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This study presented a theoretical or analytical approach to quantify how the signal-to-noise
ratio (SNR) of a near infrared spectroscopy (NIRS) device influences the accuracy on calculated
changes of oxy-hemoglobin (Δ[HbO]), deoxy-hemoglobin (Δ[HHb]), and oxidized cytochrome
c oxidase (Δ[oxCCO]). In theory, all NIRS experimental measurements include variations due to
thermal or electrical noise, drifts, and disturbance of the device. Since the computed
concentration results are highly associated with device-driven variations, in this study, we
applied the error propagation analysis to compute the variability or variance ofΔ[HbO],Δ[HHb],
and Δ[oxCCO] depending on the system SNR. The quantitative expressions of variance or
standard deviations of changes in chromophore concentrations were derived based on the
error propagation analysis and the modified Beer-Lambert law. In order to compare and
confirm the derived variances versus those from the actual measurements, we conducted two
sets of broadbandNIRS (bbNIRS)measurements using a solid tissue phantomand the human
forearm. AMonte Carlo framework was also executed to simulate the bbNIRS data under two
physiological conditions for further confirmation of the theoretical analysis. Finally, the
confirmed expression for error propagation was utilized for quantitative analyses to guide
optimal selections of wavelength ranges and different wavelength combinations for minimal
variances of Δ[HbO], Δ[HHb], and Δ[oxCCO] in actual experiments.
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1 INTRODUCTION

Near-infrared spectroscopy (NIRS) (Quaresima et al., 2012; Boas et al., 2014; Scholkmann et al., 2014; Bigio
and Fantini, 2016; Shi and Alfano, 2017) has been considered an effective and non-invasive tool for
functional imaging and diagnostics inmedical applications. Besides the conventional NIRwindow from 650
to 950 nm (Villringer et al., 1993), the advancement of new technologymade other NIRwindows within the
1,000–2,500 nm wavelength range become possible (Shi et al., 2016; Wang W et al., 2016; Alfano et al.,
2018). These NIR windows have gained much attention recently because of their capacity to obtain greater
imaging and sensing depth, and thus capable of investigating both soft tissue constituents (such as with high
lipid content or cancers) and hard tissue constituents (such as bones) (Shi and Alfano, 2017; Sordillo et al.,
2017).
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In this study, we focus on the conventional NIRS with the
wavelength range from 650 to 950 nm, which facilitates
quantitative changes of the hemodynamic (Boas and
Franceschini, 2011) and metabolic state of various tissue types,
such as the breast (Cerussi et al., 2011; Jiang et al., 2013), muscle
(Ferrari et al., 2011; Wang X. et al., 2016), or brain (Villringer
et al., 1993; Smith, 2011; Tian et al., 2016;Wang et al., 2017; Pruitt
et al., 2020; Wang et al., 2022). In this spectral range, the three
main chromophores of interest in most NIRS-based studies are
oxyhemoglobin (HbO), deoxyhemoglobin (HHb), and
cytochrome-c-oxidase (CCO) (Heekeren et al., 1999; Kolyva
et al., 2012; Bale et al., 2014; Kolyva et al., 2014; Wang X.
et al., 2016; Wang et al., 2017; Wang et al., 2022). Numerous
studies have revealed the potential use of NIRS in a wide range of
clinical applications, including neuromonitoring (Lange and
Tachtsidis, 2019; Pinti et al., 2020), metabolic state observation
(Durduran et al., 2010; Hamaoka et al., 2011), or cancer detection
(Nioka and Chance, 2005; Cerussi et al., 2011; Jiang et al., 2013).

The modified Beer-Lambert law (Liu et al., 2000; Sassaroli and
Fantini, 2004) is mostly employed as the mathematical fundamental of
a NIRS system to quantify changes in chromophore concentrations,
namely, changes of oxy-hemoglobin (Δ[HbO]), deoxy-hemoglobin
(Δ[HHb]), oxidized cytochrome-c- oxidase (Δ[oxCCO]).
Theoretically, the minimum number of wavelengths required for
the calculation of chromophore concentration changes must be
minimally equal to the number of chromophores. When
Δ[oxCCO] is the parameter of interest, however, such an approach
is extremely sensitive to the system noise and may lead to inaccurate
quantification because of its low concentration in tissue with respect to
Δ[HbO] and Δ[HHb]. Thus, an adequate signal-to-noise ratio (SNR)
of aNIRSmeasurement becomes a key determinant to judge or predict
accuracy of experimental results of chromophore concentration
changes. Broadband NIRS (bbNIRS) (Heekeren et al., 1999; Kolyva
et al., 2012; Bale et al., 2014; Kolyva et al., 2014), which provides a full or
broad wavelength range of measurement, is expected to alleviate the
influence of system noise and offer more reliable quantification results.
Several studies have also been carried out to identify optimal
wavelength combinations in order to minimize the measurement
redundancy but still ensure the accuracy of the quantification
results (Wobst et al., 2001; Arifler et al., 2015).

Since Δ[HbO], Δ[HHb], and Δ[oxCCO] must be inferred from
the optical densities measured at multiple wavelengths,
measurement variations caused by the system’s thermal or
electrical noise, drifts, and disturbance will lead to variability in
the respective quantities. To our knowledge, very few studies have
addressed such a problem. Most existing works have focused on the
effect of extinction coefficients, optical pathlengths, or wavelength
combinations on the accuracy of estimated changes of chromophore
concentrations. Kim and Liu (Kim and Liu, 2007) proved that small
variations in hemoglobin extinction coefficients would lead to large
variations in quantifications of hemoglobin concentration changes.
Funane et al. (Funane et al., 2009) investigated the relationship
between the errors in calculating Δ[HbO] and Δ[HHb] versus
different wavelength selections or combinations. Recently,
Sudakou et al. (2019) presented an error propagation analysis
method to estimate the deviations of the recovered tissue
constituent concentrations using a time-resolved NIRS.

