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The effective engineering of linear and nonlinear optical properties in photonic

media has led to new advances in the theory and applications of spatio-

temporal light–matter interactions. In some instances, research has been

motivated by phenomena in a quantum mechanical framework; two notable

examples being Anderson localization and parity–time symmetry. Herein, we

present theoretical and numerical results on light propagation in the presence

of fractional diffraction and classical dispersion, highlighting the role mixed

functionality has on stability, spatio-temporal localization, and possible collapse

events.
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1 Introduction

Twenty years ago, Nikolai Laskin (2000c,b, 2002) introduced a series of articles that

generalized the Feynman path integral to allow Levy paths. The result, coined by Laskin as

fractional quantum mechanics, extends the well-known Schrödinger equation to what is

called the fractional Schrödinger equation (FSE), where the Laplacian operator becomes a

fractional Laplacian. This somewhat intriguing concept could be best stated in the Fourier

domain where fractional Laplacian in multiplication of the field in the Fourier

representation by |k|2α, with 0 < α ≤ 1 (α = 1 corresponding to the classical

Laplacian). As it is the case with other conjectures in the quantum mechanics (QM)

realm, including Anderson localization and parity–time symmetry (Segev et al., 2013;

Rüter et al., 2010), Laskin’s alternative QM formulation has not been verified in this

setting, but it triggers interest of an alternative realization in an optical configuration. In

2015, Longhi (2015) proposed an arrangement of optical lenses within a cavity whose

effective diffractive behavior (by rearranging k vectors) in the mean-field equation is

fractional, realizing as a mean-field model the FSE. Longhi’s numerical study shows a

spatial beam profile that contrasts with the common Gaussian-like profiles typically

observed in lasers. In other fields, the fractional Laplacian represents a diffusion process in

highly heterogeneous media, so the interest in studying these models extends beyond QM

or optics. To gain a more general understanding, we refer to a recent work by Lischke et al.

(2019) which provides a thorough review of the various representations and current

numerical methods for the fractional Laplacian. Equally relevant to photonics is its
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possible emergence as a model in resonator arrays. In fact, the

FSE has been shown as the continuum limit in the weak sense of

the discrete NLS with long-range lattice (waveguides and

resonators) interactions (Kirkpatrick et al., 2013). The ground

states have been numerically studied in Duo and Zhang (2015)

and Fall et al. (2015) and the understanding of the dynamics

during propagation is shown in Kirkpatrick and Zhang (2016)

and Antoine et al. (2016). In addition to this, there are many

works that look at fractional diffraction in optics in different

scenarios (Zhang et al., 2015, 2016a,b, 2019, 2017; Huang and

Dong, 2016; Huang et al., 2017; Yao and Liu, 2018; Chen et al.,

2018; Li et al., 2021). It is clear this is an emerging research

activity given the long list of more recent articles on FSE in the

field of optics both in continuous media (Xin et al., 2021; Chen

W. et al., 2021; Wu et al., 2020; Zhang et al., 2020; Zeng et al.,

2022; Jiao et al., 2021; Ren andDeng, 2022;Wang et al., 2022) and

lattices (Zhu et al., 2020; Chen M. et al., 2021; Ren et al., 2022).

The first experimental realizations (this one, on fractional

dispersion) have also been recently reported (Liu et al., 2022).

Instead, in this work, we introduce what we think for the first

time first explorations in the spatio-temporal regime in what we

define as the mixed FSE. We do so by adding classical temporal

dispersion to themodel. Going back to two configurations: a laser

cavity and a resonator array with nonlocal coupling. In summary,

this work is an extension that includes temporal effects from

which a richer model emerges. The remainder of the article

presents some novel features. Since the objective at this time is on

theoretical aspects, we do not attempt to suggest a particular

photonic device or discuss specific parameters for possible

experimental explorations.

