
Transverse Traveling-Wave and
Standing-Wave Ray-Wave Geometric
Beams
Zhaoyang Wang1,2, Ruilin Long1,2, Zhensong Wan1,2, Zijian Shi1,2, Xinjie Liu3, Qiang Liu1,2*
and Xing Fu1,2*

1Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, China, 2State Key
Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University,
Beijing, China, 3School of Statistics, Capital University of Economics and Business, Beijing, China

Ray-wave geometric beam is an exotic kind of structured light with ray-wave duality and
coupled diverse degrees of freedom (DoFs), which has attracted intense attention due to
its potential applications in theories and applications. This work offers a new insight that the
traditional ray-wave geometric beams can be seen as the transverse standing-wave (SW)
beams, and can be decomposed into the superposition of transverse traveling-wave (TW)
beams. We construct a generalized model for transverse TW and SW ray-wave geometric
beams in the wave picture. In experiment, we exploit a digital hologram system with more
flexible tunable DoFs to generate the transverse TW and SW beams, inspiring the
exploration for the spatial wave structure of more complex structured light.
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1 INTRODUCTION

Structured light with multiple controllable degrees of freedom (DoFs) has attracted wide attention in
both fundamental theories and technological applications such as optical manipulation,
communication, quantum-classical entanglement, and the analogy between classical optics and
quantum mechanics (Shen et al., 2021a; Shen et al., 2021b; Forbes et al., 2021; Lourenço-Martins
et al., 2021; Shen and Rosales-Guzmán, 2022). In the structured light family, the identified ray-wave
geometric beam, as the classical analogy of quantum SU(2) coherent state (Bužek and Quang, 1989;
Fox and Choi, 2000), has intriguing ray-wave duality (Babington, 2018), multiple tunable DoFs (Wan
et al., 2021) and wide potential applications (Shen, 2021). Ray-wave geometric beam can be described
by both ray and wave representation in optics (Shen et al., 2020a), and expressed as the superposition
of eigenmodes analogous to the distribution of bosons in SU(2) coherent state in mathematic
(Wodkiewicz and Eberly, 1985). There are many identified ray-wave geometric beams such as multi-
path ray-wave geometric beams (Chen et al., 2019a), multi-axis ray-wave geometric beams (Tuan
et al., 2018), and Lissajous-to-trochoidal geometric beams (Chen et al., 2006; Chen, 2011). Besides,
multifarious novel ray-wave geometric beams have been proposed to enrich the structured light
family, such as ray-wave vector vortex beams (Shen et al., 2020b) and astigmatic hybrid vector vortex
beams (Wang et al., 2021b). In addition to constructing exotic ray-wave beams, the spatial wave
structure is also an interesting topic. Recently, a unified mode evolution of azimuthally traveling-
wave (TW) and standing-wave (SW) ray-wave beams has been proposed, which newly constructs
ray-wave geometric beams with ray-splitting/fusion and provides a deep insight into the azimuthally
spatial structure of ray-wave geometric beams (Wang et al., 2021a). However, the study on transverse
wave structure of ray-wave geometric beams has not been reported.
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Generally, SW refers to a superposition of 2 TWs, which could
be understood via some simple mathematical formulas. For f±(x) =
gc(x) ±igs(x), f±(x) is the TW function, gc(x) and gs(x) are SW
functions, which could also be expressed as gc(x) = [f+(x) + f−(x)]/2,
gs(x) = [f+(x) − f−(x)]/(2i). In a word, SW and TW functions are
mathematical analogies to gc(x) and gs(x), respectively. The
concepts of TW and SW manifest themselves in structured light
as well. For example, azimuthally TW vortex beams can be
expressed as A(r) exp ± iℓθ, and azimuthally SW vortex beams
can be expressed as A(r) cos ℓθ and A(r) sin ℓθ, where A(r) is the
complex amplitude and ℓ is the topological charge (Wang et al.,
2021a). For another example, Bessel beams also have radial TW
component as [Jn(krr) ± iNn(krr)]ei(ℓθ+kzz), and radial SW
component as Jn(krr)ei(ℓθ+kzz) and Nn(krr)ei(ℓθ+kzz), where
k2r + k2z � k2, k = 2π/λ the wave number, Jn(r) and Nn(r) are
Bessel function and Neumann function as two independent
solutions of Bessel function, respectively (Chávez-Cerda et al.,
1996). Besides, the Laguerre-Gaussian (LG) beams, Hermite-
Gaussian (HG) beams and Airy beams also have the
corresponding radial (or transverse) TW and SW beams
(Richards, 2002; Mendoza-Hernández et al., 2019; Ugalde-
Ontiveros et al., 2021). Note that TW and SW beams have key
applications such as the coherent perfect absorption of light
(Vetlugin, 2021), classical analogy of quantum entanglement
(Chen et al., 2021), interpretation of the self-healing origin in
wave picture (Mendoza-Hernández et al., 2019; Ugalde-Ontiveros
et al., 2021) and dispersive soliton solutions in optical fibers (Tang,
2021). Therefore, it is of great importance to study the SW and TW
forms of ray-wave geometric beams for extending the Frontier of
structured light. Besides, ray-wave geometric beamswere generated
in a degenerate laser resonator originally (Chen et al., 2004, 2006;
Tuan et al., 2018), but there are some limits on the tunability (Wan
et al., 2020) and a lack of a generalized model in the wave picture
for more exotic beams (Chen et al., 2019b).

