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Multi-photon microscopy has played a significant role in biological imaging

since it allows to observe living tissues with improved penetration depth and

excellent sectioning effect. Multi-photonmicroscopy relies onmulti-photon

absorption, enabling the use of different imaging modalities that strongly

depends on the properties of the sample structure, the selected fluorophore

and the excitation laser. However, versatile and tunable laser excitation for

multi-photon absorption is still a challenge, limited by e.g. the narrow

bandwidth of typical laser gain medium or by the tunability of wavelength

conversion offered by optical parametric oscillators or amplifiers. As an

alternative, supercontinuum generation can provide broadband

excitations spanning from the ultra-violet to far infrared domains and

integrating numerous fluorophore absorption peaks, in turn enabling

different imaging modalities or potential multiplexed spectroscopy. Here,

we report on the use of machine learning to optimize the spectro-temporal

properties of supercontinuum generation in order to selectively enhance

multi-photon excitation signals compatible with a variety of fluorophores (or

modalities) for multi-photon microscopy. Specifically, we numerically

explore how the use of reconfigurable (femtosecond) pulse patterns can

be readily exploited to control the nonlinear propagation dynamics and

associated spectral broadening occurring in a highly-nonlinear fiber. In

this framework, we show that the use of multiple pulses to seed optical

fiber propagation can trigger a variety of nonlinear interactions and complex

propagation scenarios. This approach, exploiting the temporal dimension as

an extended degree of freedom, is used to maximize typical multi-photon

excitations at selected wavelengths, here obtained in a versatile and

reconfigurable manner suitable for imaging applications. We expect

these results to pave the way towards on-demand and real time

supercontinuum shaping, with further multi-photon microscopy

improvements in terms of spatial 3D resolution, optical toxicity, and

wavelength selectivity.
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1 Introduction

Multi-photon excitation (MPE) microscopy has become

an essential tool for studying biological matter as it allows

selective imaging, considering the 4D (x-y-z-t) examination of

biological living tissues (Zipfel et al., 2003). Unlike one-

photon excitation fluorescence microscopy techniques,

where the excitation wavelengths typically span the

ultraviolet and visible region (Cheng, et al., 2002;

Campagnola and Loew, 2003; Rodriguez et al., 2006; Evans

and Xie, 2008), MPE microscopy is implemented using a

longer wavelength range (i.e., visible and near-infrared)

resulting in a reduction of scattering loss and photodamage

of the tissue sample, while providing excellent sectioning effect

to ensure sufficient spatial resolution. MPE microscopy has

therefore been used to image living tissues with further

penetration depth (Helmchen and Denk, 2005; Larson,

2011) and to accurately probe the quantitative structure

and function of cellular activities with sub-micro resolution

(Zhao et al., 2014; Borhani et al., 2019). Recently, thanks to the

advance in high-power femtosecond lasers, MPE microscopy

has for instance been successfully reported for in-vivo deep

brain imaging with a penetration depth above the millimeter

range (Kobat et al., 2011; Horton et al., 2013; Weisenburger

et al., 2019; Wang et al., 2020; Wu et al., 2021).

Beyond multi-photon absorption (MPA), MPE microscopy

also relies on nonlinear parametric processes, which involve both

multiphoton absorption and nonlinear wave mixing. These

phenomena strongly depend on the sample structural

constitution, the laser beam characteristics (e.g., pulse peak

power, wavelength, spatio-temporal coherence), but also on

the properties of the selected fluorophores (e.g., multi-photon

excitation cross-section) when using labelled samples (Xu and

Webb, 1996; Larson, 2011; Lefort, 2017). For instance, a laser

source with high pulse energy provides a high photon flux, so that

to mitigate scattering loss and thus increase the reachable

imaging depth. However, such high energy pulses will

inadvertently increase tissue heating, therefore resulting in

damaging effects of the living tissues and their associated

biological processes. As a consequence, adapting the laser

illumination properties to match the selected fluorophore

excitation requirements (or any other related multi-photon

imaging modality such as second- or third-harmonic

generation (Sheppard, 2020)) is a necessary step to improve

the penetration depth and resolution of MPE microscopy.

Nevertheless, in reality, having a versatile and tunable laser to

meet these versatile specifications is a challenge, limited by e.g.,

the narrow bandwidth of the gain medium used in fiber or bulk

laser systems.

As a consequence, only a few of the vastly available excitable

fluorophores whose MPA peaks match fixed laser wavelength

emissions can be readily used for MPE microscopy. To

circumvent this issue, other widespread approaches consist in

using processes of harmonic generation and optical parametric

oscillators (OPO) or amplifiers (OPA) to adjust the excitation

wavelengths required for multi-photon imaging techniques (Chu

et al., 2003; Kobat et al., 2011). The drawbacks of these methods

are the inherently complex and expensive setups used for

practical experimental implementations, usually paired with

several difficulties to operate and the requirement for a special

maintenance.

As an alternative, supercontinuum (SC) generation has been

implemented for MPE microscopy. Indeed, SC sources can

provide a broadband wavelength spectrum (i.e., from

ultraviolet to mid-infrared) covering numerous MPA peaks of

the fluorophores (Poudel and Kaminski, 2019) or being directly

relevant for multiplexed spectroscopy (Labruyère et al., 2012;

Falconieri et al., 2019).

For instance, Coherent Anti-Stokes Raman Scattering

(CARS), which was first studied in the sixties (Maker and

Terhune, 1965; Begley et al., 1974), is a four-wave mixing

phenomenon based on the identification of molecular

vibrational modes that allows the structural cartography of

labelled-free biological samples. Later on, that concept has

been developed both in collinear and non-collinear geometry

for vibrational signature identification in the CH region and for

studying organic liquids, respectively (Duncan et al., 1982;

Zumbusch et al., 1999).

Multiplex-CARS (M-CARS) experiments, based on

simultaneous excitation of all frequencies ranging from 0 to

4,500 cm−1 (using a monochromatic pump beam and a large

band Stokes wave), have been demonstrated in 2002, by mixing

polychromatic and monochromatic laser sources (Müller and

Schins, 2002). In this framework, supercontinuum sources

appeared as the best way to implement M-CARS systems

(Okuno et al., 2007; Klarskov et al., 2011; Shen et al., 2018).

However, because of the group velocity dispersion encountered

in optical fibers, laser sources with long pulses have been

privileged to guaranty temporal overlap between all the

frequencies constituting the continuum and the quasi-

monochromatic pump signals (Okuno et al., 2007). Yet,

broadband SC has been scarcely implemented (directly) for

multi-photon imaging because the residual part of the SC

spectrum may give rise to additional noise within the MPA

signals, on top of bringing undesired photodamage to the sample.

