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Introduction

For decades, information and communication technologies have exploited the
properties of light to transport an ever-increasing amount of data to provide massive
connectivity and broadband services. Optical fibers have replaced copper cables in long-
haul transmission links, inter- and intra-datacenter communications, and fiber-to-the-
home access networks. Although photonics is well-established for high-capacity
transmission, its use in computing is still largely unexploited.

This is because Moore’s scaling of digital electronic processors and the use of parallel
and distributed computing architectures have satisfied the need for increasingly better
computer performance. However, with the advent of the deep learning era, after around
2010, computing power started doubling approximately every 4 months, which is much
faster than Moore’s law Zhang and Nauman (2020); Sevilla et al. (2022) (see Figure 1).
Supercomputers are rapidly approaching the exascale era, in which requirements regarding
latency, bandwidth, and energy consumption are challenging for digital electronics. In
addition to this, the explosive growth of artificial intelligence (AI) and machine learning,
and their penetration into everyday life, is forcing us to reconsider the traditional way
computers work Xu and Jin (2023), and post-Moore paradigms and computer architectures
need to be seriously considered Shalf (2020). Centralized architectures are indeed inefficient
in implementing models used for artificial neural networks (ANN), which are inherently
distributed and require massive parallel interconnections between a multitude of
elementary computing units Jain et al. (1996).

Furthermore, we should consider that, even though we presume that all information is
digital, “real” data, such as images, sounds, and objects, are inherently analog in their nature.
If, on the one hand, digital computing does allow very complex processing, on the other
hand, as the volume of data increases, digital operations become increasingly less
sustainable. Today, for applications requiring massive computing, there is great interest
in reconsidering analog technologies, which use dedicated circuits to efficiently process
large amounts of data at very high speed Ambrogio et al. (2023).

In this scenario, photonics is emerging as a promising technology to enable the
sustainable development of high-performance computing (HPC) Kitayama et al. (2019).
Not only can photonics provide fast and high-capacity interconnections among distributed
processors Thraskias et al. (2018), it can also perform calculations efficiently inside them
Stroev and Berloff (2023). Mapping mathematical operations onto photonic hardware
enables the implementation of accelerators for neuromorphic computing Shastri et al.
(2021), analog optical processors Giamougiannis et al. (2023); Wu et al. (2022), and
quantum integrated processors Harris et al. (2017); Corrielli et al. (2021). Several examples
of programmable photonic circuits for advanced optical computing and quantum
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FIGURE 1
Increase of computing power [petaFLOPS per day] over the past years. Image reproduced from Zhang and Nauman (2020) under a Creative
Commons licence CC BY 4.0.

FIGURE 2
Examples of photonic architectures performing computation in the optical domain. (A) Diffractive deep neural network trained for all-optical
classification of handwritten digits: the diffractive optical surfaces are trained to provide amplitude and phase spatial modulation on a transmitted optical
beam in order to implement cascaded artificial neurons Mengu et al. (2020). (B) Programmable nanophotonic processor made of cascaded integrated
Mach Zehender interferometers realizing weight matrix multiplication in an photonic NN Zhang et al. (2021); (C)Microring resonator (MRR) weight
banks providing non-coherent weighted additions in photonic NNs: incoherent wavelength division multiplexed (WDM) optical signals are summed by
balanced photodetectors, whose current represent the sum of the WDM weigthed by the MRRs Tait et al. (2018). (D) Schematic of a recursive
programmable photonic structure with optical feed-back loop solving linear integral and differential equations, and performing matrix inversion
Tzarouchis et al. (2022). Panels (A,B and D) reproduced under a Creative Commons licence CC BY 4.0. Panel (C) reprinted with permission from Tait et al.
(2018) © Optical Society of America.
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processing have been recently proposed Bogaerts et al. (2020).
Multiplications and accumulations (MACs) and matrix-vector
multiplications (MVMs) Zhou et al. (2022), which are the most
time- and energy-consuming operations in ANNs, can be efficiently
performed directly in the optical domain by exploiting diffractive
free-space devices (Figure 2A) Lin et al. (2018); Mengu et al. (2020)
andmulti-plane light converters (MPLCs), or coherent feed-forward
meshes of interferometers (Figure 2B) Shen et al. (2017); Zhang et al.
(2021); Pai et al. (2023b) or non-coherent filter banks based on
wavelength division multiplexing (Figure 2C) Tait et al. (2018); de
Lima et al. (2019). Such accelerators are expected to enable
processing speeds of petaMAC operations per second per mm2

and energy efficiencies of attojoule per MAC Nahmias et al.
(2020); Nozaki et al. (2019). Recursive programmable photonic
circuits with optical feedback structures have been proposed as
mathematical co-processors and reconfigurable solvers of several
classes of integral/differential equations (Figure 2D) Tzarouchis
et al. (2022).