In this study, we sought to investigate the influence of SNR of a
bbNIRS system on quantifications of Δ[HbO], Δ[HHb], and
Δ[oxCCO]. Practically, all measured data are not noise-free;
they must consist of natural variability or uncertainty from the
measurement system. The accuracy of the results derived from
these measurements will depend on the measurement errors or
SNR (Goodman, 1960; Bevington et al., 1993). In other words,
measurement variances or errors will propagate to the quantified
results. Note that the objective of this study was to quantify the
SNR-derived variance of Δ[HbO],Δ[HHb], and Δ[oxCCO] caused
only by the noise of the bbNIRS instruments/devices. Other
parameters, such as the extinction coefficients and the optical
pathlengths, are not the concern of variables in this study.
Being aware of how much system noise propagates into the
calculated chromophore concentration changes is essential when
considering a bbNIRS system. Since the system SNR can be
calculated easily throughout multiple baseline measurements, we
can estimate or predict the SNR-derived variance of Δ[HbO],
Δ[HHb], and Δ[oxCCO] based on the results of error
propagation analysis. Consequently, one may want to improve
the SNR of the bbNIRS system to lessen the uncertainties of
calculated chromophore concentration changes by considering
warming up the system to reach a stable state, optimizing the
light exposure time, or selecting an optimal wavelength range.

Specifically, we performed the error propagation analysis for
bbNIRS to calculate variances of Δ[HbO], Δ[HHb], and
Δ[oxCCO] induced by the measurement system’s noise. We
considered only the case where the number of wavelengths is
larger than the number of chromophores. Thus, the chromophore
concentration changes were estimated by fitting the model to the
measured data using the least-squares method (Heekeren et al., 1999;
Kolyva et al., 2012; Bale et al., 2014; Kolyva et al., 2014). As a
consequence, the analytical expressions of the error propagation in
estimatingΔ[HbO],Δ[HHb], andΔ[oxCCO] were derived directly
from the best-fit model. In order to compare the analytical results
with experimental results, we first carried out two real bbNIRS
experiments, namely, 1) one taken from a solid tissue phantom
using two spectrometers concurrently and 2) the other from the
human forearm at resting state. Then, a Monte Carlo (MC)
simulation framework that permits to replicate or simulate the
measurement of a bbNIRS system was conducted. To demonstrate
good consistency of influence of SNR on chromophore
concentrations among all three cases, the theoretical
quantitation of the SNR-derived variances of Δ[HbO], Δ[HHb],
and Δ[oxCCO] were compared with the respective variances
calculated directly from the measured and simulated data.
Finally, we also performed analyses to assess optimal selections
and ranges of wavelengths for bbNIRS to minimize variances of
Δ[HbO], Δ[HHb], and Δ[oxCCO].

2 METHODOLOGY

2.1 Modified Beer-Lambert Law
It is known that changes in chromophore concentrations are
calculated based on the modified Beer-Lambert law (Liu et al.,
2000; Sassaroli and Fantini, 2004; Kocsis et al., 2006):
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ΔOD λi( ) � −log10
I λi( )
I0 λi( )[ ] � ∑N

k�1
ϵCk

λi( ) × Δ Ck[ ] × L λi( ) (1)

whereΔOD(λi) is the change in optical density at wavelength λi, I0
and I are the detected light intensities of the baseline and transient
conditions, respectively. ϵCk(λi) is the extinction coefficient of the
k-th chromophore at wavelength λi, Δ[Ck] is the change of the
k-th chromophore concentration, and L(λi) is the optical
pathlength of wavelength λi. Such optical pathlength is
estimated as L(λi) = r ×DPF(λi), where r is the source-detector
separation distance, and DPF(λi) is the differential path-length
factor, which is introduced to consider light scattering effects in
Beer-Lambert’s law.

If the number of chromophores and wavelengths are equal,
the chromophore concentration changes are calculated by
simultaneously solving the number of equations (i.e., Eq. 1
with respective parameters). If the wavelength number is larger
than the number of chromophores, the chromophore
concentration changes are estimated by fitting the model
(i.e., Eq. 1) to measured data using the least-squares
method (Heekeren et al., 1999; Kolyva et al., 2012; Bale
et al., 2014; Kolyva et al., 2014). In this study, we consider
the general case using multiple wavelengths to estimate
Δ[HbO], Δ[HHb], and Δ[oxCCO]. In such a case, the
modified Beer-Lambert law, namely, Eq. 1, can be rewritten
as follows:

ΔOD λ1( )
ΔOD λ2( )

..

.

ΔOD λm( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

L λ1( )ϵHbO λ1( ) L λ1( )ϵHHb λ1( ) L λ1( )ϵdiffCCO λ1( )
L λ2( )ϵHbO λ2( ) L λ2( )ϵHHb λ2( ) L λ2( )ϵdiffCCO λ2( )

..

. ..
. ..

.

L λm( )ϵHbO λm( ) L λm( )ϵHHb λm( ) L λm( )ϵdiffCCO λm( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ HbO[ ]
Δ HHb[ ]
Δ oxCCO[ ]

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(2)

where m is the total number of wavelengths, ϵHbO(λi), ϵHHb(λi),
and ϵdiffCCO(λi) are the extinction coefficients of HbO, HHb, and
oxidized-reduced difference of CCO (Bale et al., 2016) at
wavelength λi, respectively.

2.2 Error Propagation From Measurement
Noise to Δ[HbO], Δ[HHb], and Δ[oxCCO]
For simplification, let y � [ΔOD(λ1) . . . ΔOD(λm)] T, a � [Δ[HbO] Δ[HHb] Δ[oxCCO]] T,

and C �

L(λ1)ϵHbO(λ1) L(λ1)ϵHHb(λ1) L(λ1)ϵdiffCCO(λ1)
L(λ2)ϵHbO(λ2) L(λ2)ϵHHb(λ2) L(λ2)ϵdiffCCO(λ2)

..

. ..
. ..

.

L(λm)ϵHbO(λm) L(λm)ϵHHb(λm) L(λm)ϵdiffCCO(λm)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. Eq. 2 is equivalent to:

y � Ca (3)
Δ[HbO], Δ[HHb] and Δ[oxCCO] in Eq. 2 are typically

estimated using the least-squares fitting method. The principle
is to fit the results from the linear model ŷ � Ca to the measured
data y � [ΔOD(λ1) / ΔOD(λm)]T as closely as possible. Such a
best-fit minimizes the chi-squared optimization function defined
as follows:

χ2 a( ) � ∑m
i�1

ŷi − yi[ ]2
σ2yi

� ŷ − y[ ]TV−1
y ŷ − y[ ] � Ca − y{ }TV−1

y Ca − y{ }
� aTCTV−1

y Ca − 2aTCTV−1
y y + yTV−1

y y

(4)

where Vy �

σ2y1
0 / 0

0 σ2y2
/ 0

..

. ..
.

1 ..
.

0 0 / σ2ym

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ is the diagonal matrix of

variances of y and σ2yi
is the variance of the measurement yi.