In fact, almost all MPA applications, including M-CARS

techniques, rely on extracting a restricted range or only a few of

the desired excitation wavelengths from the SC spectrum by

Frontiers in Photonics frontiersin.org02

Hoang et al. 10.3389/fphot.2022.940902

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.940902


using optical filtering techniques (Poudel and Kaminski, 2019).

In such a case, however, only a small portion of the SC is

extracted and used to generate the fluorescence signal, thus

discarding most of the SC energy. More importantly, in

numerous SC sources, the requirement of generating an

extremely broadband signal with sufficient power spectral

density over the whole SC spectral coverage is associated with

dramatic drawbacks in terms of power efficiency. Indeed, in most

commercial sources, these SC are generated from relatively long

pulses (typically nanosecond duration) to bring about sufficient

energy for extreme spectral broadening. Interestingly, however,

MPE fluorescence signals are intrinsically related to the peak

power of the excitation thus making the use of long pulses not

always ideal for multiphoton microscopy. In fact, while the

ultimate optical excitation source may be up for debate, it is

clear that a versatile and reconfigurable system is highly sought-

after. In this framework, customizing the properties of SC

generation to maximize the power and the temporal

waveform shape at suitably selected wavelengths thus

constitutes an essential requirement.

As a succinct reminder, it is worth noting that SC

generation can be seen as the result of dispersive and

nonlinear effects acting together in a complex fashion during

pulse propagation, typically in a guided structure such as a fiber

or an integrated waveguide (Dudley and Taylor, 2010). As such,

it is thus possible to tune SC spectro-temporal properties by

changing e.g. the fiber structure, the fiber material, or the

parameters of the input laser pulses. The first two

approaches, however, do not exhibit proper methods for “on

the fly” control properties of SC generation without

significantly modifying the setup. In contrast, controlling

nonlinear propagation by changing the input pulse laser

parameters (i.e., pulse duration, peak power, chirp) has been

used as a convenient way to optimize SC generation for

practical applications, in particular, due to the strong

dependence and sensitivity of spectral broadening dynamics

on the input laser source parameters (Veljković et al., 2019;

Sylvestre et al., 2021). Interestingly, such input laser parameters

may be automatically modified via active systems (such as

amplifiers, programmable filters, modulators, polarization

controllers) enabling the implementation of optimization

ions algorithms and thus allowing for live and autonomous

adjustment of the desired SC properties. Recently, there has

been a growing interest in applying various machine learning

strategies to predict and control propagation dynamics in

multidimensional nonlinear systems (Genty et al., 2021). For

instance, deep neural networks have been deployed to predict

light transmission properties of multimode fibers for imaging

techniques (Kakkava et al., 2019), or to reconstruct a distorted

image from the intensity of the output speckle patterns in such

fibers (Borhani et al., 2018). For nonlinear propagation, a feed-

forward neural network was also used to accurately predict the

temporal profile of red-shifted solitons (Salmela et al., 2020)

and the more global nonlinear propagation dynamics occurring

during SC generation (Salmela et al., 2021).

For the adjustment of optical pulse properties, multiple

strategies can be envisioned, including widespread pulse

shaping techniques, chirp and dispersion engineering, etc.

(Weiner 2011) Among those, an innovative approach based

on integrated photonics has been demonstrated over the last

years, by using cascaded on-chip Mach-Zehnder interferometers

(MZIs) in combination with machine learning algorithms. This

strategy was for instance instrumental for the demonstration of

picosecond waveform laser pulses being autonomously

reconfigured (Fischer et al., 2021). In a similar framework, a

genetic algorithm (GA) optimization was recently used for the

formation of reconfigurable pulse patterns so that to maximize

the intensity of selected SC wavelengths after nonlinear fiber

propagation (Wetzel et al., 2018). Such pulse patterns were

created via a femtosecond pulse and an integrated photonic

chip made of cascaded MZIs: the suitable modification of

MZI splitting ratios allows for the generation of temporally

interleaved pulse replica and, consequently, the control of SC

spectral properties after nonlinear broadening. Unlike single-

pulse seeds, the use of pulse patterns provides additional degrees

of freedom (similar to a multidimensional system) to optimize

the output properties of the SC generation via a variety of

nonlinear phenomena including both intra-pulse effects and

complex inter-pulse interactions (Andresen et al., 2011;

Wetzel et al., 2018).

However, from an experimental perspective, several key

properties of MPE microscopy (such as multi-photon

excitation lifetime and cross-section, optical toxicity, etc.) not

only rely on the peak power, but also on the temporal waveform

of the excitation pulses. In addition, the requirement for

advanced temporal waveform control is further highlighted by

the rise/fall time of the detectors, which is typically in the order of

hundreds of picoseconds. For an improved applicability in MPE

microscopy, there is therefore an urgent need for novel yet easy

and scalable approaches allowing for the fine tuning and

optimization of SC spectro-temporal properties beyond simple

filtering and/or power spectral density enhancement.

In this article, we conduct a numerical study to assess the

viability of temporal pulse pattern shaping for MPE microscopy.

Specifically, we implement various machine learning strategies to

maximize MPA signals and waveform properties at specific

wavelengths in the SC spectrum. In particular, we show how

the use of ultrafast pulse patterns generated from a cascaded

MZIs chip can be leveraged to adjust the output temporal

waveform for a variety of MPA processes. The on-chip MZIs

are used as an analogous to a multidimensional pulse pattern

processor to shape the temporal waveforms (before nonlinear

propagation). In turn, this allows for tuning the complex

nonlinear dynamics of pulse broadening toward applications

in MPE microscopy. We point out that, considering SC

generation in a highly nonlinear fiber (HNLF), this strategy
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gives rise to improved flexibility compared to single pulse seeds

with reconfigurable properties: we demonstrate the shaping of

output pulses with a variety of temporal waveforms for two-

photon absorption (2PA), three-photon absorption (3PA), and

conjoint 2PA-3PA. Taking advantage of machine learning, the

desired MPA signals can be maximized, with the temporal

profiles and coherence degree of the waveform suitably adjusted.

2 Materials and methods

2.1 Numerical modeling of nonlinear pulse
propagation

For our numerical study, we use a split-step Fourier method

to solve the general nonlinear Schrödinger equation (GNLSE), as

given in Eq. 1:

zA
zz

+ α

2
A −∑k ≥ 2

ik+1

k!
βk
zkA

zTk � iγ(1 + τshock
z

zT
)

(A(z,T)∫∞
−∞

R(T′)∣∣∣∣∣A(z,T − T′)∣∣∣∣∣2dT′)
(1)

where A(z,T) is the pulse envelope and T � t − β1z is the time

coordinate in the comoving frame at the group velocity β−11 . The

right-hand side of Eq. 1 describes nonlinear effects including

Kerr and Raman effects in which γ is the nonlinear coefficient

and the shock timescale τshock = 1/ω0 accounts for self-steepening.

