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The classical free-space solutions of Maxwell’s equations for light propagation

in one dimension include wave packets of any shape that travel at the speed of

light. This includes highly-localised wave packets that remain localised at all

times. Motivated by this observation, this paper builds on recent work by

Southall et al. [J. Mod. Opt. 68, 647 (2021)] and shows that a local

description of the quantised electromagnetic field, which supports such

solutions and which must overcome several no-go theorems, is indeed

possible. Starting from the assumption that the basic building blocks of

photonic wave packets are so-called bosons localised in position (blips), we

identify the relevant Schrödinger equation and construct Lorentz-covariant

electric and magnetic field observables. In addition we show that our approach

simplifies to the standard description of quantum electrodynamics when

restricted to a subspace of states.
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1 Introduction

The problem of describing single-photon states in the position representation has

been a long-standing challenge to physicists. As early as 1948, Pryce (1948) discussed how,

in the case of a photon, there seems to be no possibility of defining a three-dimensional

position operator with commuting components. An equivalent statement is, there can be

no wave function for the photon which is localised in all three dimensions at once. Only a

year later, another by now well known paper by Newton and Wigner (1949) proved that

such a position operator cannot exist for massless particles with a spin greater than one

half (the photon is a spin-1 particle) if the eigenstates of the position operator, or localised

particles, are assumed to have a spherical symmetry. More recently, Hawton and Debière

(2019) noticed that it would be more accurate to say that the photon position operator

must have a cylindrical symmetry rather than a spherical one due to the divergence

condition on free electromagnetic (EM) fields.

The continued research into photon position operators has provided more detailed

analyses and simpler proofs of the localisation problem. Examples are the proof provided

by (Jordan, 1978) and the investigations of Fleming (1965a), Fleming (1965b), Fleming

(2000) and Halvorsen (2001). Possible alternative conditions for a position operator have

also been studied (see e.g., Ref. (Shojai and Golshani, 1997)). Several distinct approaches

to building a position-dependent description of the photon have also come about in this

time. In one instance, Wightmann (1962) reformulated the work of Newton and Wigner

in the framework of imprimitive representations of the Euclidean group. Wightman
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similarly concluded that a photon could not be localised. Later,

Jauch and Piron (1967) generalised some of the axioms in

Wightman’s scheme, developing the notion of weak

localisability. Amrein (1969) showed that combinations of

photons of different helicity are weakly localisable. Other

authors aimed at constructing spin-1 divergence-less single-

photon wave functions whose squared moduli represent some

useful and measurable physical quantity.

For example, Hawton (1999) made progress in this direction

by demonstrating that it is possible to construct transversely

polarised localised photon wave packets provided that one also

takes into consideration the longitudinally polarised components

of the momentum wave function (see also Refs. (Hawton and

Baylis, 2001)). The position operator obtained in this way

differed from Pryce’s earlier position operator by a Berry

connection term. Amongst others, Białynicki-Birula (1994),

Białynicki-Birula (1996), Sipe (1995) and Smith and Raymer

(2007) constructed both first and second quantised solutions of

the massless Dirac equation and obtained wave functions that are

locally related to the Riemann-Silberstein vector and, therefore,

the electric and magnetic field observables. It is often believed

that a local relationship to the field observables is a necessary

condition for any physically significant wave function; perhaps

this view was instigated by the form of the Glauber photo-

detection operators (Glauber, 1963). In the view of Knight

(1961) and Licht (1963), a state can only be localised if a

measurement of either the electric or magnetic field at some

other location view the system as in its ground state. From this

point of view, when the field observables do not commute, single

photon states cannot be localised (Białynicki-Birula and

Białynicka-Birula, 2009).

When a prospective wave function is locally related to the

field observables, the typical square Born rule now provides an

energy rather than a probability causing further difficulties for

the interpretation of the wave function. There are twomethods of

circumventing this problem. One method is to introduce a

modified inner product that has the correct dimensions. This

can be done either by normalising the photon wave function with

respect to photon energy, as is done in Refs. (Białynicki-Birula,

1996) and (Gross, 1964), or by treating the system as a

biorthogonal system (Glauber, 1963; Hawton, 2007a; Hawton,

2007b; Smith and Raymer, 2007; Brody, 2013; Hawton and

Debierre, 2017; Dobrski et al., 2022). For further reading on

biorthogonal systems see, for example, Refs. (Mostafazadeh,

2002; Mostafazadeh, 2003). This approach introduces a non-

standard inner product that normalises the wave functions by a

term with units of energy. The inner product between field states

then has the typical units of probability density, and may

therefore retain its usual probabilistic interpretation. A second

and simpler alternative is to consider excitations of the correct

units as physical, regardless of their relation to the field

observables. This approach was adopted in the development

of the Landau-Peierls wave function (Landau and Peierls,

1930) which has been criticised for its non-local

transformation properties; however, it has since been revived

by Cook (1982a), Cook (1982b) and Mandel (1966) who have

constructed second quantised, position-dependent excitations.

In spite of arguments against such excitations, in this paper

we shall follow a similar second quantised approach to photon

localisation that avoids biorthogonal quantum physics. We shall

assume that the states of photons localised at different locations

are mutually orthogonal to one another such that a photon

localised at a position x cannot be found at x′ ≠ x and vice

versa. In this way, we obtain a theory in which the likelihood of a

photon being found in a certain region of space can be calculated

by means of a projection operator. Moreover, as we shall see

below, this assumption implies that the annihilation and creation

operators of localised photons have bosonic commutator

relations. These are in good agreement with linear optics

experiments with ultra-broadband photons, which confirm the

bosonic nature of these localised photonic particles (Nasr et al.,

2008; Tanaka et al., 2012; Okano et al., 2015; Javid et al., 2021).

As we shall see below, our scheme has many similarities with

previous work by Bennett et al. (2016) which takes a shortcut to

the introduction of particle annihilation and creation operators.

Instead of first verifying their possible existence by establishing a

harmonic oscillator Hamiltonian, the existence of photonic

particles that are the basic building blocks of travelling waves

is simply postulated and the properties of the corresponding

fields are derived by demanding consistency with classical

electrodynamics. The main difference of the approach that we

present here is that we treat the local solutions of Maxwell’s

equations, rather than the monochromatic solutions, as the basic

building blocks of the EM field. Our approach also has some

similarities with the approach by (Ornigotti et al., 2018) which

quantises so-called X waves (Hernandez-Figueroa et al., 2008)

instead of monochromatic waves which are diffraction- and

dispersion-free solutions of Maxwell’s equations. Moreover,

Aiello (2020a) and Aiello (2020b) recently obtained a

phenomenological, non-standard description of the EM field

by considering the monochromatic solutions of the Helmholtz

wave equations and a paraxial wave equation for light

propagation in free space.

However, the localisation of single photons results in another

problem (Halvorsen and Clifton, 2002; Hegerfeldt, 1974;

Hegerfeldt, 1989; Skagerstam, 1976; Fernando Perez and

Wilde, 1977; D. B. Malament and Clifton, 1996). In a paper

published in 1974, Hegerfeldt (Hegerfeldt, 1974; Hegerfeldt,

1989) provided a short proof that, if the probability of

detecting a particle in a certain region of space is given by the

expectation value of some suitably chosen projection operators,

then that same particle will spread out superluminally. A similar

proof was also found by D. B. Malament and Clifton (1996). The

only assumptions made in the derivation of this superluminal

spreading is that the particle Hamiltonian is translation invariant

and bounded from below. More recently, it has been shown that
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the sole cause of the spreading is the lower bound placed on the

Hamiltonian of the system (Hegerfeldt, 1994; Hegerfeldt, 1998).