The focus of this article is to study light propagation in

nonlinear media in the presence of fractional diffraction and

temporal dispersion. The propagation is modeled by the FNSE

with quadratic dispersion.

i
zψ

zz
+ −Δx( )α/2ψ + β

z2ψ

zt2
+ γ|ψ|2ψ � 0. (1)

Throughout this work, we have used the optics notation,

where the “time-like” variable z represents the direction of

propagation of light and the “space-like” variable t represents

the shape of the optical field along the direction of propagation in

a moving frame of reference. Finally, x is one spatial direction

transverse to propagation. For this model, we assume a

waveguide configuration that confines the field in the other

(y) transverse direction. Altogether, we emphasize that the

addition of dispersion as a classical second-order operator

makes this work, and we think the first study is a mixed

fractional-classical Laplacian operator. Interestingly, if we look

at 1) in terms of the fractional parameter 0 < α < 2, the two limits

represent important cases: α = 0 being the integrable nonlinear

Schrödinger equation (NLSE) and α = 2 being the so-called

critical two-dimensional nonlinear Schrödinger equation

(2DNLSE).

The structure of this article is as follows. We first look at the

modulational instability (MI) of such an equation and perform a

linear stability analysis in Section 2. We verify the stability

regions defined and find breather-like solutions that emerge

from the continuous wave (CW) solutions of points in the

unstable region. In Section 4, we adopt a numerical method

for finding the ground states of the FNSE in an infinite potential

FIGURE 1
Instability region (blue) for case 2, β > 0, γ > 0; α = 2 (A), α = 1 (B).
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well. The ground states of the one-dimensional FSE have been

numerically studied in Duo and Zhang (2015) and Fall et al.

(2015), and an understanding of the dynamics during

propagation is given in Kirkpatrick and Zhang (2016) and

Antoine et al. (2016). The nonlinear fractional Schrödinger

equation (FNSE) has been shown as the continuum limit in

the weak sense of the discrete nonlinear Schrödinger (NLS) with

long-range lattice interactions (Kirkpatrick et al., 2013). Herein,

we find that the ground states of Eq. 1 form boundary layers for x

near the boundaries when α is small similar to the results in the

one-dimensional case. The boundary layers are thinner as γ

increases as well. In Section 5, we observe the dynamics when

the solution tends to collapse. We find the fractional parameter

and minimal power thresholds to cause the field to initially

FIGURE 2
Instability region (blue) for case 3, β > 0, γ < 0; α = 2 (A), α = 1 (B).

FIGURE 3
Instability region (blue) for case 4, β < 0, γ < 0; α = 2 (A), α = 1 (B).

Frontiers in Photonics frontiersin.org03

Aceves and Copeland 10.3389/fphot.2022.977343

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.977343


contract as opposed to spread and examine the effects as both the

fractional parameter and power are increased. The parameters

required for singularity formation are also discussed. As opposed

to using the standard Laplacian, when the fractional parameter is

lowered, we see the field does not collapse with a radially

symmetric profile. However, as the coefficient of the nonlinear

term is increased, the field regains symmetry at the moment of

collapse.

2 Continuous wave solutions and
their linear stability analysis

Herein, we study the modulational instability of the

continuous wave (CW) solutions of the FNSE. We perform a

linear stability analysis on Eq. 2 and define the stable and

unstable regions. The regions are verified numerically and

show a breather-type solution materializes from the MI

region. We start with the FNSE given by

iψz + Lψ + βψtt + γ|ψ|2ψ � 0, (2)

where L is the one-dimensional fractional spatial Laplacian

operator in x represented as (− z2

zx2)α/2 with α ∈ [0, 2]. We find

an exact solution of Eq. 2 is ψ � AeiγA
2z. Next, the solution is

slightly perturb to ψ � (A + a)eiγA2z where a = a(x, t, z) is

small. Plugging the perturbed ansatz into Eq. 2 and

expanding, we find

iaz + La + βatt + γA2a + γA2ap � 0, (3)

where higher orders of a have been ignored. We assume that a(x,

t, z) is complex and therefore can split the function into its real

and imaginary components as a = f + ig. This leads to a system of

equations given by

fz + Lg + βgtt � 0, (4)
gz − Lf − βftt − 2γA2f � 0. (5)

Since the L operator is in the fractional sense, we view the Fourier

transform of Eqs 4 and 5; while noting, we can take advantage of

the spectral representation of the fractional Laplacian as

F {(− z2

zx2)α/2a(x, t, z)}(ξ) � |ξ|αâ(ξ, t, z). This leads to
f̂z + |ξ|αĝ + βĝtt � 0, (6)