To make these proof-of-concept photonic devices evolve
toward mature large-scale computing systems, research in
“neuromorphic photonics and photonic computing” needs to
tackle several open challenges that vertically span from the
investigation of novel material properties up to the
optimization of computing networks:

• Energy sustainability. To dramatically reduce power dissipation
in photonic computers that can be programmed and
trained with “quasi-zero-energy-consumption”, technology

breakthroughs are required to implement fast and energy-
efficient optical actuators. Recently, several advances have
been demonstrated by exploiting fast electro-optic and
plasmonic weighting banks in photonic ANNs Dabos et al.
(2022) as well as non-volatile switchable elements based on
phase-change materials Figure 3AMiscuglio and Sorger (2020);
Feldmann et al. (2019); Farmakidis et al. (2022),
optomechanical devices Quack et al. (2023), optical
memristors Farmakidis et al. (2022); Youngblood et al.
(2023), and liquid crystal devices Yin et al. (2022).

• More functionalities. Novel devices are required to enlarge the
portfolio of signal processing operations that can be operated
directly in the optical domain, both in free-space optics and
guided wave devices. Here, promising device concepts are
emerging, which are enabled by the realization of tuneable
meta-surfaces, subwavelength meta-structures, and meta-
devices engineered at the nanoscale Figure 3B Cui et al.
(2014); Halir et al. (2015); Li et al. (2022).

• Scalability. Today, photonic integrated circuits (PICs) can
reach very high-integration densities enabled by
complementary-metal-oxide-semiconductor (CMOS)
manufacturing, but scalability to complex on-chip
architectures requires sophisticated modeling and design
techniques as well as advanced algorithms, control
techniques, and training tools for automated calibration
and adaptive reconfiguration Figure 3C Hughes et al.
(2018); Milanizadeh et al. (2020); Filipovich et al. (2022);
Pai et al. (2023b).

FIGURE 3
(A) Phase-change optical memristors: a plasmonic device exploits narrowly spaced lectrodes integrated in optical waveguides to provide strong
optical and electrical coupling and enable highly energy-efficient modulation of the light Farmakidis et al. (2022). (B) Programmablemetasurfacemade of
square meta-atoms that can by digitally controlled to realize ‘0’ (no phase shift) and ‘1’ (π phase shift) elements and arbitrarily control the scattering of
optical beams Cui et al. (2014); (C) Schematic of an ANN architecture that exploit meshes of MZIs interleaved with nonlinear activation functions:
gradient computation in the ANN is performend by implementing a photonic analogue of the backpropagation algorithm and enables highly efficient,
in situ training of a photonic neural network Hughes et al. (2018). (D). Zero-change integration of electronics into a silicon photonic platform: schematic
of the technological platform and of aMOSFET device Zanetto et al. (2023). Panels (A,B andD) reproduced under a Creative Commons licence CCBY 4.0.
Panel C reprinted with permission from (Hughes et al. (2018)) © Optical Society of America.
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• Non-linear processing and data storage. Such operations,
which are essential in neuromorphic computing and AI, are
still inefficient when operated in optics with respect to the
performance offered by electronics; in this view, the
integration of photonics and electronic circuits may offer a
viable route to profit from the main advantages offered by the
two technological platforms. However, this approach requires
reconsideration of the way integrated circuits are realized,
developing suitable procedures for co-designing and co-
packaging photonics and electronics chips Peserico
et al. (2022).

• Electronic-photonic co-integration. The integration of analog
photonic elements into analog/digital electronic circuits could
herald new classes of computing devices combining the best of
both worlds. However, such interplay opens new issues related
to the co-design, co-integration, and co-packaging of photonic
and electronic circuits. Monolithic integration Figure 3D
Atabaki et al. (2018); Zanetto et al. (2023), heterogeneous
integration, and chip-to-chip bonding Chang et al. (2023);
Nezami et al. (2023) are different approaches that are being
explored to leverage the potential of photonic computing.

Applications for photonic computing are envisioned in
mathematical accelerators for deep learning Kitayama et al.
(2019); Zhou et al. (2022), photonic reservoir computing
Nakajima et al. (2021), and spiking neural networks Feldmann
et al. (2019); cognitive radio Zhu and Pan (2020) and
compressive sensing Kilic et al. (2023); the classification of
unstructured signals, high-energy particle collision Duarte et al.
(2018), and qubit systems Magesan et al. (2015); the non-linear
control and optimization in robotics and autonomous vehicles
Kuutti et al. (2021); intelligent signal processing in wireless and
fibre-optic communication Huang et al. (2022); Milanizadeh et al.
(2022); and optical quantum key distribution Kwek et al. (2021) and
chaotic systems and encryption Pai et al. (2023a).

Although photonic computing is still in its infancy, in recent
years, we have assisted an impressive increase in fundamental and
applied research in this field, which is driven by large industrial
investment and the birth of small- and medium-scale enterprises.
This means that photonic computing is not just a fascinating
scientific area but its potential is critically strategic for
stakeholders to drive investments in those areas that might have

the highest impact, such as AI and quantum information. Photonic
computing will probably never replace conventional computers but
it can offer real opportunities for a sustainable scalability of
performance in distributed and edge-computing systems. Indeed,
without photonics, we may have no other alternative technologies to
address the bottleneck that electronics are bound to face in meeting
the requirements of future computing. Miller (2017).
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