The problem of superluminal spreading described above also

lies at the heart of a problem which emerged after Fermi

calculated, in 1932 (Fermi, 1932), the minimum time for a

ground-state atom to transition into an excited state through

the absorption of radiation emitted by a second nearby atom. As

one would intuitively expect from causality considerations, he

found that there is a zero probability for this transition to happen

until enough time has elapsed for light to propagate from one

atom to the other. Much later, however, Shirokov (1966) pointed

out that this causal result relied upon an approximation made in

the original derivation. The particular nature of the apparent

non-causal contributions generated in Fermi’s problem have

since been investigated and discussed in a number of different

contexts (Rubin, 1987; Biswas et al., 1991; Milonni et al., 1995;

Borrelli et al., 2012). In 1994, Hegerfeldt demonstrated how,

under quite general assumptions, the second atommay be excited

after arbitrarily short times (Hegerfeldt, 1994). This conclusion

was repudiated by Buchholz and Yngvarson (1994) who argued

that, due to the hyperbolicity of the relevant equations of motion,

a measurement at the second atom cannot learn anything about

the first atom until a sufficient amount of time has elapsed such

that causality is preserved. Moreover, using a magnus expansion

of the time-evolution operator, Ben-Benjamin and Cohen (2020)

has shown that causality is maintained in the strictest sense.

Notwithstanding the conclusions reached by the above

investigations, the superluminal spreading described by

Hegerfeldt and Malament is a significant obstacle to the

introduction of local single-photon wave functions ψ(x, t).

The problem can be traced back to the fact that, in current

theories, localised photons are incapable of displaying

characteristics that are unmistakably present in the solutions

of Maxwell’s equations in free space. From classical

electrodynamics we know that it is possible to generate wave

packets of light of any shape which propagate at the speed of

light, i.e., without dispersion (Hernandez-Figueroa et al., 2008).

To overcome this issue, let us simply assume for a moment that

single-photon wave functions ψ(x, t) exist and determine their

respective properties. In this way, we can identify which

alterations have to be made to the current standard

descriptions of light (Bennett et al., 2016) in order to support

the existence of local photons.

In the following, we consider the two different scenarios

illustrated in Figure 1. In the first scenario, a right-moving single-

photon wave packet with an initial wave function ψ1(x, 0) is

placed near the point x = −a (cf. Figure 1A). In the second

scenario, a left-moving single-photon wave packet with an initial

wave function ψ2(x, 0) is placed near x = a (cf. Figure 1B). If both

wave packets have the same shape, ψ1(x, 0) and ψ2(x, 0) differ at

most such that

ψ1 x, 0( ) � ψ2 x + 2a, 0( ) eiφ (1)

where φ denotes a phase. Otherwise, the probability density of

finding the first photon at x and the probability density of finding

the second photon at x + 2a would not be the same. If the two

wave packets do not overlap in space, they are easily

distinguishable and their state vectors must be pairwise

orthogonal,

〈ψ1 0( )|ψ2 0( )〉 � 0. (2)

From this it follows that the overlap between the state vectors

remains zero at all times and

〈ψ1 t( )|ψ2 t( )〉 � 〈ψ1 0( )|U† t, 0( )U t, 0( )|ψ2 0( )〉
� 〈ψ1 0( )|ψ2 0( )〉 � 0, (3)

if both state vectors evolve unitarily with a time-evolution

operator U(t, 0) with U†(t, 0)U(t, 0) = 1. However, this is not

the case: at the time t = a/c the wave packets overlap and can no

longer be distinguished. Their wave functions differ at most by a

phase factor since

FIGURE 1
The figures illustrate two different scenarios in which a single-photon wave packet of a certain shape travels at the speed of light c in a well-
defined direction. (A) Here the wave packet is initially placed in the vicinity of the point x = −a and moves to the right. (B) Here the wave packet is
located at x = a and moves to the left. At t = 0, the wave packets in both scenarios are easily distinguishable and hence correspond to pairwise
orthogonal states (cf. Eq. 2). However after some time t = a/c, the wave packets reach the point x = 0 in both scenarios and their wave functions
seem to be the same in both cases (cf. Eq. 2), up to an overall phase factor. From this we conclude that the initial states propagate unitarily only if their
respective state vectors belong to separate Hilbert spaces, whichwe label by a parameter s identifying their direction of propagation. In the following,
s = −1 and s = 1 correspond to left- and to right-moving wave packets respectively.
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ψ1 x, t( ) � ψ1 x − ct, 0( ) � ψ2 x − ct + 2a, 0( ) eiφ � ψ2 x, t( ) eiφ.
(4)

For Eq. 3 to hold at all times, the quantum states of left- and

right-moving wave packets must belong to separate Hilbert

spaces. This means they must be characterised by an

additional degree of freedom, namely their direction of

propagation. In the following, we therefore proceed as

originally proposed by Dirac (Dirac, 1958) and also previously

discussed in Ref. (Southall et al., 2021). More concretely, we

distinguish four types of photons and add indices sλ to their wave

functions with s = −1 and s = 1 indicating left- and right-moving

photons respectively while λ � H,V denotes their polarisation.

Next we notice that all photons with a well-defined direction

of propagation s and polarisation λ travel at the speed of light, c

such that

ψsλ x, t( ) � ψsλ x − sct, 0( ). (5)

Replacing the wave functions in the above equation by

superpositions of their respective momentum space wave

functions ~ψsλ(k, t), as suggested by the Fourier transform, one

can now show that

∫∞

− ∞
dk ~ψsλ k, t( ) e±ikx � ∫∞

− ∞
dk ~ψsλ k, 0( ) e±ik x−sct( ). (6)

The fact that this relation must hold for wave packets of any

shape implies that

~ψsλ k, t( ) � ~ψsλ k, 0( ) e∓ isckt, (7)

where the sign in the exponent depends on which Fourier

transform has been used in Eq. 6. Such dynamics can be

generated by the Schrödinger equation of a collection of

harmonic oscillators but, as previously observed in Ref.

(Southall et al., 2021), the corresponding Hamiltonian must

have positive and negative eigenvalues. Notice also that for

any wave packet with only positive or only negative wave

numbers in its spectrum, the sign of the Fourier transform

can always be chosen such that only a Hamiltonian with

positive energy eigenvalues is required. However, this no

longer applies for wave packets with positive and negative k

and a well-defined direction of propagation s.

The arguments presented above illustrate how states

characterised only by position and polarisation, as they are in

the current theory of the quantised EM field (cf. e.g., Ref.

(Bennett et al., 2016)), cannot describe the unitary evolution

of localised wave packets. In addition, they show that a complete

description of the quantised EM field requires a system

Hamiltonian which no longer coincides with the energy

observable of the EM field which only has positive

eigenvalues. In this paper these observations are taken into

account in an alternative approach to quantising the free EM

field for light propagation in one dimension. Our starting point

will be the initial assumption that basic building blocks of light

are single photons that can be localised without becoming

necessarily dispersive. As in Ref. (Southall et al., 2021), we

refer to these localised photons in the following as bosons

localised in position (blips).

There are five sections to this paper. In Section 2, we shall

introduce the equation of motion in position space and construct

a Hilbert space containing a complete set of mutually orthogonal

position states that evolve without dispersion. We shall then

define the usual set of EM field observables up to an overall re-

scaling operator R that obey Maxwell’s equations and act upon

this Hilbert space. We shall further define a Hamiltonian

operator that generates the unitary dynamics of these states.