ĝz − |ξ|αf̂ − βf̂tt − 2γA2f̂ � 0. (7)

Eqs 6 and 7 are standard systems of coupled PDEs. We attempt

an ansatz through separation of variables given by f̂ �
p̂1(ξ)ei(λz+μt) and ĝ � p̂2(ξ)ei(λz+μt) which leads to

iλ |ξ|α − βμ2

−|ξ|α + βμ2 − 2γA2 iλ
[ ] p̂1

p̂2
[ ] � 0

0
[ ], (8)

which will have nontrivial solutions if

λ2 � |ξ|2α − 2|ξ|α βμ2 − γA2( ) + β2μ4 − 2γA2βμ2,

λ2 � |ξ|α − βμ2 − γA2( )( )2 − γ2A4.
(9)

For the solutions to be stable, λ must be real, so we search for

values of the parameters which make this possible. An instability

arises when λ2 < 0 or when

− γ + |γ|( )A2 < |ξ|α − βμ2 < |γ| − γ( )A2. (10)

Depending on the signs of β and γ, the dynamics will vary, and we

can thus split the analysis into four different cases.

Case 1: β< 0, γ> 0 λ is always real, (11)

FIGURE 4
Appearance of a breather from the MI region, α = 1.
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Case 2: β> 0, γ> 0 − 2γA2 < |ξ|α − βμ2 < 0, (12)
Case 3: β> 0, γ< 0 0< |ξ|α − βμ2 < 2|γ|A2, (13)
Case 4: β< 0, γ< 0 0< |ξ|α − βμ2 < 2|γ|A2. (14)

Case 1 is the defocusing version and is in line with the

classical case in which it is always stable. Case 4 aligns with the

focusing self-interaction and is the basis of the numerics in the

next section. Figures 1–3 show the regions of stability in white

and the regions of instability in blue. The figures on the left side

are for the classical case (α = 2), and the figures on the right are

for α = 1. In Section 3, we present the numerical method used to

propagate Eq. 2 forward in z in order to verify the stability results

from this section and explore the long-term behavior.

3 Beyond linear stability: Numerical
results

To numerically validate the regions defined earlier as well as

to explore the extended behavior of perturbations in the unstable

region, we adopt a numerical method proposed in Kirkpatrick

and Zhang (2016) to handle the fractional Laplacian. Themethod

splits the operator and uses the Fourier pseudospectral method to

advance the fractional and integer derivatives. The nonlinearity is

integrated exactly, and the two components are then coupled

back together with the second-order Strang method (Strang,

1968). The method is explicit and has high order spatial

accuracy and little computational cost. To extend the method

from Kirkpatrick and Zhang (2016) to integrate Eq. 2, we

increase the dimension of the domain by one and integrate

the second derivative in t in the same step as the fractional

Laplacian in Fourier space.

The two-dimensional computational domain for the

problem is defined to be Ω = [a, b] × [ta, tb]. Let J and R

be positive even integers with the fractionality parameter α ∈
[0, 2]. Define the mesh sizes hx = (b − a)/J and ht = (tb − ta)/R

and grid points xj = a + jhx for 0 ≤ j < J, and tr = ta + rht for 0 ≤
r < R. The outline to advance a state from ψ(zn) to ψ(zn+1) is as

follows:

ψ 1( )
r,j � ψn

r,j exp −i k
2
γ|ψn

r,j|2{ }, , (15)

ψ 2( )
r,j � ∑R/2−1

m�−R/2
∑J/2−1

l�−J/2
ψ̂ 1( )
m,l exp −ik |ξ l|α + βμ2m( ){ }, (16)

p exp i ξ l xj − a( ) + μm tr − ta( )[ ]{ }, , (17)

ψn+1
r,j � ψ 2( )

r,j exp −i k
2
γ|ψ 2( )

r,j |2{ }, (18)

Where ψn
j denotes the numerical approximation of ψ(xj, tr), k

is the step size in z, and ψ̂ is the two-dimensional

Fourier transform of ψ in x and t. The frequencies in x and

t are given by ξl � 2lπ
b−a for − J/2 ≤ l ≤ J/2–1 and μm � 2mπ

tb−ta for − R/

2 ≤ m ≤ R/2–1, respectively. An alternative method that

has been shown to integrate the FNSE is known as the

split-step Galerkin method (Wang et al., 2019). This

method also employs the second-order Strang split-

step method for splitting the potential and nonlinear

operators; however, it uses the Legendre spectral Galerkin

method for approximating the Riesz space-fractional

derivative.