The nonlinear response function R(T′) � (1 − fR)δ(T′) +
fRhR(T′) includes the instantaneous Kerr effect and delayed

Raman contribution in which fR = 0.18 accounts for the Raman

fraction. The left-hand side of Eq. 1 describes linear effects

including loss (α) and dispersion (βk).
Note that this GNLSE approach is considered for numerically

simulating pulse evolution in both a highly nonlinear fiber and

the waveguides constituting our on-chip programmable delay

line (PDL - see details below).

The vacuum noise (shot noise) is taken into account in our

model in Eq. 1 by adding one photon with a random phase on

each spectral bin of the input waveform (Dudley et al., 2006).

Herein, we do not consider additional noise effects, such as the

amplitude fluctuation of each laser pulse (i.e. laser technical

noise), polarization noise, etc., which typically degrade the

coherence of the output SC spectrum. However, we assume

that the impact of such noise contributions is limited when

considering short laser pulse durations in the femtosecond

regime (Zhu and Brown, 2004; Genier et al., 2019). The

coherence degree |g1
12(λ, 0)| of the filtered spectrum at the

wavelengths selected for MPA is calculated with a fixed value

of splitting ratio (so that to generate the same pulse pattern) but

with 20 simulations with a random noise (i.e. vacuum noise with

one photon with random phase per spectral bin). The average

coherence 〈|g1
12(λ, 0)|〉 is considered as the mean value of

coherence integrated over the bandwidth of the filtered spectrum.

For spectral broadening, we consider the nonlinear

propagation of optical pulses into 10 m of HNLF. The

parameters are those retrieved from a home-made (single-

mode) Ge-doped fiber available in our laboratory, similar to

typical commercial HNLF with a zero dispersion in the C-band

around 1,550 nm. Considering a central wavelength at 1,560 nm,

the fiber has a nonlinear coefficient of 3.5 W−1km−1 and

dispersion is located in the anomalous regime with β2 =

-2.15 ps2/km and β3 = 0.0693 ps3/km. The fiber losses at

wavelengths of 1,200 nm, 1,560 nm and 2,000 nm are taken as

60 dB/km, 1 dB/km, and 100 dB/km, respectively.

For the initial processing of the input pulse prior to HNLF

injection (so that to generate versatile temporal patterns of

multiple femtosecond pulses), we also consider the

propagation of the initial laser pulses into our on-chip

programmable delay line: the considered PDL structure

comprises 8 cascaded unbalanced interferometers (with

increasing delays) to split an initial single pulse into up to

256 individual pulses with 1 ps separation between two

adjacent ones, as reported in (Wetzel et al., 2018) and

(Fischer et al., 2021). Each interferometer is an unbalanced

interferometric structure (made of two integrated optical

waveguides, two 50:50 optical couplers and a phase shifter) to

constitute a balanced MZI followed by a pair of unbalanced

waveguides. Each of these allows for splitting the incoming

pulse(s) and delaying its (their) replicas by only changing the

MZI splitting ratio (i.e., by adjusting the relative phase difference

between the waveguide arms of the MZI).

A complete modelisation of the pulse propagation in the PDL

is carried out by considering two GNLSE simulations (one for

each waveguide) which are periodically coupled at the location of

the MZI waveguide couplers while considering the phase shift

implemented on the respective MZI arms. For this on-chip pulse

splitting process on the PDL, we assume that the light

propagating in each integrated waveguide is linearly polarized

and follows a purely single-mode guiding condition (in a TM

polarization mode). The PDL waveguides are therefore

considered based on realistic experimental conditions so that

at 1,560 nm, the dispersion parameters are β2 = -2.87 ps2/km and

β3 = -0.0224 ps3/km, the nonlinear coefficient is 233 W−1km−1

and the losses of 0.06 dB/cm remainmarginal for the propagation

in the ~5 cm-long waveguide structure (Ferrera et al., 2008;

Wetzel et al., 2018).

In our model, we consider ideal MZI response (with perfect

extinction ratio) so that the splitting ratio of each interferometer

can vary over the range 0–1, in which a value of 0 indicates that

the whole incoming light is routed into the following “short arm”

section of the unbalanced interferometer, and a value of

1 conversely indicates a routing into the following “long arm”

of the interferometer. Changing the splitting ratio of each
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interferometer thus leads in shaping the waveform of the pulse

patterns, as illustrated in Figure 1.

In this study, we numerically consider two cases of nonlinear

propagation into our HNLF, using either 1) single pulse seeds

with adjustable parameters or 2) reconfigurable pulse patterns as

generated from our on-chip PDL. The initial laser pulses possess

a Gaussian shape as shown in Eq. 2:

A(0, T) � 		
P0

√
exp( − (1 + iC) 2ln(2)T

2

T2
0

) (2)

where P0 is the peak power, T0 is the pulse duration (full width at

half maximum - FWHM) and C is the chirp factor.

For single pulse seeds, the spectro-temporal properties of SC

generation are arbitrarily modified by adjusting the input pulse

parameters: we consider a broad range of peak powers spanning

from 5 to 20 kW, a pulse duration over the range 50–200 fs, and a

chirp factor adjustable from -10 to +10. We note that the pulse

duration is here constrained to this 50–200 fs range to ensure a

high degree of coherence of the output SC spectrum. The central

wavelength of the laser source is 1,560 nm.

For reconfigurable pulse patterns, we define a set of constant

parameters for the initial pulse (i.e., 100 fs pulse duration, 1 kW

peak power, 1,560 nm central wavelength) injected into the on-

chip PDL. The splitting ratio of each interferometer is modified

to shape the temporal waveform of the pulse patterns at the PDL

output. Subsequently, the generated temporal pulse patterns are

amplified by 20 dB as typically expected from an erbium-doped

fiber amplifier (EDFA) before injection into the HNLF for

nonlinear propagation, see Figure 2.

In our simulations, we considered a simple and ideal

response of the EDFA (i.e. a pure 20 dB amplification) in

order to focus on the specific tunability provided by the PDL

chip processing (rather than the conjunction of multiple complex

effects) while maintaining a good computing efficiency for

quickly generating the desired optimization dataset. However,

if required for more accurate numerical modeling (or direct

experimental comparison), a more realistic EDFA response

(including amplified spontaneous emission noise, saturation

effects, nonlinear and dispersive signal distortions, etc.) may

be readily implemented, and would likely further expand the

FIGURE 1
Temporal (top) and spectral (bottom) profiles of the pulse patterns generated from the on-chip PDL for various splitting ratios, when initially
injected with a 100 fs pulse at 1 kW peak power: (A) and (D) show the equipartition of the input pulse energy into 256 pulses when the splitting ratio is
0.5 for eachMZI; (B) and (E) show the generation of an arbitrary pulse patternwhen theMZIs’ splitting ratio are set to [0.2, 0.4, 0.6, 0.8, 0.6, 0.4, 0.2, 0];
(C) and (F) show the case where the whole input pulse energy remains in the first pulse ‘slot’ when the splitting ratio is 0 for each MZI (hence
following the shortest path throughout propagation in the on-chip PDL).
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parameter space and overall reconfigurability provided by the

setup.