The χ2 optimization function is minimized with respect to
the parameters a by solving the equation of zχ2

za |a�â � 0, which
leads to the linear least-square estimate of the parameters a as
follows:

â � CTV−1
y C[ ]−1CTV−1

y y (5)
Note that the linear least square estimate of Δ[HbO],

Δ[HHb] and Δ[oxCCO] defined in Eq. 5 is a function of the
measured ΔOD, the ΔOD covariance matrix, the extinction
coefficients, and the optical pathlength. As mentioned above, we
consider the error propagation caused only by the noise from
instruments. Thus, matrix C, which includes the extinction
coefficients and the optical pathlengths at all wavelengths, is
considered a constant matrix. The covariance matrix of the
estimates of Δ[HbO], Δ[HHb] and Δ[oxCCO] is calculated as
follows:

Vâ � zâ
zy

[ ]Vy
zâ
zy

[ ]T

� CTV−1
y C[ ]−1 (6)

By substituting thematricesC andVy in Eq. 6with the original
definitions, the covariance matrix of the estimated Δ[HbO],
Δ[HHb] and Δ[oxCCO] can be rewritten as:

Vâ �

∑m
i�1

L2 λi( )ϵ2HbO
λi( )

σ2ΔOD λi( )
∑m
i�1

L2 λi( )ϵHbO λi( )ϵHHb λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵHbO λi( )ϵdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵHbO λi( )ϵHHb λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵ2HHb
λi( )

σ2ΔOD λi( )
∑m
i�1

L2 λi( )ϵHHb λi( )ϵdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵHbO λi( )ϵdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵHHb λi( )ϵdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

L2 λi( )ϵ2diffCCO λi( )
σ2ΔOD λi( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(7)

For simplification, let ξHbO(λi) = L(λi)ϵHbO(λi), ξHHb(λi) =
L(λi)ϵHHb(λi), and ξdiffCCO(λi) = L(λi)ϵdiffCCO(λi), the
covariance matrix Vâ can be simplified as follows:

Vâ �

∑m
i�1

ξ2HbO λi( )
σ2ΔOD λi( )

∑m
i�1

ξHbO λi( )ξHHb λi( )
σ2ΔOD λi( )

∑m
i�1

ξHbO λi( )ξdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

ξHbO λi( )ξHHb λi( )
σ2ΔOD λi( )

∑m
i�1

ξ2HHb λi( )
σ2ΔOD λi( )

∑m
i�1

ξHHb λi( )ξdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

ξHbO λi( )ξdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

ξHHb λi( )ξdiffCCO λi( )
σ2ΔOD λi( )

∑m
i�1

ξ2diffCCO λi( )
σ2ΔOD λi( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(8)
This covariance matrix is known as the error propagationmatrix,

which indicates how measurement errors in ΔOD, described by
σ2ΔOD(λi), propagate to the estimated Δ[HbO], Δ[HHb] and
Δ[oxCCO]. Based on the definition of ΔOD(λi) in Eq. 1
(i.e.,ΔOD(λi) � −log10[ I(λi)

I0(λi)]), the variance ofΔOD is computed as:
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σ2ΔOD λi( ) �
1

ln 10( )2
σ2I0 λi( )
I0 λi( )[ ]2 +

σ2I λi( )
I λi( )[ ]2( ) (9)

If multiple measurements are repeated for both baseline and
transient instant, the detected light intensities I0 and I can be
replaced by the mean values of all measurements’ detected
light intensities. Mathematically, the fraction �I2/σ2I is equivalent
to the SNR of the measurement system. Furthermore, assuming
that the measurement system has consistent SNR for both baseline
and transient instant measurements, Eq. 9 can be rewritten as:

σ2ΔOD λi( ) �
1

ln 10( )2
2

SNR λi( ) (10)

Substituting Eq. 10 into Eq. 8, we obtain the error propagation
matrix calculated from the SNR of the measurement system.

Vâ � 2

ln 10( )2

∑m
i�1

ξ2HbO λi( )SNR λi( ) ∑m
i�1

ξHbO λi( )ξHHb λi( )SNR λi( ) ∑m
i�1

ξHbO λi( )ξdiffCCO λi( )SNR λi( )

∑m
i�1

ξHbO λi( )ξHHb λi( )SNR λi( ) ∑m
i�1

ξ2HHb λi( )SNR λi( ) ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )SNR λi( )

∑m
i�1

ξHbO λi( )ξdiffCCO λi( )SNR λi( ) ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )SNR λi( ) ∑m
i�1

ξ2diffCCO λi( )SNR λi( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(11)

The square root of the diagonal of this covariance matrix
corresponds to the standard deviation of Δ[HbO], Δ[HHb] and
Δ[oxCCO], which indicates the uncertainties of the estimated
chromophore concentration changes caused by the measurement
system noise. We note the standard deviation of the chromophore
concentration changes derived by the proposed error propagation
analysis as σTΔ[Ck], where [Ck] denotes the chromophore
concentration that includes [HbO], [HHb] and [oxCCO]. The
superscript T indicates that σTΔ[Ck] was derived by the theoretical
analysis (Eq. 11). In the later part, we would also calculate the
standard deviation of Δ[Ck] from the measurement or simulation
data and denote it as σMΔ[Ck] to distinguish it from σTΔ[Ck] estimated
from the error propagation analysis.

2.3 Actual Measurements From a Solid
Phantom and the Human ArmUsing bbNIRS
In order to evaluate how well the derived error propagation
calculations matched with the real bbNIRS data, we first

conducted actual measurements from a solid phantom using two
separate bbNIRS spectrometers combined with one light source, as
shown in Figure 1A. The two spectrometers utilized 1) a two-
dimensional CCD spectrograph (Teledyne Princeton Instrument,
3660 Quakerbridge Road Trenton, NJ 08619 United States) and 2) a
back-thinned cool-down CCD spectrometer (QE-Pro, Ocean Optics
Inc.). A tungsten halogen lamp (Model 3900, Illumination
Technologies Inc., East Syracuse, NY) covering 400–1,500 nm
light was used as the light source. We used the solid phantom
provided by ISS (ISS Inc., Champaign, IL, United States) with the
absorption coefficient μa of 0.155 cm

−1 at 690 nm and 0.15 cm−1

at 830 nm. Three fiber bundles were used, one for the light
delivery and two for light collection from the solid phantom.
The distance between each detection bundle to the source bundle
was 3 cm. The bbNIRS data were collected concurrently by these
two spectrometers to ensure the identical environmental
condition. The exposure time of both spectrometers was set to
1 s, and the data were collected continuously over 30 min,
resulting in a total of 1800 data points for each spectrometer.
We repeated the measurements seven times on different days to
ensure the arbitrary nature of the data collection.