In Section 3, we shall again construct a Hilbert space for the free

EM field, now in the momentum representation. A

corresponding set of field observables will also be constructed.

Afterwards, in Section 4, we establish a connection between the

two representations, which share the vacuum state. It is shown

that the position- and the momentum-space annihilation

operators can be linked via a Fourier transform in much the

same way as we link local and non-local electric and magnetic

field amplitudes in classical electrodynamics. Moreover, we

identify the re-scaling operator R by imposing Lorentz

covariance. In this way, the momentum representation of this

more complete theory may be compared with the traditional

theory of the quantised EM field, which is typically expressed in

the momentum representation. Finally, we summarise our

findings in Section 5.

2 Quantisation in the position
representation

2.1 Classical electromagnetism

The theory of electromagnetism in one dimension is

concerned with the properties and dynamics of two

fundamental quantities: the electric field E(x, t) and the

magnetic field B(x, t). These two real fields are vector valued,

having components in all three space dimensions, and are

parametrised by a position along a single axis x and a time t,

which represent the position and time at which the fields are

measured. The dynamics of the electric and magnetic fields are

governed by Maxwell equations. In a system in which there are

neither free charges nor free currents, which we call free space,

Maxwell’s equation are given by

∇ · E x, t( ) � 0, ∇× E x, t( ) � − z

zt
B x, t( ),

∇ · B x, t( ) � 0, ∇× B x, t( ) � 1

c2
z

zt
E x, t( ).

(8)

These fields are known as the free fields.

The above equations are not independent, but couple

together different components of both the electric and
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magnetic field vectors. By manipulating Maxwell’s equations we

can determine the six independent second-order equations

z2

zx2
− 1
c2

z2

zt2
( )Oi x, t( ) � z

zx
− 1
c

z

zt
( ) z

zx
+ 1
c

z

zt
( )Oi x, t( ) � 0.

(9)
Here Oi(x, t) represents any of the six components of the E(x,

t) or B(x, t) vectors in a Cartesian basis. The constant c is the

speed of light. By imposing the divergence conditions of Eq. 8 on

the one-dimensional fields, one finds that the x components of

the electric and magnetic fields are constant and, by choice,

vanishing. For a free field propagating in the x direction only, the

electric and magnetic field vectors have components in the y and

z directions only.

In Eq. 9, the one-dimensional wave equation can be

factorised into a product of two, first-order differential

operators. The most general solution of this equation,

therefore, is a superposition of the field vectors that vanish

when acted upon by the differential operators in either set of

brackets. After taking into account the allowed polarisations of

the one-dimensional solutions, one finds that the general

solution for the electric field vector is of the form

E x, t( ) � ∑
s�±1

EsH x, t( ) ŷ + EsV x, t( ) ẑ (10)

where Esλ(x, t) with s = ±1 satisfies the first-order differential

equation

z

zx
+ s

c

z

zt
( )Esλ x, t( ) � 0. (11)

Moreover, ŷ and ẑ are unit vectors that lie parallel to the y and

z axes respectively and are oriented in the direction of the

increasing coordinate. The solutions of this first-order

equation have a dependence on the space-time distance x −

sct only and Esλ(x, t) = Esλ(x − sct). Using either of the curl

conditions in Eq. 8, one may show that the magnetic field is

given by

B x, t( ) � ∑
s�±1

s

c
−EsV x, t( ) ŷ + EsH x, t( ) ẑ( ). (12)

The electric and magnetic field vectors E(x, t) and B(x, t) are
not independent but are mutually propagating and orthogonal to

each other. To solve Esλ(x, t) exactly, one will need to impose a set

of boundary conditions on the fields and their time derivatives at

some chosen time. In one dimension, the energy of the EM field is

given by the expression

Henergy t( ) � ∫∞

− ∞
dx

ε0A

2
E x, t( )2 + c2 B x, t( )2( ). (13)

Here ε0 is the electric permittivity of free space and A denotes

the area that the fields occupy in the y-z plane. The total energy of

the system is a constant of motion.

2.2 Quantisation in position space

2.2.1 Blip states
In the past we have assumed that the basic building blocks of

the EM field are monochromatic photons. Let us now take a

different approach and assume that the fundamental excitations

are a set of spatially localised photonic wave packets that

propagate along the x axis of a Cartesian coordinate system.

We shall call these localised excitations blips, which stands for

bosons localised in position. At any given time t, a blip state can

be fully characterised by its position x along the x axis, a

polarisation λ and a direction of propagation s. As mentioned

in the Introduction, s takes values ±1 with s = +1 indicating

propagation in the direction of increasing x and s = −1 indicating

propagation in the direction of decreasing x. As is usual in one

dimension, λ � H,V.
In the following, we denote the annihilation operators for

these blip excitations asλ(x, t) in the Heisenberg picture and asλ(x)

in the Schrödinger picture. To identify a Hilbert space, we

proceed as usual and first introduce a vacuum state |0〉 for

the EM field. The vacuum state is annihilated by the

annihilation operators asλ(x, t) for all x, t, s and λ:

asλ x, t( ) |0〉 � 0 (14)

and should be normalised such that 〈0|0〉 = 1. As we shall see

below, it is also the minimum energy state of the EM field. The

Hermitian conjugate of asλ(x, t), i.e. a
†
sλ(x, t), is the creation

operator that generates a single-blip excitation state when applied

to |0〉:

|1sλ x, t( )〉 � a†sλ x, t( )|0〉. (15)

By repeatedly applying blip creation operators to the vacuum,

we are able to generate a complete set of multi-particle states that

eventually span the entire Hilbert space. In general, an n-blip

excitation state localised at a position x, propagating in the s

direction and polarised in the λ direction is given by

|nsλ x, t( )〉 � a†sλ x, t( )n��
n!

√ |0〉. (16)

2.2.2 The blip commutation relations
As we have seen above, our system may contain any number

of identical blips. The states that represent them, therefore, are

unchanged when an exchange of blips takes place, and the blip

creation and annihilation operators must each commute

amongst themselves. Hence, we assume in the following that

asλ x, t( ), as′λ′ x′, t′( )[ ] � a†sλ x, t( ), a†s′λ′ x′, t′( )[ ] � 0. (17)

Using the definition of a single-excitation blip state in Eq. 15,

it is possible to show that the commutation relation between blip

creation and annihilation operators is identical to the inner
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product between two single-blip states, and does not necessarily

vanish:

〈1sλ x, t( )|1s′λ′ x′, t′( )〉 � 〈0| asλ x, t( ), a†s′λ′ x′, t′( )[ ]|0〉
� asλ x, t( ), a†s′λ′ x′, t′( )[ ]. (18)

In order for blips to be strictly localised in space, single-blip

states localised at different positions at a given time must be

orthogonal to one another. A state localised at one position then

has no chance of being found anywhere else. Polarisation, we know,

is ameasurable quantity; therefore, states with different polarisations

can be distinguished. As was discussed in the introduction, here we

must treat states parametrised by different s as distinguishable too:

blip states characterised by different s and λmust also be orthogonal.

Hence, in the following we demand that

〈1sλ x, t( )|1s′λ′ x′, t′( )〉 � 〈1sλ x − sct, 0( )|1s′λ′ x′ − s′ct′, 0( )〉
� δs x − sct( ) − x′ − s′ct′( )( ) δs,s′ δλ,λ′

(19)
with δs(x − x′) given by

δs x − x′( ) � ∫∞

− ∞
dk
2π

eisk x−x′( ). (20)

The above inner product is a good choice because it is strictly

positive, translation independent, symmetric with respect to the

position of the blips and real valued. There is also a unit

probability of finding the blip within ( −∞, ∞). Hence, we

find, at equal times, that

asλ x( ), a†s′λ′ x′( )[ ] � δs x − x′( ) δs,s′ δλ,λ′. (21)

This is the bosonic commutation relation which is expected

to hold for all photonic particles.