2.2 Optimization parameters and target
functions for multiphoton excitation
microscopy

As an illustrative example of our approach for the versatile

optimization of multi-photon microscopy, we explore the

potential application of reconfigurable SC for generating

optical signals at wavelengths suitable for typical MPA

excitations. For instance, we consider two sets of spectral

regions respectively compatible with two- and three-photon

absorption within the near-infrared region. In particular, we

selectively filtered broadband signals with central wavelengths

at 1,133 nm and 1,700 nm, towards the excitation of 2PA and

3PA for fluorophores and endogenous fluorescent proteins

(FPs) with a central wavelength of the fluorescence at 566 nm

(e.g., Texas Red, mKate and tdKatushka2). We also considered

the wavelengths at 1,200 nm and 1,800 nm for 2PA and 3PA

processes with central wavelengths of fluorescence at 600 nm

(e.g., Alexa Fluor 680), see color-coded wavelengths in

Figure 2.

The selected fluorophores (Texas Red, Alexa Fluor) are

extremely popular for several reasons: their low-cost, minimal

aggregation issues, and low cytotoxicity. The FPs have been used

to increase the brightness in biological settings as well as far-red

emitters with substantial potential for deep in-vivo imaging

(Miller et al., 2017; Ricard et al., 2018; Wang et al., 2018).

Moreover, excitation pulses at these selected wavelengths

ensure minimizing the losses of the MPA process, including

both scattering loss and photon absorption by tissues (Miller

et al., 2017). Such a low photon absorption enables a better

penetration depth of multi-photon imaging with low input laser

power and also mitigates deleterious thermal effects (i.e., tissue

heating and photodamage) which can be extremely harmful to

biological samples.

For simplicity, we here assume that the spectral bandwidth

(FWHM) of the fluorescent spectra from both 2PA and 3PA for

all selected fluorophores is 20 nm, and accordingly, the FWHM

filtering bandwidth of the excitation pulses at 1,133 and 1,200 nm

(i.e. 2PA excitations) is 40 nm, while the filtering bandwidth at

1,700 and 1,800 nm (i.e. 3PA excitations) is 60 nm. The

excitation pulses are extracted from the SC spectrum (in the

frequency domain) using a Gaussian filter function, and the

resulting filtered waveforms are retrieved in the time-domain by

a Fourier transform.

The target functions shown in Eq. 3 are used for the

optimization process. They correspond to the filtered intensity

squared for 2PA (cubed for 3PA) and integrated with respect to

time

I2PA,λ1,2 � ∫(Iλ1,2)2dt and I3PA,λ3,4 � ∫(Iλ3,4)3dt (3)

where λ1,2,3,4 are 1,133 nm, 1,200 nm, 1,700 nm, and 1,800 nm,

respectively. I2PA,λ1,2 and I3PA,λ3,4 correspond to the target

functions related to the MPA signals for 2PA and 3PA,

respectively.

The MPA signal according to the intensities in Eq. 3 is

maximized by an optimization process based on evolutionary

algorithms. In particular, we numerically implement two

FIGURE 2
Schematic representation showing the use of reconfigurable temporal pulse patterns, as generated from an on-chip programmable delay line
(PDL), to seed nonlinear propagation into a highly nonlinear fiber (HNLF) and spectral broadening. The interferometers settings on the PDL can be
readily adjusted via a variety of machine learning approaches to optimize the output optical waveform and selectively enhance multi-photon
absorption (MPA) signals at wavelengths suitable for e.g. bio-imaging applications (see the color code).
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optimization techniques respectively based on a GA and

particle swarm optimization (PSO), each possessing its own

advantages (Jiang, et al., 2010; Fischer et al., 2021): GA

optimization includes single-objective GA to maximize 2PA

and 3PA signals, but also multi-objective GA functions for

conjointly optimizing two individual MPA processes: 2PA-

2PA or 3PA-3PA for two different fluorophores, as well as

2PA-3PA for a selected fluorophore. In the case of multi-

objective GA, the optimization yields a Pareto front (also

called Pareto frontier) that represents a trade-off between two

MPA signal optimization.

In our GA model, the crossover fraction is set to 50%, and

the population size to 1,000 individuals (with 3 genes for

single pulse seeds and 9 genes for reconfigurable pulse

patterns, respectively) (Katoch et al., 2021). The number of

generation for multi-objective GA is set to 30. For single-

objective GA, the minimum of the fitness function is typically

found within 15 generations as shown in the following

section. However, for several cases, the GA is operated

with 20 or 30 generations to ensure that the GA algorithm

would not lead to further improvement of the optimum

fitness function.

For our PSO method (Bonyadi and Michalewicz, 2017),

the optimization of 2PA and 3PA signals is implemented

with a swarm size of 1,000 and a 9-dimension search

space (the number of variables per particle to

optimize–equivalent to the number of genes in a GA), the

maximal number of generation is set to 40 or 60 (depending on

the case) to ensure finding the optimal value of the

fitness function, after which the algorithm is stopped (when

it is not automatically interrupted beforehand when no

further improvement of the optimum fitness function is

observed).

We note that an experimental demonstration of SC

spectro-temporal optimization falls out of the current

study. However, such an experiment may be readily

performed by measuring the output broadband waveform

via spectro-temporally resolved characterization techniques

(Weiner 2011). For instance, using (delayed) synchronized or

asynchronous optical signals, cross-correlation based

measurements such as frequency-resolved cross-correlation

optical gating techniques (i.e. XFROG–see e.g. Wetzel et al.,

2016) can be performed. This in turn allows to gather data

compatible with fast iterative optimization of broadband SC

signals in both the temporal and the spectral domain. While

measurement noise and other experimental artefacts (e.g.

detector sensitivity, acquisition time, laser drift, thermal/

mechanical stability) may slightly hamper the repeatability,

convergence speed or figure of merit of the optimization

algorithm, the versatility of the proposed approach appears

promising for experimental implementations relying on

readily available characterization systems and optical

measurement tools.

