensity and
digital holography. The proposed method solves the transport-of-intensity equation by
using digital holographic reconstructed images as inputs. Our simulation and experimental
results show that this method can eliminate quadratic phase aberration introduced by the
microscope objective in digital holographic microscopy. This proposed phase retrieval
method is free of phase unwrapping process. It is thus efficient in removing quadratic
phase aberration introduced by the microscope objective.
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1 INTRODUCTION

Holography was invented in 1948 by Dennis Gabor (1948) to improve the resolution of an electron
microscope. Leith and Upatnieks (1964) proposed off-axis illumination with an off-axis reference
beam, thus eliminating the spectral overlap of the zeroth-order beam and the twin image inherent in
Gabor’s in-line configuration. Schnars and Jiptner (1994) first used a CCD camera to capture a
hologram and subsequently reconstruct the hologram numerically. They termed the technique as
Digital Holography (DH).

In order to improve the transverse resolution of holographic measurements, digital
holographic microscopy (DHM) was developed. In combination with microscopy, DHM
provides label-free, quantitative phase imaging (Cuche et al., 1999; Mann et al.,, 2005).
Even though DHM has significant advantages such as being simple, non-intrusive, and
dynamic. However, quadratic phase aberration introduced by the microscope objective is a
great issue (Zuo et al., 2013a). In addressing this issue, quadratic error compensation method
has been applied (Zhou et al., 2009). It includes an optical design compensation (Rappaz et al.,
2005) such as the use of a telecentric architecture (Sinchez-Ortiga et al., 2011) and a tunable
lens compensation (Deng et al., 2017). The removal of quadratic phase aberration by software-
based methods has also been investigated (Liu et al., 2018). Computer simulations of quadratic
phase compensation (Colomb et al., 2006; Wang et al., 2019), least squares surface fitting
compensation (Di et al., 2009), and automatic spectral energy analysis (Liu et al., 2014) have
also been proven successfully. Most recently, deep learning compensation based on
convolutional neural network has also shown great success (Nguyen et al., 2017). While
these methods are promising, they mostly involve post processing steps for the quadratic phase
removal, e.g., after holographic reconstruction. It is also feasible that intensity images can be
reconstructed from a digital hologram to provide inputs for the transport-of-intensity equation
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FIGURE 1 | Diagram of digital holographic plane microscopy.
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(TIE) for unwrapped phase recovery. By doing this, we avoid
shifting the sample or the camera in the experiment (Yan
et al., 2019). In this research, we combine DH and TIE (DH-
TIE) algorithm with regularization parameters. The TIE is a
second-order elliptic partial differential equation for the
phase @. We use a fast method based on FFT to solve the
TIE. Within the method of DH-TIE, a single hologram can
provide phase retrieval without phase unwrapping (Zhou
et al., 2018; Yan et al., 2019; Zuo et al., 2020; Lu et al., 2021).

Many scholars have combined digital holography and TIE
in many applications. In the works by Zuo et al., TIE was
invoked following the numerical reconstruction and
propagation of the digital hologram, and the absolute phase
without 2m discontinuities has been directly recovered (Zuo
et al., 2013b). Whittkopp et al. described a microscopic setup
implementing phase imaging by DHM and TIE, which allowed
the results of both measurements to be quantitatively
compared for either live cell or static samples (Wittkopp
et al., 2020). Gupta et al. combined TIE with DH to
overcome the artifacts caused by TIE phase recovery under
low-light conditions by reconstructing the desired multiple
out-of-focus intensity maps from the captured coaxial digital
holograms (Gupta et al., 2020; Gupta and Nishchal, 2021).
Kelly et al. (2013) compared Fresnel-based digital holography
and phase retrieval from TIE. All these studies provide a lot of
new ideas and methods for DH-TIE applications. In this paper,
we employ the technique of DH-TIE to eliminate quadratic
phase aberration introduced by a microscope objective in
DHM. However, a suitable regularization parameter y needs
to be selected during the TIE phase retrieval process. By
simulating the quadratic phase with different curvature
factors, we provide some analysis for the appropriate
selection of the regularization parameter. We will also
present experimental results to verify our idea. In Section 2,
we present some of the key formulas of the DH-TIE algorithm.
In Section 3, a simulated phase object is used for the
demonstration of the removal of quadratic phase aberration
caused by a microscope objective in the DH system. In
particular, we compare results using the DH-TIE and DH
methods. We also analyze the effect of zero padding on phase
retrieval. In Section 4, experimental results on a USAF
resolution chart as a sample are presented to show the

effectiveness of quadratic phase aberration removal. In the
last section, we make some concluding remarks.