2.2.3 A fundamental equation of motion
Typically, the dynamics of photon states are calculated using

Heisenberg’s equation of motion. To obtain this equation, we

need to know the Hamiltonian of the EM field which we do not

have yet. When single-photon states are represented in the basis

of energy eigenstates, obtaining a Hamiltonian is a simple

process. However, the blip states have a well defined position

in space and time, and Heisenberg’s uncertainty relation

therefore tells tell us that their momenta and energies are

completely unknown. Consequently, at this stage we cannot

follow the usual approach to obtain an equation of motion.

Fortunately, we may determine the dynamics of blip states and

blip operators by another method.

Blip states represent the localised excitations of the EM field that

propagate at the speed of light. This assumption places a constraint

on the expectation values of the EM fields at different times which

then ensures propagation at a constant speed. This constraint is

given by 〈asλ(x, t)〉 = 〈asλ(x − sct, 0)〉. Since this relation holds for

any time-independent state we can deduce the relation

asλ x, t( ) � asλ x − sct, 0( ). (22)

This equality asserts that, when allowed to propagate freely, a

blip state placed at a position x at time t = 0 will be found at a

position x + sct at the later time t. Rather than invoking

Heisenberg’s equation, we are able to determine the equation

of motion for a blip state using the above condition. By taking the

time derivative of the blip state in Eq. 22 we may show that

z

zt
asλ x, t( ) � −sc z

zx
asλ x, t( ). (23)

This is the fundamental equation of motion for blip states.

2.3 Observables in the position
representation

2.3.1 Field observables
In Section 2.2.1, we constructed a new Hilbert space spanned

by the blip number states (cf. Eq. 16). Next we shall obtain a set of

expressions for the (complex) operators E(x, t) and B(x, t), and
the energy observableHenergy(t). As was shown in Section 2.1, the

classical solutions of Maxwell’s equations in one dimension obey

the blip equation of motion in Eq. 23. Consequently, like the

blips, the solutions of Maxwell’s equations in a one-dimensional

homogeneous medium are wave packets which travel at the

relevant speed of light along the x axis. Hence, in the

following we postulate that the observables of the complex

vectors E(x, t) and B(x, t) are given by

E x, t( ) � ∑
s�±1

c R asH[ ] x, t( ) ŷ +R asV[ ] x, t( ) ẑ( ),
B x, t( ) � ∑

s�±1
s −R asV[ ] x, t( ) ŷ +R asH[ ] x, t( ) ẑ( ). (24)

The above operators are non-Hermitian, and their

expectation values are complex by construction. We assume

here that the actual field expectation values are given by the

real combination (O + O†)/2. We shall resume this convention

throughout the rest of this paper unless wemake specific mention

otherwise. The superoperator R has been added to the above

equation to guarantee their validity. As we shall see below, in

position space, the field observables cannot be written as linear

superpositions of field annihilation and creation operators,

despite this being the case in momentum space.

2.3.2 The regularisation operator
Next let us have a closer look at the properties of this operator

R in Eq. 24, which we shall refer to as the regularisation operator.

First we notice that it cannot depend on x and t, and it must be

symmetric and translation-invariant. It also cannot depend on s

and λ if we aim for a description of light in which the same physics

applies for field vectors of any orientation and travelling in any

direction. Hence R can be understood in a distributional sense

such that
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R asλ[ ] x, t( ) � ∫∞

− ∞
dx′R x − x′( ) asλ x′, t( ), (25)

where R(x − x′) denotes a function that depends only on the

distance between x and x′. Its derivation will be provided later on

in Section 4.2. Similarly, R[a†sλ] is defined such that

R a†sλ[ ] x, t( ) � ∫∞

− ∞
dx′R* x − x′( ) a†sλ x′, t( ). (26)

The purpose of this distribution is to relate the measurable

field observables to a local and causal particle in a possibly non-

local way. As the R superoperator is translation invariant, both

the field observables and the blip states propagate at the speed of

light and satisfy the equation of motion given in Eq. 23. It is then

possible to show that the field observables in Eq. 24, and therefore

also their expectation values, obey the free-space Maxwell

equations. Symmetry of R(x − x′) is assumed due to the

symmetry of the blip states; although their direction of

propagation will be reversed, a parity transformation will only

displace a blip and not change its shape. It is therefore important

that the electric and magnetic fields associated with a single-blip

state are also only translated under a parity transformation.

2.3.3 The energy observable
Themagnitude of the regularisation operator also determines

the energy expectation value of each individual blip state. To

determine the energy observable in terms of the blip creation and

annihilation operators, we substitute the field observables, Eq. 24

in this case, into the expression for the classical energy Eq. 13.

The resulting expression is

Henergy t( ) � ∑
s�±1

∑
λ�H,V

∫∞

− ∞
dx

ε0c2A

4
R asλ[ ] x, t( ) +H.c.( )2.

(27)
Thus, R determines the energy of a blip state. Most

importantly, because of the quadratic form of this observable,

energy expectation values are always positive, as they are in

classical electrodynamics.

2.4 The dynamical Hamiltonian

In this final subsection we would like to show that the equation

of motion for a blip operator can be written as a Schrödinger

equation. More specifically, we would like to show that the field

observables, O(x, t), evolve in the Heisenberg picture according to

Heisenberg’s equation of motion,

z

zt
O x, t( ) � − i

Z
O x, t( ), Hdyn t( )[ ], (28)

for some dynamical Hamiltonian Hdyn(t). To deduce this

Hamiltonian, we initially consider Heisenberg’s equation of

motion for the operator asλ(x, t), which is given by

z

zt
asλ x, t( ) � − i

Z
asλ x, t( ), Hdyn t( )[ ]. (29)

What is interesting about the blip annihilation operators

is that their equation of motion is already known. It can be

found in Eq. 22 which implies Eq. 23. Using these equations

allows us to replace the time derivative on the left-hand side

of Eq. 29 with a space derivative and to write Heisenberg’s

equation as

z

zx
asλ x, t( ) � is

Zc
asλ x, t( ), Hdyn t( )[ ]. (30)

The above equation of motion suggests that the

dynamical Hamiltonian affects the position, but not

the time coordinate, of asλ(x, t). This is not surprising: the

purpose of Hdyn(t) is to propagate wave packets at the speed

of light along the x axis. As the generator of such dynamics,

the Hamiltonian must continuously annihilate blips at their

respective positions x′ while simultaneously replacing them

with excitations of equal amplitudes at nearby positions x″
different from x′.

Taking this into account, we may construct a general

exchange Hamiltonian for blips at different locations:

Hdyn t( ) � ∑
s�±1

∑
λ�H,V

∫∞

− ∞
dx′∫∞

− ∞

dx″ Zsc fsλ x″, x′( ) a†sλ x″, t( )asλ x′, t( ), (31)

where the factor Zsc has been added for later convenience and

where fsλ(x″, x′) is a complex function left to be determined. By

substituting the Hamiltonian in Eq. 31 into our modified

Heisenberg’s equation, Eq. 30, one finds that

z

zx
asλ x, t( ) � i∫∞

− ∞
dx′fsλ x − x′( ) asλ x′, t( ). (32)

From this equation, one is able to verify at once that

fsλ x − x′( ) � ∫∞

− ∞
dk
2π

sk eisk x−x′( ) � −i z

zx
δs x − x′( )

� −i δs′ x − x′( ). (33)

Here δs′(x − x′) denotes the derivative of the delta function
δs(x − x′), which we introduced previously in Eq. 20, with

respect to x.