In this paper, we construct a theoretical framework for the
transverse TW and SW ray-wave geometric beams, which provides
a physical insight in the wave picture. Besides, we generate these
beams via a digital hologram system in experiment, with more
flexible tunability. We first analyze the transverse TW and SW
Hermite-Laguerre-Gaussian (HLG) beams as the eigenmodes of
ray-wave geometric beams (Section 2.1), and then propose a
generalized model for the transverse TW and SW ray-wave
geometric beams (Section 2.2). Furthermore, we experimentally
generate these transverse TW and SW beams by the digital
holography method with a liquid-crystal spatial light modulator
(LC-SLM) (Section 3) (Ren et al., 2015; Wan et al., 2020; Javidi
et al., 2021). Our work can be easily extended to investigate the
spatial wave structure of more complex structured light, further
enriching the structured light family.

2 THEORETICAL FRAMEWORK

2.1 Transverse Wave Structure of
Hermite-Laguerre-Gaussian Beams
The ray-wave geometric beams are the superposition of
eigenmodes under the frequency-degenerate condition (Chen

et al., 2004). As such, we analyze the transverse TW and SW
forms of eigenmodes firstly. HLG beams are the typical
eigenmodes of the paraxial wave equation (PWE), which
describe the tunable spatial mode evolution between HG
beams and LG beams. In mathematics, HLG beams could be
expressed as the superposition of HG beams (Chen, 2011):

HLGn,m,l x, y, z|α, β( ) � ei
n+m
2 α ∑n+m

k�0
eikαd

n+m
2

k−n+m
2 ,n−m2

β( )HGk,n+m−k,l x, y, z( ), (1)
where HLGn,m,l (x, y, z|α, β) represents the complex field of HLG
beams with transverse indices (n, m) and longitudinal indices l,
(α, β) are tunable parameters of spatial mode evolution between
HG beams and LG beams that HLGn,m,l (x, y, z|α, β) would tend to
LG beams for (α = π/2, β = π/2) and HG beams for α = 0 or β = 0,
where d

n+m
2

k−n+m
2 ,n−m2

(β) are the elements of Wigner d-matrix as
(Chen, 2011):

d
n+m
2

k−n+m
2 ,n−m2

β( ) � ����������������
k! n +m − k( )!n!m!

√
× ∑min m,k( )

υ�max 0,k−n( )

−1( )υ cos β/2( )[ ]m+k−2υ sin β/2( )[ ]n−k+2υ
υ! m − υ( )! k − υ( )! n − k + υ( )! .

(2)

In this way, one can describe the transverse wave structure of
HLG beams, using the transverse wave structure of HG beams
that are further expressed as (Ugalde-Ontiveros et al., 2021):

HGn,m,l x, y, z( ) � 1
4
∑
i,j

TWHGi,j
n,m,l x, y, z( ), (3)

where i, j = 1, 2, and TWHGi,j
n,m,l(x, y, z) represents the

decomposed components as Ugalde-Ontiveros et al. (2021):

TWHGi,j
n,m,l x, y, z( ) � Cn,m

w z( )e
− ~x

2+ ~y2
2 HHi

n ~x( )HHj
m ~y( )e i~kn,m,l ~z−i n+m+1( )ϑ z( )[ ], (4)

where Cn,m � ����������
π2n+m−1n!m!