As expected, starting conditions from the stable region do

not grow and either remain the same or travel along the

domain in all cases. On the other hand, Figure 4 shows a

breather emerging from the MI region for α = 1. The initial

FIGURE 5
Evolution of the amplitude for the first excited mode (ξ = 0.5, μ = 1.1, γ = 1, and β = 1).
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perturbed mode grows in amplitude until reaching some

upper bound before returning and repeating this process.

Higher order modes are also excited. Figure 5 shows the

evolution of the lowest mode from the breather in Figure 4

for various α. The different lines represent α = 2.0, 1.5, 1.0, and

0.5 with respective values of λ2 ≈ − 0.79, −0.68, −0.5, and

−0.16. We can see from Eq. 9 that as the imaginary part of λ

increases, the amplitude grows much faster. We search for

patterns in the behavior as α is decreased to see if the nonlocal

operator plays any special part; however, no definitive

conclusion can be reached. Since the modes move to nearly

identical heights, we can confirm that this forms a breather.

This was further confirmed in the behavior of the power

spectrum. This kind of response was seen for all the points

sampled from the focusing case β = γ = −1. If the signs of the

derivatives in x and t are opposite, the behavior is more erratic.

It is important to note that due to the numerical method

requiring periodic boundaries, only integer multiple modes

appear in our simulation.

4 Existence of ground states

In this section, we adopt a numerical method proposed in the

study by Duo and Zhang (2015) called the fractional gradient

flow with discrete normalization (FGFDN) which is designed to

find the ground and first excited states of the fractional

Schrödinger equation in an infinite potential well. In physics

literature, the eigenfunctions that satisfy the equation Lψ = λψ are

commonly called the stationary states, and the eigenfunction

corresponding to λ = 0 is referred to as the ground state. The

eigenvalues and eigenfunctions can be found exactly in the linear

non-fractional case (Greiner, 2001; Bao et al., 2007). However,

the fractional case presents new challenges, and there are few

results available for either the linear or nonlinear case. The

numerical results given by Duo and Zhang et al. (2015) for

the linear case show that the nonlocal interactions from the

fractional Laplacian lead to a large scattering inside the potential

well. Furthermore, a decrease in α leads to stronger scattering. In

the nonlinear case, the local interactions generate boundary

FIGURE 6
Ground states of the fractional Schrödinger equation with temporal dispersion. Results for the linear equation are in (A),while the results of the
nonlinear equation are in (B).
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layers in the ground states, with the first excited states also

forming inner layers.

The method used here is analogous to the normalized

gradient flow used to find stationary states of the standard

Schrödinger equation. The authors Duo and Zhang (2015)

present a novel semi-discretization of the fractional gradient

flow and the fractional operator can be transformed into a

symmetric Toeplitz matrix.

In our adaptation, we increase the dimension by one and add

the central finite difference to account for the temporal

dispersion. We add an infinite potential term to Eq. 1, where

the potential V(x, t) is designed to be infinite outside our

numerical domain, Ω, and equal to zero for points located

inside Ω.

i
zψ

zz
+ −Δx( )α/2ψ + β

z2ψ

zt2
+ γ|ψ|2ψ + V x, t( )ψ � 0. (19)

Herein, we will define the Riesz fractional Laplacian (−Δ)α/2
through the principal value integral (Samko et al., 1993;

Valdinoci, 2009; Du et al., 2012).

−Δ( )α/2ψ x( ) � C1,α ∫ ψ x( ) − ψ y( )
|x − y|1+α dy, (20)

where the normalization constant is given by C1,α = Γ(1 + α)

sin(απ/2)/π and the function Γ(z) represents the

gamma function. Alternative methods have been proposed

that are based on the pseudo-differential representation

given as −(−Δ)α/2ψ(x) � F−1[−|ξ|αF(ψ)], where F is the

Fourier transform and ξ is the wave number in x. The

validity of these methods is still under consideration

(Laskin, (2000c; Guo and Xu, 2006; Dong and Xu, 2007).