The second experiment was conducted on the human forearm
under the resting state with no stimulation. The experimental protocol
was approved by the Institutional Review Board (IRB) of the
University of Texas at Arlington. Two healthy adults participated
in this experiment. Each subject attended eight measurement sessions
on different days, which led to n = 16 measurements. Informed
consent was acquired prior to all measurements.

The experimental setup was illustrated in Figure 1B. The
bbNIRS system consisted of a tungsten halogen lamp (Model
3900, Illumination Technologies Inc., East Syracuse, NY) and a
CCD spectrometer (QE-Pro, Ocean Optics Inc.), both of which
were used in the phantom measurements. A flexible probe holder
was used to firmly hold the two optical fiber bundles on the
subject’s forearm. An optical shutter was also employed to switch
on the light only during the exposure time to minimize the tissue
heating effect from the broadband light source. An experiment
lasted 15 min with a 5 s single light-exposure/data-acquisition
time per minute, giving rise to 16 spectra per measurement.

FIGURE 1 | Experimental setup for the bbNIRS measurement taken from (A) a tissue phantom and (B) the human forearm. (A) Light source-detector configuration
for the phantom measurement. (B) Light source-detector configuration for the human arm measurement.
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2.4 Monte Carlo Simulations
We also conducted a Monte Carlo (MC) framework that simulated
bbNIRS data of the hemodynamic and metabolic states of the
exposed tissue. Two physiological conditions were defined within
the MC simulation: 1) a baseline state corresponding to the normal
resting state of the tissue and 2) a stimulated state where oxygenation
andmetabolism improved notably. We employedMCmatlab (Marti
et al., 2018), an open-source MC program for light propagation in
three-dimensional (3-D) media.

Specifically, a (600 × 600 × 300) voxel model corresponding to a
(4 × 4 × 2 cm) 3-D volume was first defined as the simulation
geometry. The medium that replicates general tissue was
considered to be made of water, fat, blood with different oxygen
saturation levels, and concentrations of oxCCO and reduced CCO
(redCCO). The composition and the optical properties of the
medium were defined based on the properties of biological
tissues reported in (Jacques, 2013; Jacques et al., 2013). The
scattering coefficient μs(λ) was considered to be dependent only
on the wavelength λ, while the absorption coefficient μa(λ) was
estimated as the sum of absorption coefficients of all major
chromophores composing the medium (Jacques, 2013; Bale et al.,
2016). Table 1 summarizes the simulation medium composition of
two physiological conditions, while Figure 2 depicts the
corresponding absorption coefficient μa(λ) (Figure 2A) and the
scattering coefficient μs(λ) (Figure 2B). The Henyey-Greenstein
scattering anisotropy factor g was set to 0.9.

Note that the concentrations of HbO and HHb were estimated
from the predefined percentages of blood and oxygen saturation of
hemoglobin, with an average concentration of hemoglobin in blood
equal to 150 g/L.

A light source and a detector of 2 cm distance were also
defined and placed on the top surface of the 3D voxel model.

MC simulationwas repeated for different wavelengths within theNIRS
range from780 to 900 nmwith 1-nmwavelength resolution, leading to
a total of 121 wavelengths, for two physiological conditions. For each
MC simulation execution, 50million (i.e., 5 × 107) photon packets were
launched from the light source. The number of photons reaching the
detector and their partial pathlengths were recorded for later use when
calculating the changes in chromophore concentrations. We repeated
the MC simulation 20 times for each wavelength and for each
physiological condition. The recorded data were further permuted
within each wavelength and each condition 50 times. Gaussian noise
was also added to enrich the simulated data. Thus, the whole
simulation framework can be considered to generate bbNIRS data
of 50 measurements. Each consisted of 20 spectra for each condition,
namely, I0 for the baseline condition and I for the stimulated state.

2.5 Comparison of Measurement or
Simulation Versus Theoretical Results of
σΔ[HbO], σΔ[HHb] and σΔ[oxCCO]
We sought to compare σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] obtained by

the analytical computations versus those by the bbNIRSmeasurement
or MC simulation data, namely, σMΔ[HbO], σ

M
Δ[HHb] and σ

M
Δ[oxCCO]. The

comparison procedure is depicted in Figure 3. On the one hand, we
first calculated Δ[HbO], Δ[HHb], and Δ[oxCCO] from the detected
spectra by fitting the modified Beer-Lambert law. Consequently, the
standard deviation of measured Δ[HbO], Δ[HHb], and Δ[oxCCO],
namely, σMΔ[HbO], σ

M
Δ[HHb] and σ

M
Δ[oxCCO], were then computed. On the

other hand, the SNR of the bbNIRS measurements was estimated as
SNR � �I2/σ2I , where �I is the mean spectral intensity and σ2I is the
variance of spectra. The SNR curve was then substituted into Eq. 11 to
compute σTΔ[HbO], σ

T
Δ[HHb] and σ

T
Δ[oxCCO] from the theoretical analysis,

namely, error propagation (EP) caused by system SNR. These steps

FIGURE 2 | (A) Absorption coefficient μa(λ) for two physiological conditions and (B) Scattering coefficient μs(λ) used in MC simulation.

TABLE 1 | Summary of the simulation medium composition of two physiological conditions.

Medium composition

Water (%) Fat (%) Blood (%) Oxygen saturation of
hemoglobin (%)

[HbO] (μM) [HHb] (μM) [oxCCO] (μM) [redCCO] (μM)

Baseline condition 75 10 1 70 16.3 6.9 0.1 0.4
Stimulated condition 75 10 1 85 19.8 3.4 0.4 0.1
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were repeated for multiple measurements. The measured σMΔ[HbO],
σMΔ[HHb] and σMΔ[oxCCO] and the EP by system SNR σTΔ[HbO], σ

T
Δ[HHb]

and σTΔ[oxCCO] were finally compared to verify/confirm the accuracy of
the quantitative analysis.