3 Results

3.1 Selective wavelength optimization
with single pulse seed

The spectral broadening obtained via single femtosecond

pulse propagation is induced by well-known soliton evolution

dynamics in an anomalous dispersion regime. Such an evolution

typically yields the following scenario: solitons are formed at the

onset of fiber propagation via conjoint yet opposite dispersive

and nonlinear effects. The perturbations from ideal (high-order)

soliton dynamics - seeded by high-order dispersion, Raman

scattering, attenuation, etc. - lead to soliton fission, so that the

initial pulse breaks-up to form and eject multiple individual

solitons. During further propagation, the ejected solitons are

shifted toward longer wavelengths via soliton self-frequency shift

(SSFS) - a result of Raman scattering. Correspondingly, the

spectral components at shorter wavelengths, located in the

normal dispersion regime, are generated by dispersive waves

directly radiated at the trailing edge of the solitons. For example,

Figures 3A,B presents the spectro-temporal evolution of a pulse

with 12 kW peak power, 100 fs pulse duration, and chirp factor

C = -5. The soliton fission occurs after around 30 cm of

propagation, thus resulting in sudden spectral broadening.

Soliton shifting contributes to further expanding the spectrum

toward the longer wavelength until SSFS saturation is reached

(Dudley et al., 2006). Dispersive waves are generated at

wavelengths around 1,100 nm–1,200 nm. Any variation of the

initial parameters (i.e., peak power, pulse duration, and chirp

factor) brings about a noticeable alteration in the spectral

broadening process, resulting in a change of MPA signals.

However, SC generation induced by a single pulse seed

provides only single-pulse-like MPA signals, as illustrated in

Figure 3C.

In order to assess the tunability of these MPA signals

generated from SC generation, we have performed extensive

simulations with adjustable input parameters. Figures 4B,C

presents the evolution of maximal MPA signals (over

successive sets of 1,000 simulations) obtained by single pulse

seeds with varying initial parameters (i.e., peak power, pulse

duration, chirp factor).

We here compare numerical results obtained from GA

optimization and Monte-Carlo method: Monte-Carlo simulations

are implemented with 105 random sets of initial parameters and we

observe a progressive increase of MPA signals as we probe further

the initial parameter space. GA optimization, on the other hand,

brings on remarkable benefits: higher MPA signals can be readily

obtained and, more importantly, for a given number of simulations,

the MPA signals obtained from GA optimization are always better

than random Monte-Carlo ones (making our GA approach

computationally efficient, with a smaller number of simulations

required to reach a desired MPA signal level). Of course, both the

efficiency and convergence speed of GA optimization depend on the
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selected target wavelengths, and thus of the nonlinear dynamics

involved. For instance, 3PA signals excited by 1,800 nm and enacted

by soliton shifting are maximized with 4,000 simulations (see

Figure 4D), while 2PA signals generated by 1,133 nm and

induced by dispersive wave are rather maximized with

14,000 simulations (see Figure 4A).

FIGURE 3
Numerical simulation of SC generation in 10 m of HNLF using a single pulse (P0 = 12 kW; T0 = 100 fs ; C = -5). (A) Temporal evolution, (B)
spectral evolution, (C) output spectrum and corresponding temporal waveforms filtered at selected wavelengths.

FIGURE 4
Evolution of maximal intensity for MPA signals with single pulse seeds: (A) 2PA excited at 1,133 nm, (B) 2PA excited at 1,200 nm, (C) 3PA excited
at 1,700 nm, (D) 3PA excited at 1,800 nm.

Frontiers in Photonics frontiersin.org08

Hoang et al. 10.3389/fphot.2022.940902

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.940902


FIGURE 5
SC generation in 10 m of HNLF with various reconfigurable input pulse patterns for the excitation of (A1–A3) MPA signals at all four selected
wavelengths, (B1–B3) conjoint 2PA-3PA of a single fluorophore with excitation wavelengths at 1,200 nm and 1,800 nm, (C1–C3) conjoint 3PA-3PA
of different fluorophores with excitation at 1,700 and 1,800 nm.
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3.2 Selective wavelength optimization
with reconfigurable input pulse patterns

The spectral broadening obtained from multiple

femtosecond pulses propagation is, comparatively, more

complex than “standard” soliton evolution dynamics

associated with single pulse evolution. Indeed, each individual

pulse within a reconfigurable pulse pattern (as generated from

the approach illustrated in Figure 5) possesses a different peak

power and duration. In fact, depending on the splitting ratio of

the on-chip PDL, respective pulses can exhibit different

nonlinear dynamics for spectral broadening, yielding various

interactions over propagation and, ultimately, leading to

different contributions in MPA signal generation (in the pure

sense of complexity).

At the beginning of propagation, all individual pulses are

spectrally broadened by self-phase modulation (SPM) and

several ones, with sufficiently large peak powers (>62 W), will

generate solitons due to the effects of dispersion and nonlinearity.

Within them, pulses with higher peak powers (>245 W) can

create a high-order soliton, which will subsequently break up into

individual solitons via soliton fission. The ejected solitons have

different durations, depending on the peak power of the

individuals, and they respectively experience different self-

frequency shift (i.e., solitons with higher powers would shift

toward longer wavelengths), see Figure 5.

In such a scenario, complex inter-pulse interactions are

expected to occur during further propagation: the temporal

overlap between solitons ejected from different pulses,

experiencing frequency shift at different rates, may occur at

various fiber propagation distance. This can in turn lead to

soliton collisions with energy exchange between the colliding

solitons yielding the formation of new frequency components

due to collision-induced dispersive waves (Luan et al., 2006;

Erkintalo et al., 2010).

Noteworthy, even the contribution of low power input pulses

within the initial temporal pattern (i.e. not yielding soliton

formation) or the lower intensity components generated

during propagation (i.e. radiated dispersive waves, etc.) may

also play a key role in the nonlinear mixing dynamics,

especially when there are overtaken by other faster/slower

frequency components radiated from adjacent pulses.

In this framework, such collision dynamics can in principle

be finely tuned by coherent control of the initial pulse patterns, so

that to influence the power, duration, soliton frequency shift rate

and relative phase between adjacent pulses, and thus adjusting

the wavelength, propagation distance and timing of complex

nonlinear conversion processes.

From a practical viewpoint, the adjustment of these multiple

interactions may prove difficult. However, the suitable control of

the initial parameters of the reconfigurable pulse patterns can

provide a great variety and tunability to the excitation waveforms

used for MPA.

For instance, a pulse pattern can provide MPA signals at all

four selected wavelengths, yet in this case all excitation pulses

filtered out from the SC essentially behave as single-like pulses

with low peak powers, Figures 5A1–5A3. Other pulse patterns

can be used for selective yet conjoint MPA processes: joint 2PA-

3PA processes for a single fluorophore with an excitation

wavelength at 1,200 nm and 1,800 nm can be achieved

(Figures 5B1–5B3). Conversely, the excitation of dual 3PA

processes (at 1,700 and 1,800 nm respectively) can be obtained

so that to trigger a hybrid fluorescent medium including two

distinct fluorophores (Figures 5C1–5C3).

The use of reconfigurable patterns brings on a flexible way to

control the pulse shapes (i.e., temporal waveforms of the filtered

pulses) toward a versatile reconfiguration and specific performance

of the excitation pulse to be used for MPE microscopy.