√
is the normalized factor, (x, y, z) is

the Cartesian coordinates, ~x � �
2

√
x/w(z), ~y � �

2
√

y/w(z),
~z � z + [(x2 + y2)z]/[2(z2 + z2R)], ~kn,m,l � 2πωn,m,l/c, ωn,m,l =
(n + m + 1)ω0 + (l + 1/2)ωz, ω0 and ωz are transverse and
longitudinal mode frequency spacings, c is the light speed, ϑ(z) =
tan−1 (z/zR) is the Gouy phase, w(z) � w0

����������
1 + (z/zR)2

√
is the

Gaussian beam waist, zR is the Rayleigh rang, λ is the light
wavelength. HHi

n(·) is the Hankel-like Hermite polynomial of
nth order asHHi

n(·) � Hn(·) ± iNHn(·), whereHn(·) andNHn(·)
are the first and second solutions of the Hermite differential
equation, i = 1, 2 for the sign of“+” and“−”, respectively (Ugalde-
Ontiveros et al., 2021).

Note that Hn(·) and NHn(·) are the transverse SW functions
analogous to gc(x) and gs(x), and HHi

n(·) is the transverse TW
function analogous to f±(x), respectively. Since the analytical
expression of HG beams requires the multiplication of two
Hermite functions defined in x −, y − directions, there would
be four decomposed components as defined in Eq. 4. The
decomposed components of HG beams in Eq. 4 could be
called the transverse TW HG beams. Besides, the sum of four
transverse TW HG beams in Eq. 3 is equivalent to the traditional
HG beams, due to ∑i,jHHi

n(x)HHj
m(y) � Hn(x)Hm(y). Thus,

the traditional HG beams could be called the transverse SW HG
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beams, alternatively. Based on the transverse TW HG beams, the
transverse TW HLG beams could be obtained as:

TWHLGi,j
n,m,l x, y, z|α, β( ) � ei

n+m
2 α ∑n+m

k�0
eikαd

n+m
2

k−n+m
2 ,n−m2

β( )TWHGi,j
k,n+m−k,l x, y, z( ). (5)

The sum of four transverse TW HLG beams is equivalent to
the traditional HLG beams in Eq. 1, which could also be called the
transverse SW HLG beams. The simulated results of transverse
TW and SW HLG beams are shown in Figure 1, where the
intensity and phase at z = 0 plane are shown in rows Figures
1A–F, respectively. The horizontal and vertical axes of subplots
are x- and y-axis and ranges from −4.2w0 to 4.2w0. The
corresponding parameters are (n, m) = (5, 6), α = π/2, and the
rows from top to bottom correspond to HG-HLG-LG beam
evolution with β = 0, π/4, π/2. The subplots labeled with (i, j)
in columns 1-4 are transverse TWHLG beams as defined in Eq. 5,
and the column 5 corresponds to transverse SWHLG beams. The
transverse TW HG beams have almost rectangular intensity

profiles with different phase distributions, as shown in the
Figures 1A,D, 1–4, while their superposition as SW HG
beams have arrayed intensity profiles, as shown in Figures
1A5. In comparison, the transverse TW HLG beams have
different intensity and phase distributions, which are
superposed to form the transverse SW HLG beams with
elliptical arrayed intensity profiles, as shown in Figures 1B,E,
1–5. The transverse TW LG beams could be divided into two
groups with same intensity distributions (Figures 1C1–C4) but
different phases (Figures 1F1–F4), which can constitute LG
beams with ring-like intensity profiles and spiral phase
distributions as shown in Figures 1C5,F5.

2.2 TransverseWave Structure of Ray-Wave
Geometric Beams
In the above subsection, we have analyzed the transverse wave
structure of HLG beams and proposed the transverse TW HLG
beams, which allows us to further explore the transverse wave
structure of complex ray-wave geometric beams as the

FIGURE 1 | Transverse wave structure of HLG beams. Subplots (A1–C4) correspond to the intensities of transverse TWHLG beamswith (n,m) = (5, 6), α = π/2, β =
0, π/4, π/2 from top to bottom, respectively. Subplots (A5,B5,C5) correspond to the intensities of transverse SWHLG beams. The subplots in rows (D–F) are the phases
corresponding to the intensities shown in rows (A–C) (Colormap: darkness to brightness means 0 to 1 for intensity, and − π to π for phase).
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superposed spatial wave packet. There are three typical kinds of
ray-wave geometric beams, which are the so-called multi-path
ray-wave geometric beams (Chen et al., 2019a), multi-axis ray-

wave geometric beams (Tuan et al., 2018), and Lissajous-to-
trochoidal geometric beams (Chen et al., 2006; Chen, 2011).
Here we would decompose these exotic ray-wave beams into