3 RESULTS

3.1 Standard Deviation of Δ[HbO], Δ[HHb]
and Δ[oxCCO] Derived From Error
Propagation Analysis and Actual
Measurement Data
Figure 4 presents comparative results of σMΔ[HbO], σ

M
Δ[HHb] and

σMΔ[oxCCO] obtained from the measurement data and σTΔ[HbO],
σTΔ[HHb] and σTΔ[oxCCO] from the theoretical analysis (Eq. 11).
Specifically, the mean and standard deviation spectra of SNR
estimated from the detected optical spectra of multiple
measurements are depicted in Figures 4A–C, taken from
(A) spectrometer 1 in the phantom measurement, (B)
spectrometer 2 also in the concurrent phantom
experiment, and (C) the human forearm measurement,
respectively. Consequently, Figures 4D–F show σMΔ[HbO],
σMΔ[HHb] and σMΔ[oxCCO] computed/derived from the measured
optical spectra (red bars) versus σTΔ[HbO], σ

T
Δ[HHb] and σ

T
Δ[oxCCO]

by theoretically derived EP (blue bars).
As seen in Figures 4A–C, the spectral shapes of SNR appeared

to be different from one another. This observation is
understandable since each of them was obtained from a
specific bbNIRS system. Specifically, SNR spectra in Figures
4A,B were derived from the data collected concurrently by
two spectrometers under the same experimental conditions,

and the differences in the spectral sensitivity of these two
spectrometers led to distinctive SNR spectral shapes. The
bbNIRS data from the human arm experiment (Figure 4C)
were acquired by the same QE-Pro spectrometer as in the
solid phantom/spectrometer 2 case (Figure 4B). However,
different exposure times for data acquisition (5 vs. 1 s)
resulted in un-identical SNR spectra.

Despite the variations of SNR spectra, no significant
differences were found between measured σMΔ[HbO], σMΔ[HHb]
and σMΔ[oxCCO] versus σTΔ[HbO], σTΔ[HHb] and σTΔ[oxCCO]
calculated directly from the EP analysis (Eq. 11) in all the
cases. Specifically, the human forearm measurement led to a
high SNR range (i.e., 57–58 dB) (Figure 4C) and low σM/T

Δ[HbO],
σM/T
Δ[HHb] and σM/T

Δ[oxCCO] (Figure 4F) because of a prolonged
exposure time for data acquisition (5 s). The same
spectrometer was used in the solid phantom measurement,
but a shorter exposure time of 1 s resulted in a reduced SNR
range of the measured data (Figure 4B). The measured data
from both spectrometers in the solid phantom measurement
led to higher σM/T

Δ[HbO], σ
M/T
Δ[HHb] and σM/T

Δ[oxCCO] compared to the
human arm measurement.

3.2 Standard Deviation of Δ[HbO], Δ[HHb]
and Δ[oxCCO] Derived From Error
Propagation Analysis and MC Simulation
Data
We also compared the uncertainties of Δ[HbO], Δ[HHb] and
Δ[oxCCO] obtained from the MC simulation and EP results
derived from the corresponding SNR. Figure 5A depicts the
mean and standard deviation spectra of SNR of the MC

FIGURE 3 | Procedure for comparing σMΔ[HbO], σ
M
Δ[HHb] and σMΔ[oxCCO] obtained from the bbNIRSmeasurement or MC-simulation data (yellow-shaded steps) and the

theoretical EP σTΔ[HbO], σ
T
Δ[HHb] and σTΔ[oxCCO] calculated using system SNR (gray-shaded steps).
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simulation, while Figure 5B presents the comparative results of
σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] derived from the proposed EP

calculation (blue bars) and σMΔ[HbO], σMΔ[HHb] and σMΔ[oxCCO]
computed from the MC simulation data (red bars). One more
time, no significant difference was found in the standard deviation
of chromophore concentration changes calculated from the MC
simulation data and from the EP analysis. The SNR of the MC
simulation (Figure 5A) was lower than those of the real
measurements (Figures 4A–C) due to the MC simulation settings.
Nevertheless, it could be improved by having a larger tissue volume
and a larger number of photons. Generally, the higher the average
SNR of themeasurement system, the lower the error propagates to the
calculated changes in chromophore concentration.

These results confirmed that the analytically derived
expressions of σTΔ[HbO], σTΔ[HHb] and σTΔ[oxCCO] matched well
with those obtained from true experiments and MC
simulations. Thus, the theoretical analysis of EP (i.e., Eq. 11)
can be used as a quick reference or prediction to estimate
measurement errors or accuracy of Δ[HbO], Δ[HHb] and
Δ[oxCCO] given an SNR of a bbNIRS system. In the
following two sub-sections, we applied the EP analysis to
examine the influence of wavelength selection and spectral
range of bbNIRS on the variance of chromophore
concentration changes. Note that the values of the optical
pathlength L(λi) = r ×DPF(λi) can be estimated by diffusion
theory, as given in refs. Patterson et al. (1989), Sevick et al. (1991).

FIGURE 4 | The top row depicts the mean and standard deviation of SNR spectra from (A) the solid phantom measurement with spectrometer 1, (B) the solid
phantom measurement with spectrometer 2, and (C) the human forearm measurement. The bottom row shows the σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] obtained from

the error propagation analysis (blue bars) and σMΔ[HbO], σ
M
Δ[HHb] and σMΔ[oxCCO] from the measurement data (red bars) for (D) the solid phantom measurement with

spectrometer 1, (E) the solid phantom measurement with spectrometer 2, and (F) the human forearm measurement. Error bars indicate the standard error of the
mean of each group.

FIGURE 5 | (A)Mean and standard deviation of SNR spectra fromMC simulation data and (B)Comparison of σTΔ[HbO], σ
T
Δ[HHb] and σTΔ[oxCCO] obtained from the error

propagation analysis (blue bars) and σMΔ[HbO], σ
M
Δ[HHb] and σMΔ[oxCCO] from the MC simulation data (red bars). Error bars indicate the standard error of the mean of

each group.
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3.3 Influence of Selection ofWavelengths on
σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO]