By using the principal value integral representation, we

are assured to capture the effects from the nonlocal

interactions.

To find the stationary states, we assume an ansatz for the

wave function as

ψ x, t, z( ) � e−iμzϕ x, t( ), x, z ∈ R, t≥ 0, (21)
where μ ∈ R. Substituting (21) into (19) and using the mass

conservation constraint, we arrive at the eigenvalue equation as

follows:

μϕ x, t( ) � −Δx( )α/2 − β
z2

zt2
− γ|ϕ|2 − V x, t( )[ ]ϕ, , (22)

‖ϕ‖2 � ∫∫ |ϕ x, t( )|2dxdt � 1. (23)

Due to the infinite well potential imposing V(x, t) =∞ outside of

Ω, the problem is reduced to finding the eigenfunction satisfying

(22) and (23) within Ω and that ϕ(x, t) = 0 for (x, t) ∈ R × R\Ω.
We can use the constraint of Eq. 23 to recover the corresponding

eigenvalue after finding the eigenfunction by

μ � ∫∫ ϕp −Δ( )α/2ϕ − βϕpz
2ϕ

zt2
− γ|ϕ|4dxdt. (24)

For the one-dimensional linear Schrödinger equation

(without the time dispersion) using the classical Laplacian

(α = 2) in the infinite well potential, the eigenvalues and

eigenfunctions can be found exactly (Greiner, 2001; Laskin,

2000a). For the nonlinear case, γ ≠ 0, the eigenvalue problem

cannot be solved exactly; however, the solutions to the linear case

give a good approximation for the weakly nonlinear regime when

γ is o(1). For the strongly defocusing case, γ ≫ 1, the leading

order approximation can be found through the Thomas–Fermi

approximation (Zhang, 2006; Bao et al., 2007). When dealing

with the fractional version, Bañuelos (Banuelos and Kulczycki,

2004) provided an approximation of the lower and upper bounds

for the smallest eigenvalue in the linear case for α ∈ (0, 2]. A more

general estimate is later given in DeBlassie (2004) and Chen and

Song (2005) for all eigenvalues. Kwaśnicki (2010) then found

asymptotic approximations to all eigenvalues in the linear case in

a bounded domain. Laskin has provided asymptotic

approximations for the s-th eigenvalue of the linear FSE

(Laskin, 2000b). We will focus on finding the eigenfunctions

and eigenvalues of Eqs 22 and 23.

Since we are searching for the stationary states, we discretize

the operator on the right of Equation 22 (subject to constraint 23)

and numerically propagate the equation until it levels off and

successive iterations no longer change the solution by more than

some small required value. Through a change of variables, we can

rewrite the principal value integral (20) and then set up the

equation as

zϕ

zz
� C1,α ∫∞

0

ϕ x − ξ, t, z( ) − 2ϕ x, t, z( ) + ϕ x + ξ, t, z( )
ξ1+α

dξ

−z
2ϕ

zt2
− γ|ϕ|2ϕ.

(25)
Since ϕ = 0 outside ofΩ, the nonlocal component of the wave

function will only interact with other points inside Ω and the

operator can be discretized as shown in Duo and Zhang (2015)

with the addition of the central finite difference accounting for

the second partial derivative in t.

The initial profile may be given as the 0th eigenfunction of the

standard linear Schrödinger equation. We assume this is a good

TABLE 1 Eigenvalues of the ground states of the fractional
Schrödinger equation with quadratic dispersion in an infinite
potential well.

μ α = 1.9 α = 1.1 α = 0.2

β = 0 4.65 3.64 3.37

β = 1 5.17 4.10 3.75

β = 10 9.33 7.61 6.87

β = 50 23.86 20.36 19.16
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FIGURE 7
Measuring the length of propagation in z before the maximum value of |ψ| begins to decrease. The first appearance of the field contracting is
seen at A ≈ 1.333 for α ≈ 1.36.