2 KEY FORMULAS OF DH-TIE ALGORITHM

In DH, a laser beam illuminates an object and the amplitude (4,)
and phase (¢,) of the light waves on the holographic plane form
the object wave are as follows:

0,(x,y) = Ao (x,y) exp[ig, (x.y)]. (1)

In DHM (Figure 1), the object wave is magnified on the
holographic plane by a microscope objective (MO), and the image
of the object beam satisfies the rule of lens imaging. The
wavefront of the object wave therefore contains an additional
quadratic phase aberration introduced by the microscope
objective and is given by

0(w) = a3 2 e (2 2) o2 11}
)

where M is the magnification of the microscope objective, g is the
radius of curvature of quadratic phase aberration (also called the
quadratic phase aberration factor) introduced by the microscope
objective, and k is the wave number of the laser. In off-axis
holography, there is an angle between the reference beam and the
holographic plane, which generates a linear phase reference wave
on the holographic plane:

R(x,y) = A, exp[ik(txx + tyy)] , (3)

where t, and ¢, are the inclination factors along the x and y
directions, respectively.

For off-axis holography, the digital hologram is generated
through the interference between the object wave and the
reference wave given by

H(xy) = [R(x,y)] +|0(x.y)| + R (,9)0(x.y)
+R(x,9)0" (x,y), 4)

where R’ (x,9)0(x,y) and R(x,y)O" (x,y) are the positive and
negative first order images, respectively (Nguyen et al., 2017). We
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FIGURE 2 | Simulation of object wave and digital hologram. (A) Quadratic phase aberration simulated as the effect due to the microscope objective (wrapped), (B)
Spherical phase map in center 256 x 256 region, (C) Object phase (sine grating function of two periods) located at the center of 256 x 256 region, (D) Wrapped phase
map of quadratic phase combined with object. (E) Line trace of the quadratic phase extracted from the red line in (B). (F) Line trace of the sine grating object from (C), (G)
Line trace of the combined phase extracted from the red line of (D). (H) Simulated off axis digital hologram map with 50 mm recording distance.
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FIGURE 3 | Holographic reconstruction intensity images and TIE phase retrieval results. (A) Reconstruction intensity image (256 x 256 size of the center of the
region) with 50 mm reconstruction distance. (B) Reconstruction intensity image with 49 mm reconstruction distance. (C) Reconstruction intensity image with 51 mm
reconstruction distance. (D) Phase retrieval by DH-TIE with 1 mm Az (vertical view). (E) 3D profile view of (D). (F) Line traces of simulated object (Green), DH (Blue) and

have used a Fourier spectrum window filter to extract the positive
first order image of the hologram. Moreover, the tilted phase
(with factors t,, t, ) of the reference light can be eliminated by a
Fourier frequency shift. The distribution of the filtered complex
amplitude (HF (x, y)) on the holographic plane is then given by

H" (x,y) = F'{F""[R (x,y) - O(x.y)]}

= A,Ao(]iw, %) exp[i(po(%, %)] exp[% («* +y2)] .

(5)
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FIGURE 4 | Reconstruction under zero padding of different sizes and the line traces of simulated object (Green), DH (Blue) and DH-TIE (Red) phase retrieval.
Reconstruction intensity images are with Az =1 mm. (A) The image file is 256 x 256. (B) The image file is 512 x 512. (C) The image file is 768 x 768. (D) The image file is
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Finally, the complex amplitude distribution of the original
sample needs to be calculated by a convolution formula under
paraxial approximations based on Kirchhoff scalar diffraction
(Poon and Liu, 2014). The diffraction process can be regarded as a
linear and space invariant system. After illuminating the
hologram with R. The reconstructed image is given by