We further illustrated how wavelength selections would affect the
SNR-derived σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO]. Theoretically, to

quantify values of Δ[HbO],Δ[HHb] and Δ[oxCCO], at least three
wavelengths are required for NIRS measurements. However,
because of the spectrally smooth feature of CCO, it is rather
challenging to accurately quantify Δ[oxCCO]. A small number of
wavelengths typically leads to inaccurate quantification of
Δ[HbO], Δ[HHb] and Δ[oxCCO]. To address this problem,
broadband spectroscopy with a full wavelength range of
measurement has been suggested and utilized in recent
studies, such as 740–900 nm in studies of (Heekeren et al.,
1999; Kolyva et al., 2012; Kolyva et al., 2014; Wang X. et al.,
2016), 770–905 nm in publications of (Bale et al., 2014, 2019), and
780–900 nm in reports of (Heekeren et al., 1999; Kolyva et al.,
2012; Kolyva et al., 2014; Giannoni et al., 2020). Since a large
number of wavelengths required in bbNIRS can be an obstacle for
development of a compact or portable system (Chitnis et al.,
2016), various studies made efforts to find an optimal set of
wavelengths to minimize the number of required wavelengths
while keeping satisfactory accuracy for the quantifications
(Arifler et al., 2015). Bale et al. (2016) reviewed existing

clinical NIRS systems and summarized different broadband
ranges or wavelength combinations used in these systems. We
followed this review paper and selected/updated some
representative wavelength ranges or wavelength combinations
to illustrate how wavelength selections affect the accuracy of the
calculated chromophore concentration changes. Table 2
summarizes different ranges of wavelengths or optimal
wavelength sets that have been in the literature to estimate
Δ[HbO], Δ[HHb] and Δ[oxCCO]. Note that Sudakou et al.
(2019) performed a Monte Carlo study to estimate Δ[CCO]
uncertainty using 16 consecutive wavelengths separated by an
equal interval of 12.5 nmwith a moving spectral window covering
from 650 to 950 nm. However, such a study focused on the time-
resolved NIRS and utilized a 3-layer model (scalp, skull, and
brain). Consequently, the error propagation analysis included the
moment method for analyzing time-resolved statistical
uncertainty and multilayer considerations. Thus, the variance
of Δ[CCO] and respective analysis by Sudakou et al. were distinct
from this work and thus excluded in Table 2 for comparison.

Figure 6 depicts σTΔ[HbO], σ
T
Δ[HHb] and σ

T
Δ[oxCCO] calculated using

the EP analytical expression (i.e., Eq. 11) for different broadband
wavelength ranges (Figure 6A) or different wavelength
combinations (Figure 6B). Selections of the ranges or
combinations were based on the exact values given in Table 2. In

TABLE 2 | Summary of different ranges of wavelengths or optimal wavelength combination sets.
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these calculations, we temporally assumed a constant SNR value
across all wavelengths and performed the EP calculation for different
SNR values varying from 20 to 60 dB (equivalently, noise level (NL)
being from 10% to 0.1%). As shown in Figure 6A, the broadest
bandwidth of 720–920 nm (with 201wavelengths) led to the smallest
σTΔ[HbO], σTΔ[HHb] and σTΔ[oxCCO], while the narrowest range of
780–900 nm (with 121 wavelengths) resulted in the largest EP in
respective concentrations, especially for the case of Δ[HHb]. In the
case of using a limited number of wavelengths, calculated σTΔ[HbO],
σTΔ[HHb] and σTΔ[oxCCO] increased noticeably, even by visual
comparison between Figures 6A,B. For instance, at an SNR of
40 dB, EP varied from 0.08–0.12 μM for Δ[HbO] and from
0.05–0.1 μM for Δ[oxCCO] when using all wavelengths of
bbNIRS, while the EP increased by at least four times when
using a limited number of wavelengths; namely, EP varied from
0.25 to 0.64 μM for Δ[HbO] and from 0.2 to 0.5 μM for Δ[oxCCO].
In most cases, the more wavelengths used to calculate concentration
changes of each chromophore, the smaller error propagation in the
results. For the case that the same number of wavelengths was used
(e.g., 8 wavelengths used in (Arifler et al., 2015; Giannoni et al., 2020)
or in (Chitnis et al., 2016)), the distinct wavelength combinations led
to different error propagation results. For instance, these two sets of 8
wavelengths led to approximate σTΔ[HbO] value but distinct σ

T
Δ[HHb]

and σTΔ[oxCCO] (green and pink curves in Figure 6B).
Note that the results presented here should be considered as

approximate references to roughly estimate σTΔ[HbO], σ
T
Δ[HHb] and

σTΔ[oxCCO] measured from a bbNIRS system with an approximate
SNR varying within the given range. For a specific bbNIRS system

with a known SNR spectrum, more precise estimations of error
propagation in calculating chromophore concentration changes
can be carried out by substituting the system’s SNR spectrum into
Eq. 11 according to the respective wavelength ranges or
wavelength combinations.

3.4 Influence of Spectral Bandwidth in
bbNIRS on σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO]

As revealed in Figure 6, using a broader wavelength range in
bbNIRS led to significantly smaller σTΔ[HbO], σTΔ[HHb] and
σTΔ[oxCCO]. However, to our knowledge, no study has
reported the spectral-bandwidth dependence of variance in
calculating chromophore concentration changes. In the
following, we demonstrate how selections of spectral ranges
would impact the variances of Δ[HbO], Δ[HHb] and
Δ[oxCCO] based on the derived Eq. 11.

As an example, three panels of Figure 7 depict σTΔ[HbO],
σTΔ[HHb] and σTΔ[oxCCO] with different spectral ranges at the
SNR of 40 dB (for simplicity). Each curve in each panel plots
EP dependence on spectral ranges with a starting wavelength of λi
and an ending wavelength of λj, where λi varies from 700 to
800 nm in a step of 10 nm (as noted on top of the figures), and λj
corresponds to the x-axis from 820 to 920 nm in each panel, also
in a step of 10 nm. For instance, the red curves represent σTΔ[HbO],
σTΔ[HHb] and σTΔ[oxCCO] obtained with spectral ranges of
700–820 nm, 700–830 nm, . . . , and finally 700–920 nm.
Similarly, the orange curves depict EP of respective

FIGURE 6 | Influence of different spectral ranges of wavelengths or wavelength combinations on σTΔ[HbO], σ
T
Δ[HHb] and σTΔ[oxCCO] for a bbNIRS system. (A) σTΔ[HbO],

σTΔ[HHb] and σTΔ[oxCCO] obtained by using a broad range of bandwidths. The numbers in the legend labels correspond to the spectral bandwidth, while the number within
the parenthesis is the total number of wavelengths used to compute σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO]. (B) σ

T
Δ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] obtained by using different

wavelength combinations. The numbers of the legend labels correspond to the minimum andmaximumwavelength values; the numbers in the parentheses are the
total number of wavelengths used to compute σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO].
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concentration changes within wavelength ranges of 710–820 nm,
710–830 nm, . . . , 710–920 nm.