As shown in Figure 6, while single input pulse seeds yield

only single-like pulse waveforms for the desired wavelengths at

the fiber output, the use of reconfigurable pulse patterns can offer

both single-like pulse and more complex output waveforms with

multiple pulse bunching operations. In fact, the delay and peak

power of the individual pulses of the excitation waveforms can be

effectively tailored by the modification of the input pulse patterns

(i.e., only by changing the splitting ratio of the PDL). This brings

about a potential to widen the modalities and selectivity for MPE

and fluorescence lifetime microscopy.

In Figure 6, we present examples of filtered output waveforms

selected from Monte-Carlo simulations using random initial

conditions (see Section 2.1). These post-selected results clearly

illustrate the variety and reconfigurability brought about by using

tailored input pulse patterns instead of single pulse with adjustable

properties. However, we note that the intensities of the excitation

pulses at the selected wavelengths can be readily maximized using

different algorithmic approaches such as GA or PSO. These

optimization algorithms enable obtaining high excitation

intensities with a limited number of simulations, which is the

approach we explore in the following sections. We also note that

a comparison between these optimization techniques with

advantages and limitations is further discussed in Section 3.4.1.

Finally, it is worth mentioning that multiple pulse optimization is

conducted via 256 pulses individually separated by 1 ps. This

configuration is here well-suited for the propagation dynamics

considered in the setup proposed in Figure 2. However, a larger

number of pulses (increasing the dimensionality and potential

variations in the parameter space) or a reduced number of pulses

(yielding a faster convergence of the optimization algorithm) may

also be considered depending on the constraints identified for

experimental implementations. Similarly, depending on the

dynamics involved during subsequent fiber propagation (e.g.

initial pulse power, duration, repetition rate, fiber length), on-chip

PDL with shorter or longer unit delay may be privileged to target

particular optimization characteristics (e.g. temporal overlap of the

initial pulses, emphasis on intra- or inter-pulse frequency conversion

dynamics, coherence degree of the supercontinuum, etc.).
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3.3 Selective multiphoton process and
fluorophore optimization

The flexibility in terms of SC properties optimization, offered

by reconfigurable input pulse patterns, allows in fact for

customizing both the strength and trade-off between different

MPA processes. For instance, a single broadband waveform can

be used for the conjoint excitation of various MPA signals. This

can be implemented for enhancing conjointly both 2PA and 3PA

processes for a selected fluorophore, or conversely for the

enhancement of dual 2PA-2PA or 3PA-3PA processes towards

the combined excitation of two different fluorophores.

The results of such optimizations are presented in Figure 7,

where we show the distribution of target MPA excitation

intensities at selected wavelengths for various input pulse

patterns. We compare the target function intensities (see

Section 2.2) obtained by using either a multi-objective GA

optimization (to find a corresponding Pareto front) or

random simulations using a Monte-Carlo method.

MPA excitation intensity distributions for different

combinations of target wavelength are shown in Figures

7A–C. From the shape of these distributions (i.e. clustering at

the bottom left corner), one can see that the optimization of dual

wavelength objectives consists in a trade-off between two optimal

points of single wavelength MPA signals. In other words, as the

system energy is bounded from the initial conditions with

constant power, it appears (unsurprisingly) difficult to obtain

conjoint MPA process signals at the same levels as the ones

obtained from their single MPA process optimization.

This general rule here applies regardless of the optimization

technique, however, GA optimization is useful to reach similarly high

target MPA excitation signals with a smaller number of simulations.

More importantly, GA optimization enables to enlarge the Pareto

fronts compared to the Monte-Carlo method, Figures 7D–F.

This aspect is important to tailor excitation waveforms and

enhance the signals of conjoint MPA processes, which can be

significant in several cases, as seen in the “S” shaded area in

Figure 7A. Along with the potential to reconfigure individual

excitation waveforms for distinct MPA processes, this approach

is seen as an excellent way to achieve sophisticated characterization

of various MPA processes and fluorophore combinations using the

same experimental equipment and laser source.

FIGURE 6
Selected temporal waveforms of filtered pulses with single pulse seed and the reconfigurable pulse pattern at selectedwavelengths: waveforms
filtered at 1,133 nm (A1–A3), at 1,200 nm (B1–B3), at 1,700 nm (C1–C3), and at 1,800 nm (D1–D3). I2PA and I3PA signals are here given in µsW2 and
µsW3, respectively.
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To attest of this fine spectro-temporal waveform control, the

filtered temporal profiles for conjoint MPA processes

optimization are shown in Figure 8—here obtained for either

single pulse or reconfigurable pulse patterns as input seeds.

The use of single pulse seeds imposes a clear limitation for

controlling the filtered MPA temporal profiles, typically associated

with e.g. fixed relative delays between signals at selected wavelengths.

In contrast, the MPA excitation waveforms are effortlessly tailored

by using reconfigurable pulse patterns as input seeds. Using this

approach, one can achieve the tunable adjustment of relative

temporal delays between filtered signals, Figures

8A2–A3,B2–B3,C2–C3, but also enact more complex

reconfiguration of the temporal waveforms to reach particular

performances: selective pulse pattern adjustments can provide a

variety of waveform excitations, for instance allowing for the

formation of temporally-interleaved MPA signals, Figures

8A5–A6,B5–B6,C5–C6.

The ability of customizing the temporal waveforms for

conjoint and/or selective MPA signals thus provides an

innovative approach to develop and extend the potential for

controlling complex multiphoton imaging techniques.

Specifically, we expect that an improved tunability of the

generated waveforms can prove useful to implement

sequential spectral illuminations and time-encoded

multiphoton processes using a versatile and scalable approach

suitable for e.g. advanced STEAM or FLIM microscopy

techniques. In a similar fashion, the use of reconfigurable

output waveform bunches may mitigate several aspects

associated with optical toxicity, by easily adjusting the

equivalent peak power and repetition rate of the illumination

(e.g. to alleviate either optical damage or thermal effects in the

sample). While not explicitly mentioned, the use of selective

filters along with suitable optimization techniques are expected to

provide a way to generate excitation pulses with either uniform

amplitude or adjustable relative power in various spectral regions

of the output supercontinuum. Last but not least, tailoring the

power spectral density and temporal waveform shape between

different MPA processes may also be a way to indirectly adjust

the penetration depth of a tissue sample. Indeed, it is known that

2PA processes for a selected fluorophore typically require less

FIGURE 7
Distributions and Pareto fronts of MPA excitation intensities obtained from multi-objective GA and random simulations at selected target
wavelengths: (A) and (D) at 1,133 nm–1,200 nm, (B) and (E) at 1,700–1,800 nm, (C) and (F) at 1,200–1,800 nm. The blue shaded area (labeled “S”)
illustrates a region of the Pareto front where the GA yields substantial improvements compared to Monte-Carlo simulations.
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excitation power than ones of 3PA. However, with the use of a

shorter excitation wavelength, 2PA yields higher scattering loss

and thus lower penetration depth. Therefore, the idea of using

reconfigurable pulse patterns for conjoint 2PA-3PA process

optimization brings about a promising approach for “on-the-

fly” imaging depth control (potentially without any moving

parts).