O (xy) = J JR'HF 8. (x—x,y-y;2z)dx.dy, (6

where

1 exp (ik+/x* + y* + 22
gz(x’y;z) = a p(\/)ﬁzizz )> (7)

is the point spread function in free space. Note that the quadratic
phase aberration, exp{% [x? + %]}, is contained in HF. The
angular spectrum numerical propagation method is used to
propagate a small distance Az, the value of Az cannot be too
small in the case of intensity measurement noise, otherwise the
differential estimation of the light intensity will be drowned by
the noise. However, when the value of Az is too large, the phase
ambiguity effect will become more obvious. In light of this, we
choose Az between the intensity measurement noise and
nonlinear error as follows:

ko 1
\/EI—szlfAZ«W’ (8)

max

where I(x,y;z) is the intensity distribution around the image
plane, and ¢ (x, y; z) is the corresponding phase distribution of

the phase object. The upper limit of the defocused distance is
determined by the highest spatial frequency of the object f,,4x
and the lower limit is determined by the intensity measurement
noise (assuming Gaussian noise of standard deviation ). The
next two defocused intensities from the focal plane are
generated by the angular spectrum method (ASM)
numerically, giving I(x,y;z + Az) and I(x,y;z — Az). The two
intensities are used as input data to solve the TIE. The axial
differential intensity % is estimated by the following central
finite difference method:
ol I(x,y;z+Az)-1(x,y;z~ Az)

AZ 2Az ' ©)

Figure 1 shows a diagram of the digital holographic
microscopy system. The laser passes through the beam
collimator and is divided into two beams, one of which
passes through the object sample and is magnified by the
microscope, and the other, which does not pass through the
object, is served as a reference beam at the CCD to obtain the
hologram of the sample. Furthermore in Figure 1, z is the
reconstruction distance, d1 is the object distance, and d2 is the
image distance.

The transport-of-intensity equation (TIE) is an elliptic partial
differential equation (Zuo et al., 2014). In order to improve the
speed of solving the equation, it can be approximated by the
following Poisson equation:

2m oI

V(IVe) = 3 (10)

Frontiers in Photonics | www.frontiersin.org

February 2022 | Volume 3 | Article 848453


https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles

Zhou et al.

The Quadratic Phase Term Elimination

regularization parameter vy is taken as 10,000.
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FIGURE 5 | (A) Correlation coefficient plots corresponding to different regularization parameters when the quadratic phase aberration factor p = 400. (B)
Reconstruction results, line traces when the value of the regularization parameter y is taken as 100. (C) Reconstruction results, line traces when the value of the
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Reconstruction results, line traces when the value of the regularization parameter y is taken as 100. (C) Reconstruction results, line traces when the value of the

where g—é, as shown in Eq. 9, can be approximated as the
difference of defocused image intensities in two planes. The
phase of the object can be reconstructed using the FFT-based
Poisson solver (Teague, 1983; Zhou et al., 2018):

P B S P L
- (2. e, 0L ozl [
(fr+fy) +y o

where F and F! denotes forward and inverse Fourier
transform notations, respectively. y is the regularization

(11)

parameter, an important factor under the Tikhonov-
regularization treatment. f, and f, are the spatial
frequencies in the x and y directions, respectively. I, is the
intensity distribution at the focused plane and usually can be
taken as the average intensities of the two defocused planes.
Since the TIE is being solved using Fourier transforms, the
boundary conditions are implicitly assumed as the same as that
for the existence of the Fourier transform of the function
(Banerjee, 2022). The Tikhonov-regularization treatment is
commonly used to remove very low frequency artifacts, and
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Mirror

in the next Sections, we will demonstrate that the treatment can
also filter out the slowly varying feature corresponding to
spherical phase aberration introduced by the microscope
objective in the DH system.

3 SIMULATION ANALYSIS

We have simulated a sine grating as a sample. The sinusoidal
grating is expressed as follows:

ej sin wx

sinwx >0

12
0 sinwx<0 (12)

() |

The wavelength used is 632.8 mm. The square size of the
hologram is 1,024 pixels x1,024 pixels with the pixel size of
4.65 um. The defocused distances are Az = +1 mm. Quadratic
phase aberration with spherical factor y = 150 is shown in
Figure 2A. We add quadratic phase aberration on the object

phase (sine grating of two periods) shown in Figure 2C, to
simulate the object after imaged by the microscope objective, as
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FIGURE 9 | Experimental setup diagram of off-axis digital holographic microscopy system.