Overall, the dynamical Hamiltonian Hdyn(t) in Eq. 31 equals

Hdyn t( ) � ∑
s�±1

∑
λ�H,V

∫∞

− ∞
dx′∫∞

− ∞

dx″∫∞

− ∞
dk

Zck

2π
eisk x″−x′( ) a†sλ x″, t( ) asλ x′, t( ). (34)

This Hamiltonian is Hermitian, and therefore a generator of

unitary dynamics. It also satisfies a number of relevant

properties. For example, fsλ(x − x′) is antisymmetric under an

exchange of x and x′. This means that a state that propagates

from x to x′ will only propagate from x′ to x if either s is reversed
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or time is reversed. It also means that a blip with a well-defined

direction of propagation s cannot be replaced by another at the

same position. Moreover, fsλ(x − x′) is translation invariant,

which means that blips propagate identically at all positions, as

would be expected in free space.

Unlike the energy observable in Eq. 27, the dynamical

Hamiltonian in Eq. 34 has both positive and negative

eigenvalues. In the standard quantum field theory, the dynamical

Hamiltonian and energy observable are equal; however, as pointed

out already in the Introduction, this no longer applies to the

quantised EM field. The reason that the two are not the same

will be discussed in Section 3.3, but at present it is necessary for us to

check that the energy of the system is conserved. According to the

Heisenberg equation, the observable for a conserved quantity

commutes with the dynamical Hamiltonian. When the

dynamical Hamiltonian and energy observable coincide, this

property it ensured automatically because all observables

commute with themselves. We must now check that

Henergy t( ), Hdyn t( )[ ] � 0. (35)

Owing to the symmetry of the distribution R(x − x′) and the

antisymmetry of fsλ(x, x′), one can show that this commutator

indeed vanishes.

3 Quantisation in the momentum
representation

In classical electrodynamics, the momentum and position

representations of the EM field complement each other well,

and may be used interchangeably for our convenience. For

example, we often describe light scattering experiments using

Maxwell’s equations, which involve only local field amplitudes.

In such situations, it might be best to use the position space

representation when modelling the quantised EM field. In other

situations, classical electrodynamics introduces optical Green’s

functions and decomposes the EM field into monochromatic

waves to predict general optical properties (Barcellona et al.,

2018). This is when it might be more convenient to consider a

momentum-space representation. In addition to providing us with

a more complete formulation of the quantised EM field, by

investigating the momentum representation, we shall be able to

examine more closely the relationship between the description of

the previous section and the standard quantum optics description

of the quantised EM field (Bennett et al., 2016).

3.1 Quantisation in momentum space

3.1.1 Photon states
From classical electrodynamics, we know that the set of

travelling waves with wave numbers k ∈ ( −∞, ∞) and two

different polarisations λ provide a complete set of solutions of

Maxwell’s equations for light propagation in one dimension.

Usually, in momentum space, we therefore describe the

quantised EM field with the help of annihilation operators akλ
with k and λ referring to the corresponding photon wave number

and polarisation respectively (Bennett et al., 2016). However,

when applying a Fourier transform to the blip annihilation

operators asλ(x, t) introduced in Section 2.3, we obtain

annihilation operators ~asλ(k, t). In the following we assume that

~asλ k, t( ) � ∫∞

− ∞
dx���
2π

√ e−iskx asλ x, t( ) (36)

represent the annihilation operators of monochromatic photons

with the inverse transformation

asλ x, t( ) � ∫∞

− ∞
dx���
2π

√ e−iskx asλ k, t( ). (37)

Notice that the ~asλ(k, t) operators are labelled by three

parameters, s = ±1, k ∈ ( −∞, ∞) and λ � H,V. As we shall

see below and as pointed out already in Ref. (Southall et al., 2021),

the position space representation of the EM field which we

introduce in this paper leads to a doubling of its Hilbert space

compared to the standard description (Bennett et al., 2016). The

need for this doubling is not surprising. While the electric field

amplitudes of classical electrodynamics are always real, the wave

functions of photons have complex coefficients and hence their

description requires an additional degree of freedom. The

reasons for including the factor s in the exponents of the

Fourier transforms in Eqs 36, 37 will become more obvious

below. For example, by choosing the signs of the exponents in the

above way, we ensure that left- and right-moving wave packets

have a different Fourier decomposition in momentum space,

even when their position space coefficients are the same and the

wave packets are of the same shape.

Usually, for light propagating along the x axis, the wave

number k is the x component of the wave vector which is oriented

in the direction of propagation. Moreover, its magnitude |k|

relates to the angular frequency ω through ω = c|k|. In this

section, we adopt the convention that the x component of the

wave vector is given by sk (Southall et al., 2021). The parameter s,

as before, indicates the direction of propagation. We include it in

the definition of the wave vector so that an inversion of the

direction of propagation, i.e., replacing s by − s, reverses the wave

vector, as a change in direction usually does. In this way, k loses

its traditional interpretation. Nevertheless, to ensure that the

Fourier transform in Eq. 37 is invertible, we must assume that k

can take any real value (Howell, 2001).

In the following, we refer to the energy quanta obtained when

applying ~a†sλ(k, t) to the vacuum state as photons, but one should

notice that these photons are not exactly the same as the photons

in the standard description of the EM field (Bennett et al., 2016).

For example, the coherent states of the operators ~a−1λ(−k, t) and
~a+1λ(k, t) both may have exactly the same electric field
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expectation values. But superposing ~a−1λ(−k, t) and ~a+1λ(k, t)
photons creates left- and right-moving wave packets respectively.

Both operators ~a−1λ(−k, t) and ~a+1λ(k, t) are associated with

different dynamics. As pointed out already in Section 1, although

the standard akλ operators can be used to create wave packets

with electric field expectation values of any shape, they cannot

create localised wave packets of arbitrary shape which move at

the speed of light, i.e. without dispersion, in a well-defined

direction.

As in position space, the total Hilbert space of the quantised

EM field can be obtained by applying creation operators

repeatedly to the vacuum state. Because of the linearity of the

above equations, the vacuum state |0〉 is still the state for which

~asλ k, t( ) |0〉 � 0 (38)

for all s, λ, k and t. As in Section 2.2.1, by applying a creation

operator ~a†sλ(k, t) to the vacuum state once we obtain a single

photon state

|1̃sλ k, t( )〉 � ~a†sλ k, t( )|0〉. (39)

As in Section 2.2.2, by applying a creation operator ~a†sλ(k, t)
to the vacuum state an arbitrary number of times, we may

generate states containing any number of photons. For example,

|~nsλ k, t( )〉 � ~a†sλ k, t( )n�
n

√ |0〉 (40)

is a state with exactly n excitations in the (s, k, λ, t) photon mode.

3.1.2 The photon commutation relations
Next we determine a set of commutation relations for the

annihilation and creation operators ~asλ(k, t) and ~a†sλ(k, t).
Because photons are bosons, multi-photon states are

unchanged when two or more photons are exchanged. This

leads us to the typical commutation relation for bosonic particles:

~asλ k, t( ), ~as′λ′ k′, t′( )[ ] � ~a†sλ k, t( ), ~a†s′λ′ k′, t′( )[ ] � 0. (41)

These relations are analogous to and in agreement with Eq.