3.4 Extension of optimization methods for
multi-photon microscopy

3.4.1. Discussion on metaheuristic methods
We have seen that the use of reconfigurable pulse patterns

gives rise to an extended parameter space so that to optimize a

variety of MPA processes, similar to using an additional degree of

freedom typical of multidimensional systems (here in the

temporal domain, but analogous to e.g. the spatial dimension

in multimode fibers). However, the efficiency of the targeted

waveform intensity enhancement at selected MPA wavelengths

depends strongly on both the algorithm used for optimization

and the nonlinear dynamics involved during fiber propagation.

Figures 9A,B presents the evolution of optimal excitation

intensities for 2PA and 3PA, considering an optimization

based on either PSO, GA, or Monte-Carlo methods (using 105

random simulations). In the fiber propagation regime considered

(see Section 2.1), the radiation of dispersive waves responsible for

the generation of short wavelength components in a normal

dispersion regime is less sensitive to the modification of the initial

conditions than the generation of long wavelength components

FIGURE 8
Examples of temporal waveforms optimized by either single pulse seeds or reconfigurable pulse patterns for dual MPA processes enhancement
at the selected wavelengths: (A1–A6) at 1,133 nm and 1,200 nm (B1–B6) at 1,700 and 1,800 nm (C1–C6) at 1,200 nm and 1,800 nm.
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in the anomalous dispersion regime, here obtained via soliton

shifting. In the former case (i.e. at 1,133 nm and 1,200 nm),

metaheuristic optimization methods (GA or PSO) are not

extremely significant compared to Monte-Carlo method to

improve the target excitation intensity. In the latter case (i.e.

at 1,700 and 1,800 nm), however, metaheuristic optimization

techniques can prove very efficient to quickly reach optimal

excitation intensities (at least twice higher than the ones from the

Monte-Carlo method). For example, the maximal excitation

intensity at 1,800 nm obtained by PSO optimization is

630 µsW3 after only 60,000 simulations (i.e. when the

algorithm stops after convergence) while 105 random

simulations only provide a maximum intensity of 260 µsW3.

The results in Figure 9 also provide a comparison of

optimization methods used to optimize MPA signals. In all the

considered cases, GA reach an optimal value relatively quickly and

within 104 simulations (after which the GA optimization does not

seem to provide further significant improvement). While these

results may be finely tuned by the adjustment of the GA

parameters (e.g. population size, crossover, etc.) to better

explore the available parameter space, PSO can readily achieve

better signal enhancement in all four tested cases, but at the

expense of increased computing power and duration (i.e. larger

set of simulations before reaching convergence).

The difference of efficiency between GA and PSO is caused

by their principle (i.e., algorithm) to evaluate the best value for

each iteration. GA relies on genetic evolution, and it starts with

an initial parameter set of individuals (population). An iteration

would be implemented if the termination criteria (e.g., number of

generations) are not met so that the parameters of new

individuals (i.e., children) are determined by interchanging

gene groups of two selected current individuals (i.e., parents)

through a crossover fraction (0.5 for our model). GA is usually a

faster algorithm to find an optimum than other optimization

algorithms, however, it does not guarantee to reach the global

optimum of the system andmay be stuck within a local minimum

when exploring the parameter space.

PSO is, in contrast, modelled by the behavior of an animal

swarm, starting with an initial swarm size of particles in a

N-dimensional search space (here, N = 9). The position in the

search space of the next particles (i.e., the particle’s trajectory) is

updated by swarm intelligence that is determined by the current

particle position, its individual-best position and the overall-best

position of the particles in its neighborhood, following an

algorithm regulated by self- and social-adjustment weights

(Kennedy and Eberhart, 1995). As GA, PSO does not

guarantee to converge towards the global optimum, an issue

that can also be mitigated by the adjustment of the PSO

parameters (e.g. larger swarm size, values of self- and social-

adjustment weight, etc.).

However, while GA determines the next individuals only

from the selected current individuals (with marginal mutation

FIGURE 9
Evolution of maximal excitation intensity for MPA signals using reconfigurable pulse patterns, compared for different optimization approaches.
(A) The intensity at 1,133 nm wavelength for 2PA, (B) at 1,200 nm for 2PA, (C) at 1,700 nm for 3PA, (D) at 1,800 nm for 3PA.
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that can be further implemented), PSO creates the next particles

position not only from current particles but also from individual-

best and overall-best positions.

In other words, PSO essentially operates with higher degrees

of freedom than GA, thus providing a greater diversity in the

particle trajectories and exploration of the parameter space than

GA. In particular, the momentum effects on the particle

movements can provide a faster convergence when a particle

is moving in a directional gradient. Such a behavior can be readily

seen in our results, for instance through the exponential increase

of the MPA intensities at 1,700 nm over the simulation iterations

from 14,000 to 30,000, Figure 9C, and from 20,000 to 40,000 for

MPA intensities at 1,800 nm, Figure 9D.

3.4.2. Coherence optimization for multi-photon
microscopy

The coherence degree of the excitation pulses (i.e. the

shot-to-shot stability in both phase and amplitude) is a

significant factor when considering multiphoton imaging

techniques, which potential impact strongly depends on the

practical applications targeted. For example, stability on a

short time scale is not necessary for general purpose

fluorescence microscopy applications, since the acquisition

time is much longer than the shot-to-shot fluctuation of the

output spectra, and the results thus averaged over long

timescales. In contrast, other applications, such as CARS,

fast MPE microscopy (with high temporal resolution), as

well as most pump-probe measurements involving different

wavelengths or frequency conversion phenomena require

excitation pulses with high stability, and may even need

excellent coherence if an intrinsically phase-dependent

process is involved.

It is well-known that the coherence of SCs generated in an

anomalous dispersion regime are intrinsically linked to the

peak power and duration of input pulses (Dudley et al., 2006).

If a single input pulse is used, the degree of control on the

system overall coherence is thus strongly limited. On the other

hand, the use of a reconfigurable pulse pattern enables the

adjustment of the coherence by modifying both the peak

power and the potential interactions between each

individual pulse during fiber propagation.

In such a case, we can therefore maximize the excitation

intensities for 2PA and 3PA while optimizing the coherence of

the spectral components filtered for MPA. These results are

illustrated in Figures 10B,E, for which we run GA multi-

objective optimizations trying to enhance MPA signals while

either minimizing or maximizing the coherence degree of the

corresponding filtered components.