Collimator

image of (A), (F) Focused intensity reconstructed image of (B).

FIGURE 10 | Recorded holograms, two-dimensional spectra and reconstructed intensity images. (A) Hologram under X4 MO with 20 mm recording distance, (B)
Hologram under x10 MO with 30 mm recording distance, (C,D) are the two-dimensional spectra of holograms (A,B), respectively, (E) Focused intensity reconstructed

shown in Figure 2D. Figure 2E is a line trace across center of
wrapped quadratic phase aberration from Figure 2B. Figure 2F is
the line trace of the object phase from Figure 2C. Figure 2G shows
the line trace of the wrapped object phase mixed with quadratic
phase aberration. An off-axis reference beam is simulated to
interfere with the aberrated object complex amplitude. The
digital hologram is shown in Figure 2H, with 50 mm recording
distance and the zeroth-order term in the hologram has been
eliminated. The complex amplitude distributions of the focal plane
and the defocused planes can be obtained by multiplying the digital
hologram with the reconstructed reference light and perform the
convolution reconstruction process for different distances.

As shown in Figures 3A-C, in the holographic reconstruction
process, the simulated phase of the object wave modulates the
intensity image, but quadratic phase aberration added to the object
only affects the boundary region of the phase retrieval. Figure 3A is
the intensity image with 50 mm reconstruction distance equal to
the recording distance. Figures 3B,C are the intensity image with
49 and 51 mm reconstruction distance, respectively. We solve the
TIE to calculate the object phase with three intensity images.
Figures 3D,E show the phase retrieval by DH-TIE with Az =
+1 mm from vertical view and the 3-D profile view, respectively. In
general, we observe that the center area of phase retrieval yields
fairly accurate results. Around the boundary region phase retrieval
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is, however, associated with large errors as evidenced by Figure 3F,
where we present line traces of simulated object (Green), DH
(Blue) and DH-TIE (Red) phase results.

As it turns out, the DH-TIE phase retrieval is improved
drastically by zero padding. We summarize the results in
Figure 4. In Figure 4A, we have used a 256 x 256 image. In
Figures 4B-D, we perform zero padding on the image file in
Figure 4A to have 512 x 512, 768 x 768, 1,024 x 1,024 image files,
respectively. It is evident that phase retrieval of using 512 x 512,
768 x 768, 1,024 x 1,024 image files are better than that from the
256 x 256 image file, and the reconstruction effect of 512 x 512
image file is the best among them. It is also clear that quadratic
phase aberration added to the object does not impact phase retrieval
using the DH-TIE method. Simulation results show that the DH-
TIE method can effectively eliminate quadratic phase aberration in
DHM, greatly simplifying the phase reconstruction process of real
objects. Zero padding provides a larger uniform background on the
original image file and can achieve better retrieval results.

We also study the reconstruction effectiveness due to the
regularization parameter under different severities of quadratic
phase aberration. A two-dimensional correlation coefficient r (A, B)
can effectively represent the similarity between the retrieved phase and
the original phase (ground truth) and it is given by

ZmZn (Amn - A) (an - B)
V(S (A — A)) (2,3, (Bun — B))’

where A, B are two arrays in the same size, A is the mean of A, and
B is the mean of B. When the correlation coefficient is closer to
one, DH-TIE achieves better phase reconstruction. Figure 5A
shows that when the quadratic phase aberration factor p = 400,
the correlation coefficient is higher when the regularization
parameter is 100-1,000, and the reconstruction effect is better.
When the regularization parameter is 0.1-90 or more than 1,000,
the correlation coefficient becomes lower with adverse
reconstruction quality. Figure 6A shows that when the

(A, B) = . (13)

Frontiers in Photonics | www.frontiersin.org

February 2022 | Volume 3 | Article 848453


https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles

Zhou et al.

quadratic phase aberration factor g = 1,500, the regularization
parameter is optimized around 100. Figure 7A shows that when
the quadratic phase aberration factor p = 7,000, the regularization
parameter is optimized around 1,000.