17. If annihilation operators—and creation operators

respectively—commute with each other in position space, the

same must hold in momentum space, since both are connected

via Fourier transforms. Substituting Eq. 36 into the blip

commutator relations in Eq. 21 and performing the resulting

integrals, one can moreover show that

asλ k, t( ), a†s′λ′ k′, t( )[ ] � δ k − k′( ) δs,s′ δλ,λ′. (42)

Hence the single-photon states in Eq. 39 can be shown to be

orthogonal to one another;

〈1̃sλ k, t( )|1̃s′λ′ k′, t( )〉 � 〈0| asλ k, t( ), a†s′λ′ k′, t( )[ ]|0〉
� δ k − k′( ) δs,s′ δλ,λ′, (43)

as they are in standard quantum electrodynamics. As one would

expect, the photons that we consider in this section are bosonic

particles.

3.1.3 The fundamental equation of motion
We may now determine the time-dependence of the photon

creation and annihilation operators by substituting the Fourier

transform in Eq. 36 into the equation of motion of the blip

annihilation operators asλ(x, t) which can be found in Eq. 22.

Doing so, one is then able to verify that the time-dependent

photon annihilation operators evolve such that

~asλ k, t( ) � e−ickt ~asλ k, 0( ). (44)

This equation is the usual equation of motion of the

quantised EM field in momentum space and shows that

photons oscillate with an angular frequency ck. However,

since k now varies between − ∞ and + ∞, the angluar

frequency ck can be positive and negative. This is important

because, without considering the full range of frequencies, the

Fourier transform in Eq. 37 would not have an inverse

transformation (cf. Eq. 36). As we have illustrated in the

Introduction and as we have seen in the previous section, this

is not a problem. As we shall see below, photon states always have

positive energy expectation values. This is possible since the

energy observable Henergy(t) of the quantised EM field no longer

coincides with the generator of its dynamics.

3.2 Observables in the momentum
representation

3.2.1 Field observables
As mentioned above, it is often convenient to express the

position-dependent electric and magnetic fields in their Fourier

representations. In the following, we denote them ~E(k, t) and
~B(k, t) respectively. Like the fields themselves, they are 3-vector

valued, and, in this case, they are parametrised by a time t and a

real wave number k. As we have seen in Section 2, each individual

component of the electric and magnetic field vectors are linear

superpositions of travelling waves with a well-defined direction

of propagation s and polarisation λ. Since the Fourier transform

is linear, the same applies to their Fourier components and

~O k, t( ) � ∑
s�±1

∑
λ�H,V

~Osλ k, t( ) (45)

with O = E, B. The different components in this equation have

different Fourier modes and

Osλ x, t( ) � ∫∞

− ∞
dk���
2π

√ eiskx ~Osλ k, t( ),
~Osλ k, t( ) � ∫∞

− ∞
dx���
2π

√ e−iskx Osλ x, t( )
(46)

Frontiers in Photonics frontiersin.org09

Hodgson et al. 10.3389/fphot.2022.978855

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.978855


for all transformation to be consistent with Eqs 36, 37. Keeping this

in mind and applying the respective Fourier transform to the

differential equation in Eq. 11, one may show that the electric

field ~Esλ(k, t) satisfies the first-order differential equation

ick + z

zt
( )~Esλ k, t( ) � 0. (47)

In analogy to standard quantisations of the EM field, in which

the system is described as a collection of simple harmonic oscillators

(Heitler, 1953), one can show that the complex electric andmagnetic

field observables ~E(k, t) and ~B(k, t) are linear combinations of the

photon annihilation operators of the form

~E k, t( ) � ∑
s�±1

cΩ k( ) eiφ k( ) ~asH k, t( ) ŷ + ~asV k, t( ) ẑ( ),
~B k, t( ) � ∑

s�±1
sΩ k( ) eiφ k( ) −~asV k, t( ) ŷ + ~asH k, t( ) ẑ( ). (48)

Here Ω(k) is a k-dependent numerical factor. By introducing

the k-dependent phases φ(k), we may assume thatΩ(k) is real. In

the standard approach, the above equations can be justified by

noticing that the corresponding energy observable Henergy(t)

must take the form of a harmonic oscillator Hamiltonian

(Bennett et al., 2016). Here it can be justified by substituting

Eq. 44 for the dynamics of the ~asλ(k, t) operators into the above

equations and checking that Eq. 47 holds.

3.2.2 Normalisation of electric and magnetic
field amplitudes

However, the fundamental equation of motion, Eq. 44,

cannot be used to determine Ω(k) eiφ(k). The factor Ω(k) is a

function of kwhich determines the field amplitudes and therefore

also the energy of a single photon in the (k, s, λ) mode. Due to the

homogeneity of the EM field, we can safely assume thatΩ(k) does
not have any dependence on the parameters s or λ. For the time

being we shall not specifyΩ(k) any further, but we shall return to

this function in Section 4.1.

3.2.3 The energy observable
For completeness we now also derive the energy observable

of the quantised EM field, Henergy(t), in the momentum

representation. Taking again the expression for the classical

field energy, Eq. 13, as our starting point and substituting in

for the classical fields the position-dependent field observables in

their Fourier representations, one finds that

Henergy t( ) � ∑
s�±1

∑
λ�H,V∫∞

−∞
dk

ε0c2A

4
Ω k( )eiφ k( ) ~asλ k,t( )+Ω* −k( )e−iφ −k( ) a†sλ −k,t( )���� ����2.

(49)
The expectation values of the above energy observable are

again positive. This is guaranteed by the modulus in the

integrand. Moreover, we notice that the above energy

observable has an explicit dependence on the choice of phase

φ(k). When we restrict this theory to positive wave numbers only,

this dependence disappears; however, we cannot make that

assumption here. The absolute phase of a field is not

observable, and therefore should not influence the energy of

the field. To remove this unwanted dependence we must impose

the following condition:

φ k( ) � −φ −k( ). (50)

One can see that the phase gained by evolving the system in

time is of this form. By substituting into this expression the

explicit time dependence of the photon operators given in Eq. 44,

one can verify that the energy observable is time-independent.

3.3 The dynamical Hamiltonian

Using Eq. 44 one can show that the n-photon states

|~nsλ(k, t)〉 in Eq. 40 are, up to the accumulation of a time-

dependent phase factor, invariant under the dynamical evolution

of the EM field. Hence they must be eigenstates of the dynamical

Hamiltonian Hdyn(t). The eigenvalue corresponding to the state

|~nsλ(k, t)〉 is nZck. Given the bosonic commutation relation in

Eq. 42, it is therefore straightforward to show that the dynamical

Hamiltonian is given by

Hdyn t( ) � ∑
s�±1

∑
λ�H,V

∫∞

− ∞
dk Zck ~a†sλ k, t( ) ~asλ k, t( ). (51)

in momentum space. Using Eq. 44, it is possible to show that

the dynamical Hamiltonian is time independent. Moreover,

using the Fourier transforms which we introduced at the

beginning of this section (cf. Eqs 36, 37), one can check that

this Hamiltonian is the same as the dynamical Hamiltonian

which we obtained previously.

In Section 2.4, we pointed out that the dynamical

Hamiltonian for blip states had both positive and negative

eigenvalues. This ensures that the dynamics of localised light

pulses is reversible: light moving to the left is indistinguishable

from light moving to the right when time is reversed. Here we

have found that, if our system contains photons of negative k,

then the dynamical Hamiltonian in this representation also

possesses positive and negative eigenvalues. In the momentum

representation, the dynamical Hamiltonian, being diagonal, takes

a much simpler form than the equivalent expression in the

position representation (cf. Eq. 34).