FIGURE 10
(A) Pareto front of joint coherence and intensity optimization at 1,200 nm for 2PA, (B) Selected SC spectra with a high and low coherence for
2PA, (C) Corresponding spectra and filtered waveforms at 1,200 nm, (D) Pareto front of joint coherence and intensity optimization at 1,800 nm for
3PA, (E) Selected SC spectra with a high and low coherence for 3PA, (F) Corresponding spectra and filtered waveforms at 1,800 nm. The degree of
coherence are shown in solid black line along the SC spectra of B, C, E and F (with scale on the right of the plots).
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From the Pareto fronts of Figures 10A,D, respectively for

2PA and 3PA optimization, one can see that an excellent

coherence degree close to unity (with 〈|g1
12|〉 above 0.95) can

be obtained in both optimizations with optimal MPA signals,

while a lower value of coherence (with 〈|g1
12|〉 ~ 0.6) can also

be achieved with less than a two-fold reduction of the

corresponding MPA signal levels. These optimized

waveforms, presented in Figures 10C,F, show that

reconfigurable pulse patterns can indeed provide MPA

excitation pulses with a similar intensity, but noticeably

different coherence degrees and waveform shapes, opening

further opportunity for accessing on-demand imaging

modalities with versatile properties.

3.4.3. All-normal dispersion supercontinuum
generation for multi-photon microscopy

For completeness, we also conducted similar

optimization considering all-normal dispersion (ANDi)

fiber propagation, a regime where spectral broadening is

well-known for its inherent stability (Dudley et al., 2006;

Sylvestre et al., 2021).

In our case, ANDi supercontinuum generation is

simulated using Eq. 1 with the same input reconfigurable

pulse patterns and parameters as those provided in Section

2.1 (i.e., pulse duration, peak power, amplification). For

propagation, we consider a 2 m-long home-made fiber that

has typical near-zero, flat, all-normal dispersion in both the

visible and near-IR (Huang et al., 2018; Canh et al., 2020; Le

et al., 2021). At 1,560 nm, our fiber has a nonlinear coefficient

γ = 13 W−1km−1 and the dispersion coefficients are β2 = 6.36

ps2/km, β3 = 0.032 ps3/km, β4 = 3 × 10–4 ps4/km. In this

regime, ANDi SC generation typically yields narrower

spectral coverage than soliton-induced SC, requiring high

peak powers for significant spectral broadening. As a

consequence, we do not consider 2PA signals at 1,133 nm

and 1,200 nm (that are too weak) for our optimization.

However, for 3PA signals, multiple pulse optimization is

also relevant for ANDi SC.

As shown in Figure 11A, the maximum values of

excitation intensities at 1,700 and 1,800 nm for 3PA are

enhanced with GA optimization to reach 81 (µW3) and 34

(µW3), respectively. While both signals can eventually be

enhanced conjointly, as seen from the Pareto front in

Figure 11B, we note that the MPA signals are much lower

than the ones obtained through soliton-based dynamics

presented in Section 3.4.1.

Importantly, ANDi SC generation is mainly driven by SPM

broadening at the onset of propagation, and followed by optical

wave breaking (OWB). Consequently, ANDi SC typically

consists of a flat-top output spectrum paired with a uniform

pulse shape (in the time-domain) with a relatively simple

temporal profile, instead of yielding the formation of highly-

localized temporal structures (thus limiting the potential for the

generation of complex and temporally interleaved output

features). In the normal dispersion regime, modulation

instability (the predominant phenomenon responsible for

amplifying the vacuum noise during spectral broadening) is

suppressed, resulting in output SC with significantly higher

coherence (i.e., high shot-to-shot stability) than soliton-

induced SC. However, ANDi regime here provides fewer

degrees of freedom for efficiently controlling the spectro-

temporal properties of SC generation, since OWB essentially

occurs when there is a temporal overlap between SPM spectral

components and the pulse tail (Heidt et al., 2011), so that

during further propagation, no new spectral components are

created. Therefore, the use of ANDi SC to maximize the

excitation intensity for the targeted MPA processes is

significantly limited.

FIGURE 11
The excitation intensity filtered from ANDi SC for MPA. (A) Evolution of maximum excitation intensity at 1,700 and 1,800 nm for 3PA, (B) Pareto
front of optimized intensities at 1,700 and 1,800 nm for conjoint 3PA processes.
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4 Conclusion

Our results show a promising and feasible approach for

controlling the spectro-temporal properties of excitation

lasers for MPE microscopy: broadband SC generation

covering numerous fluorophores absorption peaks (i.e. 2PA,

3PA) can provide a number of illumination wavelengths to

match the proper excitation of selected fluorophores. By

leveraging machine learning (GA, PSO), we can efficiently

probe the input parameter space to selectively maximize

particular output wavelengths, and thus rapidly enhance

the desired MPA signals.

In particular, we show numerically that shaping an input

wavepacket by means of an adjustable on-chip MZIs can be

used to optimize a variety of temporal waveforms spectrally

filtered from the output SC after propagation and spectral

broadening. In fact, the on-chip MZIs can be used to create

input pulse patterns with different properties (i.e., duration

and peak power of the individual pulses) allowing for flexible

tuning of the SC spectro-temporal properties for MPE

microscopy. In contrast to single pulse seeds,

reconfigurable pulse patterns provide a scalable and

versatile way to adjust the output signals and temporal

profiles at wavelengths directly useful for MPA processes

(e.g. single-like pulses with high peak power, complex

temporal profiles with multiple pulse bunching operations,

etc.). From this approach, we demonstrate that the use of

pulse patterns allows for controlling the delay and power

between conjoint and interleaved MPA signals (e.g. conjoint

2PA-3PA processes for a single fluorophore, or conjoint 2PA

or 3PA processes in a “mixture” of fluorophores).

Based on these promising numerical results, we expect

that the practical implementation of these techniques will lead

to further developments in MPE spectroscopy and multi-

photon imaging techniques. With the flexibility to optimize

excitation waveforms (in combination with machine

learning), we anticipate that our approach will pave a way

to enrich both the performances and modalities of MPE

microscopy. While not exhaustive, such tailorable

waveforms are seen as a possible way towards real-time

control of MPE imaging depth, for conjoint multi-photon

imaging techniques or tunable temporal interleaving of MPA

signals (so that to observe living tissues and biological

processes with minimal optical toxicity) or for direct image

optimization and online analysis. It is worth noting that the

dynamic illumination adjustment and combination of various

degenerate and non-degenerate MPA processes holds a

potential to probe spectral windows difficult to access from

single wavelength excitation (e.g. low penetration depths from

high scattering or water absorption regions) or to enhance the

selectivity of particular modalities or fluorophore signatures

towards adaptative image ‘segmentation’ of the sample

content.
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