FIGURE 2 | Transverse intensity of ray-wave geometric beams. The subplots in columns (A1–I5) are transverse TW (labeled with (i, j)) and SW ray-wave geometric
beams, respectively (Colormap: darkness to brightness means 0 to 1 for intensity).
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the superposition of transverse TW components. By selecting the
transverse TW HLG beams as eigenmodes, the transverse TW
ray-wave geometric beams can be expressed mathematically as
(Bužek and Quang, 1989):

ψi,j
n,m,l x, y, z|N, ϕ, α, β( ) � 1

2N/2
∑N
K�0

N
K

( )1
2

eiKϕTWHLGi,j
n+pK,m+qK,l−sK x, y, z|α, β( ), (6)

where ϕ is the coherent phase, N is an integer which represents
the number of superposed eigenmodes in ray-wave geometric
beams, analogous to the number of bosons in quantum SU(2)
coherent state (Wodkiewicz and Eberly, 1985; Bužek and Quang,
1989), (p, q, s) are three integers about frequency-degenerate
condition (Chen et al., 2004). The sum of four transverse TW ray-
wave geometric beams (subplots labeled with (i, j) in columns 1-4
in Figure 2) as defined in Eq. 6 is equivalent to traditional ray-
wave geometric beams (subplots in column 5 in Figure 2), which
could be called transverse SW ray-wave geometric beams, where
the horizontal and vertical axes of subplots are x- and y-axis, (α,
β) = (π/2, 0) for rows (Figures 2A,D,G), (π/2, π/4) for rows
(Figures 2B,E,H), (π/2, π/2) for rows (Figures 2C,F,I),
respectively. The rows a-c, d-f, and g-i of the Figure 2 are
ray-wave multi-path geometric beams (n = 5, m = 0, ϕ = 0,
p = 3, q = 0,M = 4, (x, y) ranges from −4.2w0 to 4.2w0), ray-wave
multi-axis geometric beams (n = 25,m = 5, ϕ = 0, p = 3, q = 0,M =
6, (x, y) ranges from − 8w0 to 8w0) and ray-wave Lissajous-to-
trochoidal geometric beams (n = 25,m = 5, ϕ = π/2, p = −1, q = 4,
M = 6, (x, y) ranges from − 8w0 to 8w0), respectively. The
simulation ranges and the parameters are set for clear
illustration. The beams that intensity located on segmented
curves, are explained in the ray picture (Chen et al., 2019b).
Here we demonstrate that these beams with segmented curved
intensity are the transverse TW ray-wave geometric beams in the
wave picture. Our generalized model provides a physical insight
in the wave picture for the ray-wave geometric beams, which
would be experimentally generated in the next section.

3 EXPERIMENT

We exploit a digital hologram system to generate the transverse
TW and SW beams, since this method could generate various
exotic beams flexibly, just by changing the mask loaded on the
SLM (Chen et al., 2004, 2006; Tuan et al., 2018). In comparsion,
the traditional method based on laser resonator requires to tune
the length of cavity, pump position and power, and gain for
generating various exotic beams, while some ray-wave beams
cannot be generated in the cavity (Wan et al., 2020). Therefore,
the digital hologram system is an effective and compact setup
for the generation and modulation of structured light. The
experimental setup based on LC-SLM is shown in Figure 3.
LC-SLM is a type of opto-electrical device for phase modulation,
which is regulated by the extraordinary refractive index of liquid
crystal cells (Aulbach et al., 2017). Exploiting SLM to generate
complex beams requires masks, which are essentially computer-

generated holograms (Arrizón et al., 2007). There are several
methods to generate masks, as introduced in (Arrizón et al.,
2007; Markus Fratz et al., 2021; Trolinger, 2021). The masks
used in this paper can be expressed as (Arrizón et al., 2007; Wan
et al., 2020):

fmask x, y( ) � eiJ
−1
1 CA x,y( )[ ]sin Φ x,y( )+2π uxx+vyy( )[ ], (7)