4 The importance of position and
momentum representations

In the remainder of this paper let us emphasize that both the

position and the momentum space quantisation approaches are
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important to obtaining a complete picture of the quantised EM

field. For example, studying the EM field in position space has

helped us to identify an otherwise hidden degree of freedom,

namely the parameter s which characterises the direction of

propagation of wave packets of light. In Section 2, we

determined the Hilbert space for the modelling of light

propagation in one dimension. By solving Maxwell’s

equations, we were also able to derive sets of field observables

in addition to constructing a dynamical Hamiltonian that

describes the time-evolution of the system. However, we were

not able to determine the regularisation operator R which

establishes a the relationship between the local blip

annihilation operators and electric and magnetic field

observables.

Although both the position and the momentum descriptions

that we present here are essentially equivalent, it easier to

determine the normalisation factors of electric and magnetic

field observables in momentum space. In the following, we

determine these normalisation factors. The Fourier transforms

in Eqs 36, 37 allow us to alternate freely between the position and

momentum representations at our pleasure. Once we have

identified Ω(k), we can then draw conclusions about the effect

of the position space regularisation operator R. Finally, in this

section, we have a closer look at the relationship between our

approach and the standard description of the quantised EM field

in momentum space. It is shown that the standard approach

emerges when we restrict the photon annihilation operators that

we consider in this paper to a certain subset.

4.1 Lorentz covariance

In Section 3.2, we were able to define the electric and

magnetic field observables only up to a k-dependent factor

Ω(k) which was shown to be directly related to the energy of

a photon. One way to determine this factor is therefore to

presume the energy of a photon and to work backwards.

Another method is to ensure that the electric and magnetic

field observables transform correctly under the proper

orthochronous Lorentz transformations. In the following we

shall follow this latter approach.

For excitations restricted to propagate in one dimension, the

possible transformations, denoted by the greek letter Λ, are

translations in x and t, and rotations about and boosts along the x

axis. The inner product between two states is a Lorentz scalar, and is

therefore unchanged by any of the transformations above. Naturally,

these changes of reference frame induce a unitary operation on a state,

which we shall denote U(Λ). Let us consider initially such

transformations on a normalised single-photon state |ψ〉. If we

assume that the vacuum state is invariant under Lorentz

transformations, a transformed single-photon state is given by

U Λ( )|ψ〉 � ∑
sλ

∫∞

− ∞
dk ~ψ k( )U Λ( ) ~a†sλ k( )U† Λ( )|0〉. (52)

Under a translation or a rotation, the photon creation

operator gains only a phase factor (Weinberg, 1995). The

Lorentz boosts along the x axis, however, involve a more

interesting transformation. Let us choose the particular

transformation Λ that causes a Doppler shift of the wave

number k to the new wave number p. Let us further assume

for simplicity that there is no rotation about the x axis so that s

and λ are unchanged. By taking into account that the Lorentz-

invariant measure for an integral over k is given by dk/|k|, under a

Lorentz boost, the normalised inner product 〈ψ|ψ〉 is form

invariant only when

U Λ( ) ~a†sλ k( )U† Λ( ) �
���
p

k

∣∣∣∣∣∣ ∣∣∣∣∣∣√
~asλ p( ). (53)

In classical electromagnetism, the electric and magnetic field

vectors in a Cartesian basis are the components of an

antisymmetric rank-2 tensor given in the same basis, which

have particular transformation properties when a change of

reference frame is made, either by moving the field or moving

ourselves (see, for example, (Griffiths, 2017)). We should expect

that the expectation values of the field observables E(x, t) and B(x,
t) transform in just the same way. Using the transformation of

photon operators given in Eq. 53, we may show that the correct

transformation occurs when

Ω k( ) �
���|k|√

Ω0. (54)

If we want the expectation values of the energy observable,

Henergy(t) in Eq. 49, and of the dynamical Hamiltonian,Hdyn(t) in

Eq. 51, to be the same, at least in some cases, we must choose

Ω0| |2 � 2Z
ε0cA

. (55)

The latter equivalence only holds for states with positive

values of k. In general, the above choice of Ω0 implies that the

energy of a single photon in the (s, k, λ) mode equals Zc|k|.

4.2 The regularisation operator revisited

In the beginning of Section 3, we describe how to switch

between the momentum and position representations of field

observables with the help of Fourier transforms. Combining Eqs

24, 36 with Osλ(x, t) = asλ(x, t), one arrives at the expressions

E x,t( ) �∑
s�±1

∫∞

−∞
dk���
2π

√ cei skx+φ k( )( ) R ~asH[ ] k,t( )ŷ+R ~asV[ ] k,t( )ẑ( ),
B x,t( ) �∑

s�±1
∫∞

−∞
dk���
2π

√ sei skx+φ k( )( ) −R ~asV[ ] k,t( )ŷ+R ~asH[ ] k,t( )ẑ( ).
(56)
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Moreover, substituting the results in Eqs 54, 55 into the

Fourier transforms (cf. Eq. 36) of the electric and magnetic field

observables in Eq. 48, we find that

E x,t( )� ∑
s�±1

∫∞

−∞
dkc

�����
Z|k|
ε0πcA

√
ei skx+φ k( )( ) ~asH k,t( ) ŷ+ ~asV k,t( ) ẑ( ),

B x,t( )� ∑
s�±1

∫∞

−∞
dks

�����
Z|k|
ε0πcA

√
ei skx+φ k( )( ) −~asV k,t( ) ŷ+ ~asH k,t( ) ẑ( ).

(57)
A comparison of the above sets of equations enables us to

determine the action of the superoperatorR on the photon creation

and annihilation operators in momentum space and to show that

R ~asλ[ ] k, t( ) �
�����
2Z|k|
ε0cA

√
~asλ k, t( ). (58)

In the momentum representation, in order to regularise the

photon operators we multiply them by the k-dependent factor

(2Z|k|/ε0cA)1/2. As expected from the symmetries of the

quantised EM field, the superoperator R has no dependence

on x, t, s or λ.

In Eq. 56, we assumed that the regularised blip operators,

which by themselves are the Fourier transforms of the photon

operators, are equal to the Fourier transforms of the regularised

photon operators. The action of the regularisation superoperator

R on a blip annihilation operator can therefore be determined by

Fourier transforming into the momentum representation,

regularising the photon operators and performing the inverse

Fourier transformation. One will find that the action of the

regularisation operator on a blip annihilation operator is of

the type given in Eq. 25 where the function R(x − x′) is given by

R x − x′( ) � ∫∞

− ∞
dk
2π

�����
2Z|k|
ε0cA

√
eisk x’−x′( ). (59)

The above trick of introducing the superoperatorR allows us

to describe the quantised EM field in position space in terms of

local bosonic blip operators without having to sacrifice the

Lorentz covariance of the local electric and magnetic field

observables. Importantly, however, this distribution is not

local in the same way that the Dirac delta function is. We can

see this by evaluating the function R(x − x′) at values x ≠ x′:

R x − x′( ) � −
������

Z

4πε0cA

√
· 1

|x − x′|3/2. (60)

This means that the field observables are not a simple linear

superposition of blip operators defined at the same point.

However, since it is easier to work with bosonic annihilation

and creation operators, we can perform all calculations in the

Hilbert space created by the local bosonic operators. More will be

said on this feature in Sections 4.3, Sections 5. As a final point, we

may mention that, due to the equivalence of the field observables,

the energy observable is also equal in both representations.