The three zoomed panels in Figure 7 provide more detailed
information. Specifically, σTΔ[HbO] varied around or below 0.15 μM
if the starting λi was shorter than 780 nm and the ending λj equal
to or longer than 880 nm. Meanwhile, both σTΔ[HHb] and σ

T
Δ[oxCCO]

had a large reduction if the start λi was shorter than 760 nm.
Overall, the spectral range of 760–890 nm can be considered as an
optimal range to minimize variances of calculated Δ[HbO],
Δ[HHb] and Δ[oxCCO] in bbNIRS. Wider spectral ranges still
can reduce σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO], but the improvement

may be non-significant.

4 DISCUSSIONS

Accurate quantifications of Δ[HbO], Δ[HHb] and Δ[oxCCO] are
of importance in most NIRS-based studies since they characterize
and reflect hemodynamic and metabolic activities of the tissue
under specific physiology. Since the values of Δ[HbO], Δ[HHb]
and Δ[oxCCO] are deduced from measured optical densities at
multiple wavelengths, the accuracy of the calculated results is
inherently affected by the measurement variances or SNR of the
hardware. Previous studies included analyses on the uncertainties
of Δ[HbO], Δ[HHb] and Δ[oxCCO] caused by variances of
extinction coefficients (Kim and Liu, 2007) or different
wavelength combinations (Funane et al., 2009; Sudakou et al.,
2019; Caredda et al., 2020). However, literature shows few
publications that quantify the influence of SNR on variances
of Δ[HbO], Δ[HHb] and Δ[oxCCO] derived from bbNIRS.

In this study, we performed the error propagation analysis
to derive analytical variances of Δ[HbO], Δ[HHb] and
Δ[oxCCO] caused by uncertainties of the bbNIRS
measurement system. The derivation of EP of respective
concentration changes was achieved by fitting the measured
data using the least-squares method (York, 1966). The
analytical expressions and experimental/MC-simulation
results were compared and confirmed statistically non-
significant difference between the theoretical and
measurement-based variances of chromophore
concentration changes. Experimental results also indicated
that the larger the SNR of a bbNIRS system, the smaller the
quantified σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] (Figure 4D–F). Note

that in both actual experiments presented in Section 2.3 and
Section 3.1, we tried to enhance the SNR of the bbNIRS system
by warming up the system to reach a stable state before
acquiring the data. For a new or self-designed bbNIRS
system, the thermal and electrical fluctuations of the system
over time should be first investigated to ensure the required
warm-up time to reach the desired system stability.

In the case of bbNIRS, a large number of wavelengths with
different spectral ranges or bandwidths have been considered
when calculating the chromophore concentration changes
(Heekeren et al., 1999; Kolyva et al., 2012; Bale et al., 2014;
Kolyva et al., 2014; Wang X. et al., 2016; Bale et al., 2019;
Giannoni et al., 2020), as summarized in Table 2. The results
from our analysis clearly demonstrated that σTΔ[HbO], σ

T
Δ[HHb] and

σTΔ[oxCCO] were relatively small, varying from 0.07 to 0.1 μM for
the wavelength range of 720–900 nm at an SNR of 40 dB. The
bandwidth of the spectral ranges of bbNIRS also affect the

FIGURE 7 | Top row: Dependance of σTΔ[HbO], σ
T
Δ[HHb] and σTΔ[oxCCO], obtained by the derived EP expressions, on different spectral ranges with a spectral SNR of

40 dB. Each curve corresponds to a start wavelength of the bbNIRS spectral range as marked in the top legend, while the x-axis corresponds to the end wavelength of
the bbNIRS spectral range. Bottom row: Respective zoomed plots of the gray areas shown in the top row.
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variance of calculated Δ[HbO], Δ[HHb] and Δ[oxCCO].
Accordingly, Figure 7 may serve as a useful guide or predictor
to select an optimal spectral range/bandwidth for accurate
determination of changes in chromophore concentrations by a
bbNIRS measurement device.

It is worth noting that although the results presented in
Figures 6, 7 were calculated using a constant SNR value, this
does not imply that the derived EP calculation cannot be
applied to a real bbNIRS system where SNR has a spectral
feature depending on the wavelength. We presented Figures 6,
7 for the purpose of giving the reader an approximated
amount/order of σTΔ[HbO], σ

T
Δ[HHb] and σTΔ[oxCCO] caused by a

certain SNR level. For instance, in our previous studies on the
effects of transcranial photobiomodulation (tPBM) (Wang
et al., 2017; Pruitt et al., 2020), we employed the same
bbNIRS system as that used in this study for the human
arm measurement (Figures 4C, F). As seen in these two
figures, SNRs in the wavelength range of 780–900 nm would
be around 57–58 dB. With such a high SNR level, the respective
EP were estimated or predicted to be about 0.01 μM for
Δ[HbO], 0.02 μM for Δ[HHb], and less than 0.01 μM for
Δ[oxCCO]. Meanwhile, the changes in [HbO] and [CCO]
concentration induced by tPBM were about 5 and 0.6 μM,
respectively (Wang et al., 2017; Pruitt et al., 2020). Compared
to these actual measured values of Δ[HbO] and Δ[oxCCO], the
EP caused by the measurement SNR were minimal. In
particular, it is more critical to be able to estimate or
predict σTΔ[oxCCO] values and consequently to design optimal
wavelength range, spectral bandwidth, and light exposure
time. In this way, the weaker signal from less concentrated
Δ[oxCCO] in tissue can be still correctly determined without
being shadowed or overwhelmed by much stronger signals
from Δ[HbO] and Δ[HHb].

Some efforts have also been carried out to select a limited number
of wavelengths to lessen the complexity of the spectral hardware or
system but still ensure the calculation or quantification accuracy
(Wobst et al., 2001; Arifler et al., 2015; de Roever et al., 2018;
Caredda et al., 2020). One objective of such studies was to design
wearable NIRS systems (Wyser et al., 2017; Chitnis et al., 2016).
However, based on the results of error propagation analysis obtained
in Section 3.3, limiting the wavelength number would lead to more
uncertainties in the calculated Δ[HbO], Δ[HHb] and Δ[oxCCO]. For
instance, at an SNR of 40 dB, σΔ[HbO], σΔ[HHb] and σΔ[oxCCO] varied
from 0.2 to 0.9 μM if a limited number of wavelengths was used
(Figure 6B), compared to 0.07–0.1 μM for the full bandwidth of
720–920 nm (Figure 6A, red curve). Moreover, distinct wavelength
combinations led to different error propagation results. Thus, onemay
want to estimate the SNR-derived variance of Δ[HbO], Δ[HHb] and
Δ[oxCCO] using different available wavelength combinations before
deciding the optimal set that leads to minimal error propagation.
Additional data processing or fitting steps, such as the genetic
algorithm (Arifler et al., 2015), may be added to help improve the
quantification accuracy. If such a step is taken, further error analysis
should be carried out to consider the contribution of additional steps
in the EP calculation.