where C = 0.5819 is a constant (Arrizón et al., 2007; Wan et al.,
2020), A (x, y) and Φ(x, y) are complex amplitude and phase
distributions of light, ux and uy are spatial frequency coordinates.
Lens L1 and L2 expand the beam emitted by the source, and the
collimated beam is modulated by the mask loaded on SLM. The
lenses L3 and L4 compose a 4f system. The aperture (AP) is placed
at the Fourier plane of L3 to extract +1st-order diffraction
component, as shown in the inset with blue box in the
Figure 3, where only three diffraction orders are displayed.
The target structured light exists in the +1st-order diffracting
component, which is imaged by L4 and then recorded by CCD.
The generation of planar multi-path ray-wave geometric beams is
selected as an example shown in the right insets, where the insets
are the mask loaded on SLM, enlarged view of the mask, and the
experimental pattern recorded by CCD from top to bottom,
respectively. A 1064-nm laser source (2W) is used in this
experiment and the generated beams are linear-polarized. The
SLM (Meadowlark Optics) have 1920 × 1,152 pixels and (ux, uy) =
(5, 0) for the masks loaded. The results recorded by CCD are
about 300 × 300 pixels. The focal length of L1 to L4 is 20 mm,
120 mm, 120 mm, 60 mm, respectively.

Experimental results of transverse TWand SWHLG beams and
ray-wave geometric beams are shown in Figure 4, where subplots

FIGURE 3 | Experimental setup. P1-P2, polarizers; L1-L4, lens; BS,
beam splitter; SLM, spatial light modulator; AP, aperture for filtering; CCD,
charge coupled device camera. The blue rectangle highlights the filtering
aperture, with the details of extracting + 1st-order diffraction
component. The right insets exhibit the mask loaded on SLM, enlarged view of
the mask, and the experimental pattern recorded by CCD from top to bottom,
respectively.
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labelled with (i, j) in rows 1-4 of each section are transverse TW
beams and the subplots in 5th row are transverse SW beams. The
first section of Figures 4A–C exhibits experimental results of HLG
beams corresponding to the simulated results as shown in Figure 1,
where subplots a1-a5, b1-b5, c1-c5 are transverse TW and SWHG,
HLG and LG beams, respectively. The other three sections of

Figure 4 exhibit the transverse TW and SW ray-wave geometric
beams generated in experiment, corresponding to the simulated
results as shown in Figure 2, where the subplots d1-d5, e1-e5, f1-f5
are transverse TW and SW ray-wave multi-path geometric beams,
the subplots g1-g5, h1-h5, i1-i5 are transverse TW and SW ray-
wavemulti-axis geometric beams, and the subplots j1-j5, k1-k5, p1-

FIGURE 4 | Experimental results of the transverse TW and SW beams of HLG beams, multi-path geometric beams, multi-axis geometric beams and Lissajous-to-
trochoidal geometric beams. The subplots labeled with (i, j) in rows (A1–A4) to (P1–P4) of each section are transverse TW beams, and subplots in row (A5–P5) are SW
beams (Colormap: darkness to brightness means 0 to 1 for intensity).
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p5 are transverse TW and SW ray-wave Lissajous-to-trochoidal
geometric beams, respectively.

4 DISCUSSION

The theoretical framework presented in this work decomposes
traditional transverse SW ray-wave geometric beams into
transverse TW geometric beams, which enriches the structured
light family and provides a physical insight for the ray-wave
beams. The generalized model demonstrates that the beams with
segmented curved intensity in the laser resonator (Chen et al.,
2019b) are transverse TW ray-wave geometric beams, essentially.
Furthermore, our theoretical framework has the potential to
unveil more classes. For instance, it can be applied to non-
diffraction resonant geometric beams based on Bessel beams
(Chen et al., 2012; Liang and Lin, 2020) since Bessel function
Jn(r) and Neumann function Nn(r) can be seen as radial SW
functions, and Jn(r) ±iNn(r) can be seen as radial TW functions
(Chávez-Cerda et al., 1996). For another instance, the first kind of
Airy function Ai (·) and the second kind of Airy function Bi(·)
could be used to construct transverse (radial) TW and SW Airy
beams and their coherent spatial wave packet (Richards, 2002).
We can also investigate generalized transverse wave structure in
astigmatic and vector fields (Droop et al., 2021), as well as hybrid
coherent state (Shen et al., 2020b). Besides, our newly proposed
TW ans SW beams have multi- controllable DoFs, which is
significant for extending the potential applications such as
optical communication and manipulation.

In summary, we propose the transverse TW HLG beams and
three kinds of exotic transverse TW ray-wave geometric beams,

providing a physical insight for spatial wave structure of
structured light, which are demonstrated in theoretical
simulation and experiment. Our work has strong extensibility
to explore spatial wave structure of more structured light such as
non-diffracting beams, providing a powerful tool for exploring
the frontiers of structured light.
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