4.3 Comments on field and blip
localisation

Alternatively, some authors might prefer to work with non-

locally acting photon annihilation operators with a closer link to

local field observables (Hawton, 2019; Southall et al., 2022). Such

operators are given by

Asλ x, t( ) � R asλ[ ] x, t( ) (61)

and describe excitations that share the vacuum state with the blip

excitations. The reason we differentiate between blip operators,

asλ(x, t), and the field excitations, Asλ(x, t), is that the blip

operators possess a set of bosonic commutation relations with

respect to the conventional inner product of quantum physics (cf.

Eq.21). In contrast to this, the commutation relation of the Asλ(x,

t) operators is given by

Asλ x, t( ), A†
s′λ′ x′, t( )[ ] � ∫∞

− ∞
dk |k| eisk x−x′( ) δss′ δλλ′. (62)

Nevertheless, as one can see for example from Eq. 24, the

energy quanta associated with the Asλ(x, t) operators can be

linked more easily to local electric and magnetic field amplitudes.

Indeed, their expectation values have the units of (energy

density)1/2 and not (probability density)1/2 as would be

expected for a wave function compatible with the Born rule.

With respect to the conventional inner product of quantum

physics, the single field excitations, |1Asλ(x, t)〉 � A†
sλ|0〉, are not

orthogonal to one another. Because of Eq. 62, one can show that

〈1 A( )
sλ x, t( )|1 A( )

s′λ′ x′, t( )〉 � 〈0| Asλ x, t( )|A†
s′λ′ x′, t( )[ ]|0〉 ≠ δ x − x′( ).

(63)
Although we shall not make use of it here, for completeness, it

is worth mentioning here that it is possible to construct a Hilbert

space in which the field excitations associated with the Asλ(x, t)

operators can be treated as local. This is achieved by introducing a

new inner product—labelled by superscript (A)—such that

〈1 A( )
sλ x, t( )|1 A( )

s′λ′ x′, t( )〉 A( ) � δ x − x′( ). (64)

Under this new inner product, the single-photon field excitations

form an orthogonal basis of states in the position representation.

However, this new inner product drastically alters theHilbert space of

the quantised EM field. For example, some previously Hermitian

operators are now no longer Hermitian, whereas others—previously

non-Hermitian—become Hermitian. For this reason, this approach

is known as “biorthogonal” or “pseudo-Hermitian” quantum

mechanics. It is an interesting area of physics that has attracted a

lot of attention in the field of local quantum electrodynamics

(Hawton, 2007b; Smith and Raymer, 2007; Brody, 2013; Hawton,

2019). Although this is a very elegant way of restoring orthogonality,

constructing a biorthogonal system introduces complexities that are

by nomeans necessary to our understanding of the dynamics of local

photons (Southall et al., 2022).
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4.4 The relation to standard descriptions

In this final subsection, we compare the description of the

EM field in Section 3.2 with the standard description of the

quantised EM field inmomentum space and ask which additional

assumptions have to be made for the latter to emerge. Looking at

Eqs 49, 51 when Ω(k) is given by Eq. 54, we can see that the

energy observable and the dynamical Hamiltonian coincide

when the negative-frequency photons are excluded and we

restrict ourselves to positive values of k. As one can check

relatively easily, in this case, the real parts of the local field

observables in Eq. 48 reduce to their more usual expressions

(Bennett et al., 2016). As we know, the positive-frequency photon

states provide a complete description of the quantised EM field in

the sense that they can be superposed to reproduce the right

electric and magnetic field expectation values for wave packets of

any shape. However, as we have seen in the introduction, they are

not sufficient to generate the quantum versions of all possible

solutions of Maxwell’s equations, like highly-localised wave

packets that remain localised (Hegerfeldt, 1989).

5 Discussion

The results in this paper are based on the following basic

aspects of classical physics which must hold simultaneously.

Firstly, in one dimension, we can localise wave packets of

light to arbitrarily small length scales, i.e., at positions x.

Secondly, measurements are constant on the light cones. In

Section 2, we used these properties to construct a

straightforward and natural description of one-dimensional

quantised EM fields in position space. Our starting point is

the assumption that we can generate local particles of

light—so-called bosons localised in position (blips)—by

applying bosonic creation operators a†sλ(x, t) to the vacuum

state |0〉. Using the above postulates, we then identified their

Schrödinger equation and constructed electric and magnetic field

observables E(x, t) and B(x, t) that are consistent with Maxwell’s

equations. The Lorentz covariance of these field operators is

achieved with the help of a regularisation superoperator R (cf.

Eqs 24, 25, 60). Although the blips themselves are local, they

carry non-local fields which can be felt in a region of space

surrounding the blips. Moreover, blip states can be used to

construct wave packets of light of any shape which remain

local when travelling at the speed of light along the x axis.

In addition, we asserted in this paper that the position and

momentum representations of the free EM field in our theory are

equivalent representations of the same physical system. This

expression of equivalence assumes the following three

conditions:

(1) The momentum and position Hilbert spaces have the same

vacuum state |0〉.

(2) There is a linear, invertible transformation between the

position and momentum space annihilation operators,

asλ(x, t) and ~asλ(k, t), that preserves their bosonic

commutation relations (cf. Eqs 21, 42).

(3) All observables of the quantised EM field are equal in either

representation.

The third condition guarantees that the expectation values of

observables are identical in both representations. It also

guarantees that the position representation of the EM field is

Lorentz covariant. This is indeed the case if the normalisation of

electric and magnetic field observables is carried out as described

in Section 4.

Finally, by writing the blip excitations as superpositions of

monochromatic photons, we have shown that our approach is

consistent with the standard theory of the quantised EM field

with the addition of countable negative-frequency states.

Previously, these states have been widely overlooked but the

concept of adopting them to negate the consequences of

Hegerfeldt’s theorem (Hegerfeldt, 1989) is not new. The idea

of negative-frequency excitations has long been realised as

important in a local description of light. For instance, Allcock

pointed out that negative frequency modes were necessary to

define states that have a well-defined and measurable time of

arrival (Allcock, 1969a; Allcock, 1969b; Allcock, 1969c). It is clear

from Property 2 above that we can specify when a blip state will

arrive at any given position. Negative-frequency field solutions

have also been considered in Refs. (Mandel, 1966; Cook, 1982a;

Cook, 1982b; Conforti et al., 2013; Bostelmann and Cadamuro,

2016; Dickinson et al., 2016; Hawton and Debierre, 2017; Hawton,

2019; Hawton, 2021). In this paper, by introducing local particles

of light with a given direction of propagation, we have clarified how

these solutions arise naturally in a covariant quantised theory. In

addition, we exposed some consequences of a theory containing

these states, such as the difference between the energy observable

Henergy(t) and the generator for time translation, i.e., the dynamical

Hamiltonian Hdyn(t) (Southall et al., 2021).

In classical electrodynamics, a local description of the EM

field is often preferable to a non-local description. Similarly, we

expect that the modelling of the quantised EM field in terms of

blip states is often preferable to the standard description in terms

of monochromatic photon states. For example, the position space

representation in Section 2 should provide an extremely useful

tool for modelling the quantised EM field in inhomogeneous

dielectric media and on curved spacetimes (Maybee et al., 2019).

Moreover, a local description is advantageous when modelling

local light-matter and local light-light interactions. For example,

in Ref. (Southall et al., 2021), we used the blip annihilation

operators asλ(x, t) to construct locally-acting mirror

Hamiltonians. Other potential applications of the results in

this paper include providing novel insight into fundamental

effects, like the Fermi problem, the Casimir effect and the

Unruh effect, as well as the modelling of linear optics
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experiments with ultra-broadband photons (Nasr et al., 2008;

Tanaka et al., 2012; Okano et al., 2015; Javid et al., 2021).
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