FIGURE 8
Measuring the length of propagation in z before the maximum value of |ψ| begins to decrease. The first collapse of the field is seen at the blue
spike at A ≈ 2 for α ≈ 0.96.
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starting point with the idea being that the eigenfunction for the

fractional version is not very different. We use the function:

ϕ x, t, 0( ) � 1
L
sin

π

2
1 + x

L
( )[ ]sin π

2
1 + t

L
( )[ ], (26)

where the domain is defined by x ∈ [ − L, L] and t ∈ [ − L, L].

Figure 6 shows the wave function of the ground states in an

infinite potential well for the linear case (top row) and nonlinear case

(bottom row) for three different values of α (left to right). The wave

function is always symmetric about the x or t axis with respect to the

center of the infinite potential well. As the fractional parameter is

decreased from 2 to 0, we see boundary layers emerge for αwhen it is

small and the layers are more discernible when γ is large. In contrast

to the one-dimensional case from Duo and Zhang (2015), the

boundary layers are not very noticeable for α near 2.

We also see the peak amplitude decrease from 0.986 to

0.847 in the linear case as α decreases from 1.9 to 0.2. The

peak amplitudes for the nonlinear case are also low and decrease

from 0.848 to 0.675.

Our analysis extends the nonlinear parameter to γ = 10. To

have a physical interpretation of this constant, we relate to the

work in the study by Grynko et al. (2018) as an example where

peak intensities reached I ~ 1.2 × 1012W/cm2 and a nonlinear

refractive index coefficient of n2 ~ 7 × 10−15 cm2/W. Multiplying

these together gives the nondimensional constant ~ 10−2. Our
numerical results with the nonlinear refractive index of γ = 10

give peak amplitudes of 0.85. By squaring and multiplying by γ,

we have 0.852 × 10 = 7.225.

Table 1 shows the calculated eigenvalues recovered through

Eq. 24. We see that in the linear case, as α → 0, the eigenvalue

approaches π2/4 (the eigenvalue of the one-dimensional standard

Schrödinger equation). Similarly, as α → 2, the eigenvalue

approaches π2/2 (the eigenvalue of the two-dimensional

standard Schrödinger equation).

FIGURE 9
Collapse event for α = 1. The profile is not radially symmetric.

FIGURE 10
Collapse event for α = 1. The profile is not radially symmetric.
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5 Dynamics of collapse

In this section, we center our attention on the behaviorwhen the

self-focusing nonlinearity is the driving force toward a collapse. An

interesting feature observable in the FNSE is that as α → 0, Eq. 1

approaches the integrable one-dimensional NLSE, and when α→ 2,

Eq. 1 approaches the two-dimensional NLSE. This section explores

the phenomena exhibited throughout the full range of α ∈ (0, 2).

Before we embark in the dynamics at high intensities, we should

highlight that one can rigorously show the existence of the evolving

field for low amplitude initial conditions (Choi and Aceves, 2022).

Using the propagation numerical method mentioned in

Section 2, we provide the simulation with an initial field

profile of ψ(x, t, 0) � Ae−x2−t2 . The first interesting result is

the minimal value of A, where the maximum modulus of

ψ(x, t), located at (x = 0, t = 0), does not initially decrease. In

other words, we search for the point where we see the first

occurrence of the positive self-focusing effect. This happens at

A ≈ 1.333 for α ≈ 1.36 as shown in Figure 7. The figure measures

the distance propagated before max|ψ| decreases, and the various

lines represent different starting conditions. The horizontal axis

represents α between 0 and 2. The contraction from the focusing

only lasts for a brief moment in z after which the field diffracts

and disperses. As A is increased, more values of α above and

below 1.36 also see a similar contraction.

This behavior continues asA increases, and the first appearance of

thefield collapsing to a single point is atA≈ 2withα≈ 0.96. This point
is represented by the blue spike shown in Figure 8. In this section, we

classify the field as a collapse if the full width at half maximum

(FWHM) measurement is reduced to three grid points or below in

FIGURE 11
Measuring themaximumof the ratio of widths near blowup. Each line represents a different initial conditionwith varying A. Increasing the power
brings the field closer to symmetric.