Last, to better understand the scientific reasoning why the
variance of chromophore concentration changes depends on the

spectral range and wavelength selection, we performed a
mathematical expansion of the EP matrix inverse (Eq. 11), as
given in Appendix. The final results demonstrate that the
variance for each of Δ[HbO], Δ[HHb], and Δ[oxCCO] is
computed from the extinction coefficients of all three
chromophores at given multiple wavelengths. Since these
expressions are highly wavelength dependent and extinction
coefficient nested, it is impossible to directly infer an optimal
spectral bandwidth or wavelength combination that can lead to
minimal error propagation. However, the knowledge learned
from these equations is that the device-driven errors for
Δ[HbO], Δ[HHb], and Δ[oxCCO] in a bbNIRS system depend
closely on the extinction coefficient spectra of the three
chromophores. Also, it might be theoretically possible to
optimally select wavelengths by maximizing Eq. A2 and
minimizing Eqs A4–A6 simultaneously for a given bandwidth.
However, the latter point is beyond the scope of this work and
needs to be investigated in future studies.

5 CONCLUSION

This study investigated the influence of SNR on variance of
Δ[HbO], Δ[HHb] and Δ[oxCCO] measured by a bbNIRS
device or system. Since all measured data contain inevitable
uncertainties caused by thermal or electrical fluctuations or
disturbance of the devices, such uncertainties or errors must
impact the accuracy of the calculated Δ[HbO], Δ[HHb] and
Δ[oxCCO]. Based on error propagation analysis, we derived
analytical expressions of EP for all three chromophore
concentrations depending on the SNR spectral curve of the
bbNIRS measurement system. To compare the quantitative
results and those obtained from actual bbNIRS measurements,
we performed two sets of experiments on a solid tissue
phantom and the human forearm using two bbNIRS
systems. We also introduced an MC framework mimicking
a set of bbNIRS measurements with two predefined
physiological states of tissue. Both experimental and MC
simulation results statistically confirmed and supported the
analytical expression of the variance or EP of Δ[HbO],
Δ[HHb], and Δ[oxCCO] derived in this work. Further
analyses were further performed to demonstrate effects of
the wavelength selection, spectral range and bandwidth, as
well as spectral locations on the accuracy of the computed
Δ[HbO], Δ[HHb], and Δ[oxCCO]. The presented work or
results can be a helpful reference to guide optimal selections of
wavelength ranges and different wavelength combinations for
minimal variances of Δ[HbO], Δ[HHb], and Δ[oxCCO] in an
actual bbNIRS system.
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APPENDIX: EXPANDING THE MATRIX
INVERSE

For simplification, assuming that SNR is a constant for all
wavelength. Eq. 11 can be rewritten as:

Vâ � 2

ln 10( )2SNR

∑m
i�1

ξ2HbO λi( ) ∑m
i�1

ξHbO λi( )ξHHb λi( ) ∑m
i�1

ξHbO λi( )ξdiffCCO λi( )

∑m
i�1

ξHbO λi( )ξHHb λi( ) ∑m
i�1

ξ2HHb λi( ) ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )

∑m
i�1

ξHbO λi( )ξdiffCCO λi( ) ∑m
i�1

ξHHb λi( )ξdiffCCO λi( ) ∑m
i�1

ξ2diffCCO λi( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(A1)

By expanding the matrix inverse, Vâ can be expressed as
Vâ � 2

(ln 10)2SNR · 1
DET · B, where

DET � ∑m
i�1

ξ2HbO λi( ) ∑m
i�1

ξ2HHb λi( )∑m
i�1

ξ2diffCCO λi( ) − ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
−∑m

i�1
ξHbO λi( )ξHHb λi( ) ∑m

i�1
ξHbO λi( )ξHHb λi( )∑m

i�1
ξ2diffCCO λi( ) −∑m

i�1
ξHbO λi( )ξdiffCCO λi( )∑m

i�1
ξHHb λi( )ξdiffCCO λi( )⎡⎣ ⎤⎦

+∑m
i�1

ξHbO λi( )ξdiffCCO λi( ) ∑m
i�1

ξHbO λi( )ξHHb λi( )∑m
i�1

ξHHb λi( )ξdiffCCO λi( ) −∑m
i�1

ξHbO λi( )ξdiffCCO λi( )∑m
i�1

ξ2HHb λi( )⎡⎣ ⎤⎦
(A2)

and

diag B( ) �

∑m
i�1

ξ2HHb λi( )∑m
i�1

ξ2diffCCO λi( ) − ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )⎛⎝ ⎞⎠2

∑m
i�1

ξ2HbO λi( )∑m
i�1

ξ2diffCCO λi( ) − ∑m
i�1

ξHbO λi( )ξdiffCCO λi( )⎛⎝ ⎞⎠2

∑m
i�1

ξ2HbO λi( )∑m
i�1

ξ2HHb λi( ) − ∑m
i�1

ξHbO λi( )ξHHb λi( )⎛⎝ ⎞⎠2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A3)

Finally, the variances of Δ[HbO], Δ[HHb] and Δ[oxCCO] are
calculated as:

σ2
Δ HbO[ ] �

2

ln 10( )2SNR
1

DET
∑m
i�1

ξ2HHb λi( )∑m
i�1

ξ2diffCCO λi( ) − ∑m
i�1

ξHHb λi( )ξdiffCCO λi( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
(A4)

σ2Δ HHb[ ] �
2

ln 10( )2SNR
1

DET
∑m
i�1

ξ2HbO λi( )∑m
i�1

ξ2diffCCO λi( ) − ∑m
i�1

ξHbO λi( )ξdiffCCO λi( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
(A5)

σ2Δ diffCCO[ ] �
2

ln 10( )2SNR
1

DET
∑m
i�1

ξ2HbO λi( )∑m
i�1

ξ2HHb λi( ) − ∑m
i�1

ξHbO λi( )ξHHb λi( )⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
(A6)
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