4 EXPERIMENT AND RESULTS

To verify the effectiveness of the proposed method, a DHM system
of off-axis Mach-Zehnder interferometer combined with an
inverted microscopy (Olympus CKX53) has been constructed.
The wavelength of He-Ne laser source (Da Heng DH-NH250)
is 632.8 nmum. The resolution of the CCD (Da Heng MER-500-
7UM) is 2592(H)x1944(V) with single pixel size 2.2 ym x 2.2 ym.
The off-axis digital holographic system setup is shown in Figure 8.

A collimated laser beam is divided into two beams after passing
through a laser collimator and a beam-splitting prism. One of the
beams is reflected by a reflector mirror and modulated by the sample
phase to become the object beam, where the object wavefront (green)
is magnified by an Olympus microscope and diffracted onto the
CCD plane. The other beam is used as the reference light. An off-axis
angle between the two beams is created to form an interference
between the object and reference light waves on the CCD plane.

The actual off-axis digital holographic system is shown in
Figure 9. The light beam emitted by the laser passes through a
collimator and then passes through a beamsplitter (BS) which is
divided into an object beam and a reference beam. The object beam
passes through another beamsplitter and passes down through the
object and the microscope, while the reference beam passes through
the two beamsplitters and is incident onto the CCD together with the
object beam (green arrow) to form an interference beam. In the
system, the laser enters the Olympus microscope through a mirror,
and by this way, the laser replaces the original light source of the
microscope with vertical incidence, and the inverted microscope has
been used to form a post-amplification digital holographic
microscope. The merit of using an inverted microscope is that
the microscope objective lens can be flexibly switched to change
the magnification of the system.

We have obtained the holograms of a USAF 1951 resolution
chart (Edmund Optics) using the holographic microscope. The
digital holograms that we have captured under x4 and x10
microscope objectives are shown in Figures 10A,B,
respectively. Figures 10C,D are the spectra of these two
holograms, respectively, and Figures 10E,F are the focused
intensity reconstructed images of Figures 10A,B, respectively.

In the DH-TIE phase retrieval process, we have used a focused
image and two defocused images with 1 mm away from the
focused image. We have reconstructed two holograms
(Figures 10A,B) by the DH and DH-TIE methods. Figures
11A,B are the DH retrieved phase, and Figures 11C,D are the
DH-TIE retrieved phase. In the DH-TIE phase reconstruction,
the regulation parameter has been set to 5,000.

It can be seen in Figures 11A,B that quadratic phase aberration
is sharp in the DH reconstruction. Quadratic phase aberration
introduced by the microscope objective is so strong that the phase
information of the objects have been completely buried. Under the
x4 and x10 microscope objective, quadratic phase aberration has

The Quadratic Phase Term Elimination

different curvatures. The quadratic phase factor in Figure 11A is y
=200, and the quadratic phase factor in Figure 11B is 4 = 400. This
problem does not exist in the phase retrieval process using DH-TIE
as quadratic phase aberration has been eliminated and the object
phase has been retrieved successfully as shown in Figures 11C,D.
In order to verify the effect of different regularization parameters
on the reconstruction phase, we compare reconstructions when y =
1,000 and y = 10,000 under the x10 microscope objective. It can be
seen from Figure 12 that reconstruction is worse when y = 10,000
as compared to that when y = 1,000. Clearly, regularization
parameter plays an important role in reconstruction.

5 CONCLUDING REMARKS

Off-axis DHM simulation results show that, for quadratic phase
aberration generated by a microscope objective, the DH-TIE
method along with regularization can effectively eliminate
quadratic phase aberration. The unique advantage of DH-TIE
is that phase unwrapping is not needed. In contrast, conventional
DH phase retrieval method is not able to remove quadratic phase
aberration since there is no such process (regularization within
TIE) for the removal of the quadratic phase. We have performed
simulations that provide guidance for the proper selection of the
regularization process under the TIE.

Through optical experimental results, along with
regularization the DH-TIE method shows consistency in phase
retrieval under quadratic phase aberration introduced by the
microscope objective in the DH system. It should be noted
that the uniformity of the beam brightness in the holographic
plane should affect the accuracy of the DH-TIE reconstruction,
because only when the light intensity is uniformly distributed on
the hologram plane, the TIE equation can then be directly
reduced to a Poisson equation, which can be solved directly by
using Fourier transforms. This aspect should be further studied.
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