FIGURE 12
Example of the cross-section propagation for α = 0.3. The profile splits into three separate peaks, and the shape fluctuates without collapsing.
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either dimension. As A is increased further, the spike that shows the

largest α that incurs a blowup increases and also happens at a lower

value of z. At A = 2.75, the solution now collapses for the standard

Laplacian (α = 2). Around A = 2.75, the spike on the left has shifted

down to its minimum value before it changes direction and begins to

increase to the right. Subsequently, higher values ofA continue to shift

this spike to the right and the corresponding z decreases.

A well-known feature of solutions with singularities for the

NLS with the standard Laplacian is that the self-focusing effect

causes the amount of power that goes into the singularity to

always be equal to the critical power needed for blowup (Fibich

and Papanicolaou, 1999). It is also shown that for cases where the

initial profile is not radially symmetric when the field is near the

point of collapse, the field approaches a radially symmetric

asymptotic profile (Aceves et al., 1995). In this section, we

show numerically that the same phenomenon does not hold

when the degree of fractionality in one dimension is lowered.

However, as the strength of the nonlinearity is increased, the field

approaches symmetry again at the moment of collapse.

Figure 9 displays an example of an initial profile that starts

radially symmetric in x and t although collapses asymmetrically.

The field is of critical power to cause a collapse and α = 1. As the

profile coalesces toward the center, we first notice the width in t

shrinks first. After which, the width in x shrinks and becomes

thinner than that in t until the blowup occurs. A more detailed

evolution of the field can be seen in Figure 10, where the full

width at half maximum in x and t is measured as the field

propagates, shown in blue and orange, respectively. The

maximum modulus is shown in grey and plotted on the right

axis. We can see the field trending toward a collapse on the right

and a gap between the two widths appears through to the final

collapse. This same gap is present even if the initial condition is

not symmetric but rather wide in x or t.

In an effort to measure the gap dependence on α and the

power, Figure 11 measures the maximum ratio of the widths near

the point of blowup. We see that lower power profiles enable a

larger separation, while higher power profiles prevent the

separation from growing. At higher power levels, the

nonlinearity becomes the driving force that pushes the profile

toward symmetry. As α approaches 2, we see the field move

toward symmetry as expected. Power levels of A = 7.5 and A = 10

were also simulated, and these resulted in symmetry at the

moment of collapse. We will also note that even though the

field becomes symmetric at the end, there are fluctuations in the

shape throughout the simulation.

Values of α < 1 are not included since whether or not the

field collapses are uncertain. Figure 12 shows an example of

the cross-section evolution of a breather profile when α = 0.3.

Herein, the profile actually splits into three different peaks

that remain near the center. The peak height rises and falls;

however, it does not appear to collapse to a single point.

Figure 13 shows the detailed evolution of each FWHM

measurement and peak amplitude.

6 Conclusion

We have proposed a model for short pulse propagation

inspired by a laser cavity design that produces fractional

diffraction in the presence of nonlinearity. This model

generates new dynamics as we study mixed fractional/integer

ordered operator equations. We have presented an exploration

of the stability and spatio-temporal dynamics of the FNSE with

quadratic temporal dispersion. The regions of modulational

instability have been established given a continuous wave

solution. The defocusing case is found to be in agreement with

the standard NLSE in which it is always stable. Two previous

numerical methods that describe the behavior during propagation

and find the ground states have been extended to incorporate the

quadratic dispersion. From the propagationmethod, we find that a

FIGURE 13
Example of the field propagation for α = 0.3. The profile does not collapse and a breather-like procession emerges.
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breather emerges from the MI region. Using the FGFDN, we find

the boundary layers are present when x is near the boundary for α

being small, similar to the one-dimensional case. We have also

analyzed the delicate balance between the diffraction/dispersion

and the focusing nonlinearity. Given that the fractional derivative

is only on the spatial x variable, the field is not radially symmetric

near blowup. Approximate minimal power thresholds are found

that cause the field to first contract through focusing as well as

those that cause a blowup. Propagation of symmetric and non-

symmetric initial conditions are investigated, and we study the

ratio of widths at half maximum. A radially symmetric blowup is

approached as the power is increased, and we shift it into a

stronger nonlinear regime.
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